1
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Abstract
Currently, most cellular therapeutic effects for nervous diseases cannot be proven in a multicenter, randomized, double-blind placebo-control clinical trials, except for a few kinds of cells such as olfactory ensheathing cells. These cells show significant improvements in functional recovery and quality of life for patients with chronic ischemic stroke. Also, olfactory neuron transplantation has promising neurorestorative effects on patients with vascular dementia. Human olfactory neuroepithelium can spontaneously and sustainably regenerate or produce new olfactory neurons and glial cell types for decades or a lifetime. The neurorestorative mechanisms of olfactory ensheathing cells are well known; however, little is known about the neurorestorative mechanisms of olfactory neurons. Therefore, I hypothesize that the neurorestorative mechanisms of olfactory neurons after transplantation: (1) can well migrate where they are needed and become local functional neurons, as they need to compensate or replace; (2) must be regulated by some special molecular factors to elongate their axons, modulate or direct synapses to correctly recognize and connect the target cells, and integrate functions. Based on olfactory neuroepithelium cells displaying the special characterization, neurorestorative mechanisms, clinical therapeutic achievements, and hypotheses of effective mechanisms, they (olfactory ensheathing cells and olfactory neurons) may be the most efficient instruments of neurorestoration.
Collapse
|
3
|
Russo C, Patanè M, Vicario N, Di Bella V, Cosentini I, Barresi V, Gulino R, Pellitteri R, Russo A, Stanzani S. Olfactory Ensheathing Cells express both Ghrelin and Ghrelin Receptor in vitro: a new hypothesis in favor of a neurotrophic effect. Neuropeptides 2020; 79:101997. [PMID: 31784044 DOI: 10.1016/j.npep.2019.101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells able to secrete different neurotrophic growth factors and thus promote axonal growth, also acting as a mechanical support. In the olfactory system, during development, they drive the non-myelinated axons of the Olfactory Receptor Neurons (ORNs) towards the Olfactory Bulb (OB). Ghrelin (Ghre), a gut-brain peptide hormone, and its receptor (GHS-R 1a) are expressed in different parts of the central nervous system. In the last few years, this peptide has stimulated particular interest as results show it to be a neuroprotective factor with antioxidant, anti-inflammatory and anti-apoptotic properties. Our previous studies showed that OB mitral cells express Ghre, thus being able to play an important role in regulating food behavior in response to odors. In this study, we investigated the presence of Ghre and GHS-R 1a in primary mouse OECs. The expression of both Ghre and its receptor was assessed by an immunocytochemical technique, Western Blot and Polymerase Chain Reaction (PCR) analysis. Our results demonstrated that OECs are able to express both Ghre and GHS-R 1a and that these proteins are detectable after extensive passages in vitro; in addition, PCR analysis further confirmed these data. Therefore, we can hypothesize that Ghre and GHS-R 1a interact with a reinforcement function, in the peripheral olfactory circuit, providing a neurotrophic support to the synaptic interaction between ORNs and mitral cells.
Collapse
Affiliation(s)
- Cristina Russo
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Martina Patanè
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Nunzio Vicario
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Virginia Di Bella
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Ilaria Cosentini
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Vincenza Barresi
- Dept Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Italy
| | - Rosario Gulino
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| | - Rosalia Pellitteri
- Inst for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Antonella Russo
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy.
| | - Stefania Stanzani
- Dept Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Italy
| |
Collapse
|
4
|
He M, Xiang Z, Xu L, Duan Y, Li F, Chen J. Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway. Cell Stress Chaperones 2019; 24:91-104. [PMID: 30374881 PMCID: PMC6363633 DOI: 10.1007/s12192-018-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing glia (OEG) play an important role in regulating the regeneration of an injured nervous system. However, chronic inflammation damage reduces the viability of OEG via poorly understood mechanisms. We aimed to investigate the pathological responses of OEG in response to LPS-mediated inflammation stress in vitro. The results indicated that lipopolysaccharide (LPS) treatment significantly reduced the viability of OEG in a dose-dependent fashion. Mechanistically, LPS stimuli induced mitochondrial oxidative damage, mitochondrial fragmentation, mitochondrial metabolism disruption, and mitochondrial apoptosis activation. Furthermore, we verified that LPS modulated mitochondrial apoptosis by promoting Bax upregulation, and this process was regulated by the JNK-Bnip3 pathway. Inhibition of the JNK-Bnip3 pathway prevented LPS-mediated Bax activation, thus attenuating OEG apoptosis. Altogether, our data illustrated that LPS-mediated inflammation injury evoked mitochondrial abnormalities in OEG damage via the JNK-Bnip3-Bax pathway. This finding provides a potential target to protect OEG against chronic inflammation stress.
Collapse
Affiliation(s)
- Maowei He
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Zimin Xiang
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Libin Xu
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Yanting Duan
- Bengbu Medical College, Affiliated Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China
| | - Fangqin Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jianmei Chen
- Department of Orthopedics, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA, Fuzhou, 350025, China.
| |
Collapse
|
5
|
Abstract
The olfactory system is one of a few areas in the nervous system which is capable of regeneration throughout the life. Olfactory sensory neurons reside in the nasal cavity are continuously replenished with new neurons arising from stem cells. Some factors such as aging, neurodegenerative diseases, head trauma, brain tumor extraction and infection cause olfactory dysfunction which significantly influences physical wellbeing, quality of life, mental health, nutritional status, memory processes, identifying danger and is associated with increased mortality. Therefore, finding a treatment to improve olfactory dysfunction is needed. Recent research efforts in the field have shown some very promising new approaches to treat olfactory dysfunction. This review explores the current studies that have addressed therapeutic approaches to improve olfactory neuron regeneration based on cell transplantation therapy, modulation of physiological olfactory dysfunction and drug treatments.
Collapse
Affiliation(s)
- Kate Beecher
- School of Biomedical Science, Queensland University of Technology; Institute of Health and Biomedical Innovation, Queensland University of Technology; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery; Menzies Health Institute Queensland, Griffith University, Brisbane, Queensland, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Science, Queensland University of Technology; Institute of Health and Biomedical Innovation, Queensland University of Technology; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Barton MJ, John JS, Clarke M, Wright A, Ekberg J. The Glia Response after Peripheral Nerve Injury: A Comparison between Schwann Cells and Olfactory Ensheathing Cells and Their Uses for Neural Regenerative Therapies. Int J Mol Sci 2017; 18:E287. [PMID: 28146061 PMCID: PMC5343823 DOI: 10.3390/ijms18020287] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory nerve, and Schwann cells (SCs), which are present in the rest of the PNS. These two glial types share many similar morphological and functional characteristics but also exhibit key differences. The olfactory nerve is constantly turning over throughout life, which means OECs are continuously stimulating neural regeneration, whilst SCs only promote regeneration after direct injury to the PNS. This review presents a comparison between these two PNS systems in respect to normal physiology, developmental anatomy, glial functions and their responses to injury. A thorough understanding of the mechanisms and differences between the two systems is crucial for the development of future therapies using transplantation of peripheral glia to treat neural injuries and/or disease.
Collapse
Affiliation(s)
- Matthew J Barton
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Nathan QLD 4111, Australia.
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| | - Alison Wright
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology & Stem Cell Research, Griffith University, Nathan QLD 4111, Australia.
- Faculty of Health and Medical Science, Bond University, Robina, QLD 4226, Australia.
| |
Collapse
|
7
|
Silva NA, Cooke MJ, Tam RY, Sousa N, Salgado AJ, Reis RL, Shoichet MS. The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials 2012; 33:6345-54. [DOI: 10.1016/j.biomaterials.2012.05.050] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/20/2012] [Indexed: 12/15/2022]
|
8
|
Silva NA, Sousa RA, Pires AO, Sousa N, Salgado AJ, Reis RL. Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. J Biomed Mater Res A 2011; 100:470-6. [DOI: 10.1002/jbm.a.33289] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/15/2011] [Accepted: 09/26/2011] [Indexed: 11/10/2022]
|
9
|
Windus LCE, Chehrehasa F, Lineburg KE, Claxton C, Mackay-Sim A, Key B, St John JA. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell Mol Life Sci 2011; 68:3233-47. [PMID: 21318262 PMCID: PMC11115065 DOI: 10.1007/s00018-011-0630-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.
Collapse
Affiliation(s)
- Louisa C. E. Windus
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Fatemeh Chehrehasa
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Katie E. Lineburg
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Christina Claxton
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Alan Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - James A. St John
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| |
Collapse
|