1
|
Zhang Y, Shen G, Zhang D, Meng T, Lv Z, Chen L, Li J, Li K. N 6-Methyladenosine modification mediated by METTL3 promotes DNA-PKcs expression to induce anlotinib resistance in osteosarcoma. Clin Transl Med 2025; 15:e70228. [PMID: 39924638 PMCID: PMC11807765 DOI: 10.1002/ctm2.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Acquired anlotinib resistance is still a key challenge in osteosarcoma treatment. Unravelling the mechanisms underlying anlotinib resistance is the key to optimising its efficacy for treating osteosarcoma. Previous studies have explored the pivotal function of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) with regard to osteosarcoma chemoresistance. METHODS We used bioinformatics analysis to predict DNA-PKcs and Beclin-1 interactions, confirmed through immunofluorescence (IF) and co-immunoprecipitation (co-IP). Dual-luciferase analyses and Methylated RNA immunoprecipitation (MeRIP) were implemented to detect the detected m6A modifications. RNA fluorescence in situ hybridisation (FISH)-IF co-localisation and RNA immunoprecipitation (RIP) were conducted to explore the interplay between PRKDC mRNA and the indicated proteins. RESULTS Anlotinib-treated osteosarcoma cells exhibited increased DNA-PKcs levels, and silencing DNA-PKcs augmented osteosarcoma sensitivity to anlotinib. DNA-PKcs affects anlotinib-induced autophagy by interacting with Beclin-1 and regulating its ubiquitination. Notably, PRKDC mRNA, encoding DNA-PKcs, underwent N6-Methyladenosine (m6A) modification. Methyltransferase-like 3 (METTL3) positively regulated DNA-PKcs expression. Functionally, METTL3 enhances anlotinib resistance in osteosarcoma, which is reversed by PRKDC knockdown. Mechanistically, METTL3 binds to PRKDC mRNA and facilitates m6A methylation. Additionally, m6A methylated PRKDC mRNA is identified via YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1), augmenting its expression. CONCLUSION These findings revealed that DNA-PKcs promotes anlotinib resistance by regulating protective autophagy, while METTL3 induces PRKDC m6A modification, enhancing its expression. Thus, targeting METTL3/PRKDC may be a novel strategy for improving therapeutic efficacy in human osteosarcoma. KEY POINTS DNA-PKcs knockdown heightens osteosarcoma sensitivity to anlotinib. DNA-PKcs modulates anlotinib-induced protective autophagy through interacts with Beclin-1 and regulates its ubiquitination. m6A modification of OLE_LINK82PRKDC mRNA induced by METTL3 contributes to anlotinib resistance in osteosarcoma. m6A methylation of PRKDC mRNA recognised by YTHDF1 amplifies the expression of DNA-PKcs.
Collapse
Affiliation(s)
- Yining Zhang
- The First Clinical College of Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandongChina
| | - Guohong Shen
- Department of PediatricsCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Dan Zhang
- Department of Cardiovascular MedicineJinan Central HospitalJinanShandongChina
| | - Tingting Meng
- Department of Cardiovascular MedicineJinan Central HospitalJinanShandongChina
- Research Center of Translational MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Zhaorui Lv
- Department of OrthopedicsAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Lei Chen
- The First Clinical College of Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandongChina
| | - Jianmin Li
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ka Li
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
2
|
Qin Y, Xiong S, Ren J, Sethi G. Autophagy machinery in glioblastoma: The prospect of cell death crosstalk and drug resistance with bioinformatics analysis. Cancer Lett 2024; 580:216482. [PMID: 37977349 DOI: 10.1016/j.canlet.2023.216482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Brain tumors are common malignancies with high mortality and morbidity in which glioblastoma (GB) is a grade IV astrocytoma with heterogeneous nature. The conventional therapeutics for the GB mainly include surgery and chemotherapy, however their efficacy has been compromised due to the aggressiveness of tumor cells. The dysregulation of cell death mechanisms, especially autophagy has been reported as a factor causing difficulties in cancer therapy. As a mechanism contributing to cell homeostasis, the autophagy process is hijacked by tumor cells for the purpose of aggravating cancer progression and drug resistance. The autophagy function is context-dependent and its role can be lethal or protective in cancer. The aim of the current paper is to highlight the role of autophagy in the regulation of GB progression. The cytotoxic function of autophagy can promote apoptosis and ferroptosis in GB cells and vice versa. Autophagy dysregulation can cause drug resistance and radioresistance in GB. Moreover, stemness can be regulated by autophagy and overall growth as well as metastasis are affected by autophagy. The various interventions including administration of synthetic/natural products and nanoplatforms can target autophagy. Therefore, autophagy can act as a promising target in GB therapy.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Afflicted Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Shengjun Xiong
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
3
|
Pan L, Wu Q, Wang Y, Ma S, Zhang S. Characterization and mechanisms of radioresistant lung squamous cell carcinoma cell lines. Thorac Cancer 2023; 14:1239-1250. [PMID: 37028947 PMCID: PMC10175036 DOI: 10.1111/1759-7714.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Radiotherapy is an important clinical treatment for patients with lung squamous cell carcinoma (LUSC), and resistance to radiotherapy is an important cause of recurrence and metastasis in LUSC. The aim of this study was to establish and explore the biological characteristics of radioresistant LUSC cells. MATERIALS AND METHODS The LUSC cell lines NCI-H2170 and NCI-H520 were irradiated (4 Gy × 15Fraction). Radiosensitivity, cell apoptosis, cell cycle, and DNA damage repair were measured by clonogenic survival assay, flow cytometry, immunofluorescence for γ-H2AX foci, and Comet assay, respectively. Activation of p-ATM(Ser1981), p-CHK2(Th68), p-DNA-PKcs (Ser2056), and Ku70/Ku80 was measured by western blot. Proteomics was used to explore the differential genes and enriched signaling pathways between radioresistant cell lines and parental lines. In vivo nude mouse xenograft experiments further verified the feasibility of the radioresistant LUSC cell lines. RESULTS After fractionated irradiation (total dose of 60 Gy), radioresistant cells had decreased radiosensitivity, increased G0/G1 phase arrest, enhanced DNA damage repair ability, and through the ATM/CHK2 and DNA-PKcs/Ku70 pathways regulated double strands break. The upregulated differential genes in radioresistant cell lines were mainly enriched in biological pathways such as cell migration and extracellular matrix (ECM)-receptor interaction. In vivo verification of decreased radiosensitivity of radioresistant cells CONCLUSIONS: Radioresistant LUSC cell lines were established by fractional radiotherapy, which regulates IR-induced DNA damage repair through ATM/CHK2 and DNA-PKcs/Ku70. Tandem Mass Tags (TMT) quantitative proteomics found that the biological process pathway of cell migration and ECM-receptor interaction are upregulated in LUSC radioresistant cells.
Collapse
Affiliation(s)
- Lifang Pan
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiong Wu
- Department of Integrated Chinese and Western Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yuqing Wang
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglin Ma
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shirong Zhang
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Effect of Autophagy Inhibitors on Radiosensitivity in DNA Repair-Proficient and -Deficient Glioma Cells. Medicina (B Aires) 2022; 58:medicina58070889. [PMID: 35888608 PMCID: PMC9317283 DOI: 10.3390/medicina58070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Objectives: The development of radioresistance is a fundamental barrier to successful glioblastoma therapy. Autophagy is thought to play a role in facilitating the DNA repair of DNA damage foci in radiation-exposed tumor cells, thus, potentially contributing to their restoration of proliferative capacity and development of resistance in vitro. However, the effect of autophagy inhibitors on DNA damage repair is not fully clear and requires further investigation. Materials and Methods: In this work, we utilized M059K (DNA-PKcs proficient) and M059J (DNA-PKcs deficient) glioma cell lines to investigate the role of autophagy inhibitors in the DNA repair of radiation-induced DNA damage. Cell viability following radiation was determined by trypan blue exclusion in both cell lines. Cell death and autophagy assays were performed to evaluate radiation-induced cell stress responses. DNA damage was measured as based on the intensity of phosphorylated γ-H2AX, a DNA double-stranded breaks (DSBs) marker, in the presence or absence of autophagy inhibitors. Results: The cell viability assay showed that M059J cells were more sensitive to the same dose of radiation (4 Gy) than M059K cells. This observation was accompanied by an elevation in γ-H2AX formation in M059J but not in M059K cells. In addition, the DAPI/TUNEL and Senescence-associated β-galactosidase (SA-β-gal) staining assays did not reveal significant differences in apoptosis and/or senescence induction in response to radiation, respectively, in either cell line. However, acridine orange staining demonstrated clear promotion of acidic vesicular organelles (AVOs) in both cell lines in response to 4 Gy radiation. Moreover, DNA damage marker levels were found to be elevated 72 h post-radiation when autophagy was inhibited by the lysosomotropic agent bafilomycin A1 (BafA1) or the PI3K inhibitor 3-methyl adenine (3-MA) in M059K cells. Conclusions: The extent of the DNA damage response remained high in the DNA-PKcs deficient cells following exposure to radiation, indicating their inability to repair the newly formed DNA-DSBs. On the other hand, radioresistant M059K cells showed more DNA damage response only when autophagy inhibitors were used with radiation, suggesting that the combination of autophagy inhibitors with radiation may interfere with DNA repair efficiency.
Collapse
|
5
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
7
|
Chen Y, Li Y, Xiong J, Lan B, Wang X, Liu J, Lin J, Fei Z, Zheng X, Chen C. Role of PRKDC in cancer initiation, progression, and treatment. Cancer Cell Int 2021; 21:563. [PMID: 34702253 PMCID: PMC8547028 DOI: 10.1186/s12935-021-02229-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The PRKDC gene encodes the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein. DNA-PKcs plays an important role in nonhomologous end joining (NHEJ) of DNA double-strand breaks (DSBs) and is also closely related to the establishment of central immune tolerance and the maintenance of chromosome stability. The occurrence and development of different types of tumors and the results of their treatment are also influenced by DNA-PKcs, and it may also predict the results of radiotherapy, chemotherapy, and therapy with immune checkpoint inhibitors (ICIs). Here, we discuss and review the structure and mechanism of action of PRKDC and DNA-PKcs and their relationship with cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yi Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Lan
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Shanghai Center for Systems Biomedicine Research, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Jun Liu
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Zhaodong Fei
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Zheng
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Chuanben Chen
- Cancer Bio-Immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China. .,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China. .,Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
8
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
9
|
Fang X, Huang Z, Zhai K, Huang Q, Tao W, Kim L, Wu Q, Almasan A, Yu JS, Li X, Stark GR, Rich JN, Bao S. Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Sci Transl Med 2021; 13:13/600/eabc7275. [PMID: 34193614 DOI: 10.1126/scitranslmed.abc7275] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/23/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM), a lethal primary brain tumor, contains glioma stem cells (GSCs) that promote malignant progression and therapeutic resistance. SOX2 is a core transcription factor that maintains the properties of stem cells, including GSCs, but mechanisms associated with posttranslational SOX2 regulation in GSCs remain elusive. Here, we report that DNA-dependent protein kinase (DNA-PK) governs SOX2 stability through phosphorylation, resulting in GSC maintenance. Mass spectrometric analyses of SOX2-binding proteins showed that DNA-PK interacted with SOX2 in GSCs. The DNA-PK catalytic subunit (DNA-PKcs) was preferentially expressed in GSCs compared to matched non-stem cell tumor cells (NSTCs) isolated from patient-derived GBM xenografts. DNA-PKcs phosphorylated human SOX2 at S251, which stabilized SOX2 by preventing WWP2-mediated ubiquitination, thus promoting GSC maintenance. We then demonstrated that when the nuclear DNA of GSCs either in vitro or in GBM xenografts in mice was damaged by irradiation or treatment with etoposide, the DNA-PK complex dissociated from SOX2, which then interacted with WWP2, leading to SOX2 degradation and GSC differentiation. These results suggest that DNA-PKcs-mediated phosphorylation of S251 was critical for SOX2 stabilization and GSC maintenance. Pharmacological inhibition of DNA-PKcs with the DNA-PKcs inhibitor NU7441 reduced GSC tumorsphere formation in vitro and impaired growth of intracranial human GBM xenografts in mice as well as sensitized the GBM xenografts to radiotherapy. Our findings suggest that DNA-PK maintains GSCs in a stem cell state and that DNA damage triggers GSC differentiation through precise regulation of SOX2 stability, highlighting that DNA-PKcs has potential as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Xiaoguang Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhi Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kui Zhai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qian Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Weiwei Tao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Leo Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Division of Hematology Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Radiation Oncology, Cleveland Clinic, OH 44195, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Radiation Oncology, Cleveland Clinic, OH 44195, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Division of Hematology Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Li L, Liu WL, Su L, Lu ZC, He XS. The Role of Autophagy in Cancer Radiotherapy. Curr Mol Pharmacol 2021; 13:31-40. [PMID: 31400274 DOI: 10.2174/1874467212666190809154518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autophagy, a pathway for lysosomal-mediated cellular degradation, is a catabolic process that recycles intracellular components to maintain metabolism and survival. It is classified into three major types: macroautophagy, microautophagy, and the chaperone-mediated autophagy (CMA). Autophagy is a dynamic and multistep process that includes four stages: nucleation, elongation, autophagosome formation, and fusion. Interestingly, the influence of autophagy in cancer development is complex and paradoxical, suppressive, or promotive in different contexts. Autophagy in cancer has been demonstrated to serve as both a tumour suppressor and promoter. Radiotherapy is a powerful and common strategy for many different types of cancer and can induce autophagy, which has been shown to modulate sensitivity of cancer to radiotherapy. However, the role of autophagy in radiation treatment is controversial. Some reports showed that the upregulation of autophagy was cytoprotective for cancer cells. Others, in contrast, showed that the induction of autophagy was advantageous. Here, we reviewed recent studies and attempted to discuss the various aspects of autophagy in response to radiotherapy of cancer. Thus, we could decrease the viability of cancer cell and increase the sensibility of cancer cells to radiation, providing a new basis for the application of autophagy in clinical tumor radiotherapy.
Collapse
Affiliation(s)
- Lei Li
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| | - Wen-Ling Liu
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| | - Lei Su
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| | - Zhou-Cheng Lu
- Second Affiliated Hospital of South China University, Hengyang City, Hunan Province, China
| | - Xiu-Sheng He
- Cancer Research Institute, Hengyang Medical College of University of South China, No. 28, West Changsheng Road, Hengyang City, Hunan Province, China
| |
Collapse
|
11
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
12
|
Liu H, Zheng W, Chen Q, Zhou Y, Pan Y, Zhang J, Bai Y, Shao C. lncRNA CASC19 Contributes to Radioresistance of Nasopharyngeal Carcinoma by Promoting Autophagy via AMPK-mTOR Pathway. Int J Mol Sci 2021; 22:ijms22031407. [PMID: 33573349 PMCID: PMC7866785 DOI: 10.3390/ijms22031407] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.
Collapse
|
13
|
Beyond DNA Repair: DNA-PKcs in Tumor Metastasis, Metabolism and Immunity. Cancers (Basel) 2020; 12:cancers12113389. [PMID: 33207636 PMCID: PMC7698146 DOI: 10.3390/cancers12113389] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key component of the DNA-PK complex that has a well-characterized function in the non-homologous end-joining repair of DNA double-strand breaks. Since its identification, a large body of evidence has demonstrated that DNA-PKcs is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis of cancer patients. Intriguingly, recent studies have suggested novel functions beyond the canonical role of DNA-PKcs, which has transformed the paradigm of DNA-PKcs in tumorigenesis and has reinvigorated the interest to target DNA-PKcs for cancer treatment. In this review, we update recent advances in DNA-PKcs, in particular the emerging roles in tumor metastasis, metabolic dysregulation, and immune escape. We further discuss the possible molecular basis that underpins the pleiotropism of DNA-PKcs in cancer. Finally, we outline the biomarkers that may predict the therapeutic response to DNA-PKcs inhibitor therapy. Understanding the functional repertoire of DNA-PKcs will provide mechanistic insights of DNA-PKcs in malignancy and, more importantly, may revolutionize the design and utility of DNA-PKcs-based precision cancer therapy.
Collapse
|
14
|
Impact of Hypoxia on Carbon Ion Therapy in Glioblastoma Cells: Modulation by LET and Hypoxia-Dependent Genes. Cancers (Basel) 2020; 12:cancers12082019. [PMID: 32718037 PMCID: PMC7464439 DOI: 10.3390/cancers12082019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.
Collapse
|
15
|
Zenke FT, Zimmermann A, Sirrenberg C, Dahmen H, Kirkin V, Pehl U, Grombacher T, Wilm C, Fuchss T, Amendt C, Vassilev LT, Blaukat A. Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models. Mol Cancer Ther 2020; 19:1091-1101. [PMID: 32220971 DOI: 10.1158/1535-7163.mct-19-0734] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/17/2019] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials.
Collapse
Affiliation(s)
- Frank T Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany.
| | - Astrid Zimmermann
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Christian Sirrenberg
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Heike Dahmen
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Vladimir Kirkin
- The Institute of Cancer Research, Cancer Research UK Cancer Therapeutics Unit, Sutton, London, United Kingdom
| | - Ulrich Pehl
- Merck KGaA, Biopharma R&D, Discovery Development Technologies, Darmstadt, Germany
| | - Thomas Grombacher
- Merck KGaA, Biopharma R&D, Translational Medicine, Darmstadt, Germany
| | - Claudia Wilm
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Thomas Fuchss
- Merck KGaA, Biopharma R&D, Discovery Development Technologies, Darmstadt, Germany
| | - Christiane Amendt
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Lyubomir T Vassilev
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, Massachusetts, United States; a business of Merck KGaA, Darmstadt, Germany
| | - Andree Blaukat
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| |
Collapse
|
16
|
Sousa JFD, Serafim RB, Freitas LMD, Fontana CR, Valente V. DNA repair genes in astrocytoma tumorigenesis, progression and therapy resistance. Genet Mol Biol 2019; 43:e20190066. [PMID: 31930277 PMCID: PMC7198033 DOI: 10.1590/1678-4685-gmb-2019-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor,
showing rapid development and resistance to therapies. On average, patients
survive 14.6 months after diagnosis and less than 5% survive five years or more.
Several pieces of evidence have suggested that the DNA damage signaling and
repair activities are directly correlated with GBM phenotype and exhibit
opposite functions in cancer establishment and progression. The functions of
these pathways appear to present a dual role in tumorigenesis and cancer
progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were
extensively characterized as barriers for GBM initiation, but paradoxically the
exacerbated activity of these genes was further associated with cancer
progression to more aggressive stages. Excessive amounts of other DNA repair
proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected
to proliferative competence, resistance and poor prognosis. This scenario
suggests that these networks help tumor cells to manage replicative stress and
treatment-induced damage, diminishing genome instability and conferring therapy
resistance. Finally, in this review we address promising new drugs and
therapeutic approaches with potential to improve patient survival. However,
despite all technological advances, the prognosis is still dismal and further
research is needed to dissect such complex mechanisms.
Collapse
Affiliation(s)
- Juliana Ferreira de Sousa
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rodolfo Bortolozo Serafim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Laura Marise de Freitas
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Carla Raquel Fontana
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil
| | - Valeria Valente
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brazil.,Centro de Terapia Celular (CEPID-FAPESP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, Esposito V, Fornai F. The Autophagy Status of Cancer Stem Cells in Gliobastoma Multiforme: From Cancer Promotion to Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20153824. [PMID: 31387280 PMCID: PMC6695733 DOI: 10.3390/ijms20153824] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor featuring rapid cell proliferation, treatment resistance, and tumor relapse. This is largely due to the coexistence of heterogeneous tumor cell populations with different grades of differentiation, and in particular, to a small subset of tumor cells displaying stem cell-like properties. This is the case of glioma stem cells (GSCs), which possess a powerful self-renewal capacity, low differentiation, along with radio- and chemo-resistance. Molecular pathways that contribute to GBM stemness of GSCs include mTOR, Notch, Hedgehog, and Wnt/β-catenin. Remarkably, among the common biochemical effects that arise from alterations in these pathways, autophagy suppression may be key in promoting GSCs self-renewal, proliferation, and pluripotency maintenance. In fact, besides being a well-known downstream event of mTOR hyper-activation, autophagy downregulation is also bound to the effects of aberrantly activated Notch, Hedgehog, and Wnt/β-catenin pathways in GBM. As a major orchestrator of protein degradation and turnover, autophagy modulates proliferation and differentiation of normal neuronal stem cells (NSCs) as well as NSCs niche maintenance, while its failure may contribute to GSCs expansion and maintenance. Thus, in the present review we discuss the role of autophagy in GSCs metabolism and phenotype in relationship with dysregulations of a variety of NSCs controlling pathways, which may provide novel insights into GBM neurobiology.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126, Pisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126, Pisa, Italy
| | | | | | - Alessandro Frati
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy
| | - Vincenzo Esposito
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy
- Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126, Pisa, Italy.
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
18
|
Sak A, Groneberg M, Stuschke M. DNA-dependent protein kinase: effect on DSB repair, G2/M checkpoint and mode of cell death in NSCLC cell lines. Int J Radiat Biol 2019; 95:1205-1219. [PMID: 31287365 DOI: 10.1080/09553002.2019.1642536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: To evaluate the effect of NU7026, a specific inhibitor of DNA-PKcs, on DNA-double strand break (DSB) repair in a cell cycle specific manner, on the G2/M checkpoint, mitotic progression, apoptosis and clonogenic survival in non-small-cell lung carcinoma (NSCLC) cell lines with different p53 status. Material and methods: Cell cycle progression, and hyperploidy were evaluated using flow cytometry. Polynucleation as a measure for mitotic catastrophe (MC) was evaluated by fluorescence microscopy. DSB induction and repair were measured by constant-gel electrophoresis and γH2AX assay. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1 and G2/M phase cells on the basis of the DNA content in flow cytometry. The overall effect on cell death was determined by apoptosis and the surviving fraction after irradiation with 2 Gy (SF2) assessed by clonogenic survival. Results: DSB signaling upon treatment with NU7026, as measured by γH2AX signaling, was differently affected in G1 and G2/M cells. The background level of γH2AX was significantly higher in G2/M compared to G1 cells, whereas NU7026 had no effect on the background level. The steepness of the initial dose effect relation at 1 h after irradiation was less pronounced in G2/M compared to G1 cells. NU7026 had no significant effect on the initial dose-effect relation of γH2AX signaling. In comparison, NU7026 significantly slowed down the repair kinetics and increased the residual γH2AX signal at 24 h after irradiation in the G1 phase of all cell lines, but was less effective in G2/M cells. NU7026 significantly increased the fraction of G2/M phase cells upon irradiation. Moreover, NU7026 significantly increased mitotic catastrophe and hyperploidy, as a measure for mitotic failure after low irradiation doses of about 4 Gy, but decreased both at higher doses of 20 Gy. In addition, radiation induced apoptosis increased in A549, H520 and H460 but decreased in H661 upon NU7026 treatment, with a significant reduction of SF2 in all NSCLC cell lines. Conclusion: Overall, NU7026 significantly influences the cell cycle progression through the G2- and M-phases and thereby determines the fate of cells. The impairment of DNA-PK upon treatment with NU7026 affects the efficiency of the NHEJ system in a cell cycle dependent manner, which may be of relevance for a clinical application of DNA-PK inhibitors in tumor therapy.
Collapse
Affiliation(s)
- Ali Sak
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| | - Michael Groneberg
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen , Essen , Germany
| |
Collapse
|
19
|
Wang Y, Xu H, Liu T, Huang M, Butter PP, Li C, Zhang L, Kao GD, Gong Y, Maity A, Koumenis C, Fan Y. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight 2018; 3:98096. [PMID: 29415883 PMCID: PMC5821187 DOI: 10.1172/jci.insight.98096] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) - known to be resistant to genotoxic radiation and chemotherapy - are fundamental to therapy failure and cancer relapse. Here, we reveal that glioma CSCs are hypersensitive to radiation, but a temporal DNA repair mechanism converts the intrinsic sensitivity to genomic instability and treatment resistance. Transcriptome analysis identifies DNA-dependent protein kinase (DNA-PK) as a predominant DNA repair enzyme in CSCs. Notably, DNA-PK activity is suppressed after irradiation when ROS induce the dissociation of DNA-PKcs with Ku70/80, resulting in delayed DNA repair and radiosensitivity; subsequently, after ROS clearance, the accumulated DNA damage and robust activation of DNA-PK induce genomic instability, facilitated by Rad50-mediated cell-cycle arrest, leading to enhanced malignancy, CSC overgrowth, and radioresistance. Finally, we show a requisite in vivo role for DNA-PK in CSC-mediated radioresistance and glioma progression. These findings identify a time-sensitive mechanism controlling CSC resistance to DNA-damaging treatments and suggest DNA-PK/Rad50 as promising targets for CSC eradication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Zhang
- Department of Obstetrics & Gynecology
| | | | - Yanqing Gong
- Division of Human Genetics and Translational Medicine, Department of Medicine, and
| | | | | | - Yi Fan
- Department of Radiation Oncology
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Xin Y, Jiang F, Yang C, Yan Q, Guo W, Huang Q, Zhang L, Jiang G. Role of autophagy in regulating the radiosensitivity of tumor cells. J Cancer Res Clin Oncol 2017; 143:2147-2157. [PMID: 28786037 DOI: 10.1007/s00432-017-2487-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Autophagy is a metabolic response of cells to chemical and physical factors, such as nutrition or growth factor deprivation, proinflammatory state, hypoxia, accumulation of reactive oxygen species, presence of infectious agents, and DNA damage. Autophagy maintains the homeostasis of intracellular metabolism mainly by degrading cellular organelles and critical proteins. In a sense, autophagy protects cells from death. Radiotherapy is a powerful tool used to control tumor growth, and it can induce autophagy. The relationship between radiotherapy and autophagy is worthy of further investigation. METHODS We searched various electronic databases including PubMed for peer-reviewed English-language articles and selected articles on the mechanism of autophagy, its role in cancer development and cancer treatment, and the relationship between the effect of radiation therapy and autophagy intensity. RESULTS This review has recently shown that the sensitivity of tumor cells to radiation therapy can be increased by regulating autophagy. CONCLUSION The effects of autophagy vary, and autophagy provides various ways of enhancing radiosensitivity, including inhibition of autophagy, increase in autophagy, and altering the outcome of autophagy.
Collapse
Affiliation(s)
- Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Fan Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical, Huai'an, China
| | - Qiuyue Yan
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Wenwen Guo
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Qian Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
21
|
Li H, You L, Xie J, Pan H, Han W. The roles of subcellularly located EGFR in autophagy. Cell Signal 2017; 35:223-230. [PMID: 28428083 DOI: 10.1016/j.cellsig.2017.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a well-studied receptor-tyrosine kinase that serves vital roles in regulation of organ development and cancer progression. EGFR not only exists on the plasma membrane, but also widely expressed in the nucleus, endosomes, and mitochondria. Most recently, several lines of evidences indicated that autophagy is regulated by EGFR in kinase-active and -independent manners. In this review, we summarized recent advances in our understanding of the functions of different subcellularly located EGFR on autophagy. Specifically, plasma membrane- and cytoplasm-located EGFR (pcEGFR) acts as a tyrosine kinase to regulate autophagy via the PI3K/AKT1/mTOR, RAS/MAPK1/3, and STAT3 signaling pathways. The kinase-independent function of pcEGFR inhibits autophagy by maintaining SLC5A1-regulated intracellular glucose level. Endosome-located EGFR phosphorylates and inhibits Beclin1 to suppress autophagy, while kinase-independent endosome-located EGFR releases Beclin1 from the Rubicon-Beclin1 complex to increase autophagy. Additionally, the nuclear EGFR activates PRKDC/PNPase/MYC signaling to inhibit autophagy. Although the role of mitochondria-located EGFR in autophagy is largely unexplored, the production of ATP and reactive oxygen species mediated by mitochondrial dynamics is most likely to influence autophagy.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJR, Penalva LOF. Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2271-8. [PMID: 27470713 PMCID: PMC5012509 DOI: 10.1016/j.ajpath.2016.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.
Collapse
Affiliation(s)
- Patricia Rosa de Araujo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Acarizia E da Silva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Suzanne C Burns
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Philip J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
23
|
Koukourakis MI, Mitrakas AG, Giatromanolaki A. Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 2016; 114:485-96. [PMID: 26889975 PMCID: PMC4782209 DOI: 10.1038/bjc.2016.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a unique model of non-metastasising disease that kills the vast majority of patients through local growth, despite surgery and local irradiation. Glioblastoma cells are resistant to apoptotic stimuli, and their death occurs through autophagy. This review aims to critically present our knowledge regarding the autophagic response of glioblastoma cells to radiation and temozolomide (TMZ) and to delineate eventual research directions to follow, in the quest of improving the curability of this incurable, as yet, disease. Radiation and TMZ interfere with the autophagic machinery, but whether cell response is driven to autophagy flux acceleration or blockage is disputable and may depend on both cell individuality and radiotherapy fractionation or TMZ schedules. Potent agents that block autophagy at an early phase of initiation or at a late phase of autolysosomal fusion are available aside to agents that induce functional autophagy, or even demethylating agents that may unblock the function of autophagy-initiating genes in a subset of tumours. All these create a maze, which if properly investigated can open new insights for the application of novel radio- and chemosensitising policies, exploiting the autophagic pathways that glioblastomas use to escape death.
Collapse
Affiliation(s)
- Michael I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | - Achilleas G Mitrakas
- Department of Radiotherapy/Oncology, Democritus University of Thrace, PO Box 12, Alexandroupolis 68100, Greece
| | | |
Collapse
|
24
|
Abstract
Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients.
Collapse
Affiliation(s)
- Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA.
| |
Collapse
|
25
|
Wang W, Long L, Wang L, Tan C, Fei X, Chen L, Huang Q, Liang Z. Knockdown of Cathepsin L promotes radiosensitivity of glioma stem cells both in vivo and in vitro. Cancer Lett 2015; 371:274-84. [PMID: 26706414 DOI: 10.1016/j.canlet.2015.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
The presence of glioma stem cells (GSCs) in tumor is relevant for glioma treatment resistance. This study assessed whether knockdown of Cathepsin L can influence GSC growth, tumor radiosensitivity, and clinical outcome. Protein levels of Cathepsin L and stem cell markers (CD133 and Nestin) were analyzed in samples from 90 gliomas of different WHO grades and 6 normal brain tissues by immunohistochemistry. Two glioma stem cell lines with overexpressed Cathepsin L were stably transfected with Cathepsin L short hairpin RNA expression vectors. The effects of Cathepsin L inhibition on radiosensitivity, self-renewal, stemness, DNA damage, and apoptosis were evaluated. In addition, an intracranial animal model and subcutaneous tumor xenografts in nude mice were used to assess tumor response to Cathepsin L inhibition in vivo. Our results proved that expressions of Cathepsin L and CD133, but not of Nestin, correlated with malignant grades of glioma tissues. GSCs with high Cathepsin L and CD133 co-expression were extraordinarily radioresistant. Cathepsin L inhibition with radiotherapy significantly reduced GSC growth, promoted apoptosis, and improved radiosensitivity. Knockdown of Cathepsin L resulted in a dramatic reduction of CD133 expression, as well as the decreased phosphorylation of DNA repair checkpoint proteins (ATM and DNA-PKcs). Furthermore, combination of Cathepsin L inhibition and radiotherapy potently blocked tumor growth and decreased blood vessel formation in vivo. Taken together, these findings suggest Cathepsin L as a promising therapeutic target for clinical therapy in GBM patients.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Linmei Long
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Long Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Caihong Tan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China; Department of Pharmacy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital of Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Leisong Chen
- Department of Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongqin Liang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
26
|
Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo. J Pharmacol Sci 2015; 129:216-25. [DOI: 10.1016/j.jphs.2015.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
|
27
|
Zeng Y, Huo G, Mo Y, Wang W, Chen H. MIR137 Regulates Starvation-Induced Autophagy by Targeting ATG7. J Mol Neurosci 2015; 56:815-821. [PMID: 25687327 DOI: 10.1007/s12031-015-0514-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Autophagy is a cellular catabolic mechanism in response to stress conditions and has been implicated in the progression and chemoresistance of various cancers. Human microR-137 (MIR137) is involved in neuronal maturation and neurogenesis, while little is known about its role in cancer. In this study, we showed that starvation increased the formation of autophagic marker microtubule-associated protein 1 light chain 3 (LC3) without significant change of MIR137 level in U87 cells. In addition, overexpression of MIR137 decreased LC3 expression and inhibited the degradation of the autophagy receptor sequestosome 1(SQSTM1/p62), while the MIR137 antagomirs showed the opposite effect on these autophagic markers. Moreover, MIR137 overexpression decreased, while its antagomirs increased the expression of autophagy-related 7(ATG7) mRNA and protein. MIR137-mediated inhibition of autophagy was prevented by ATG7. Finally, MIR137 promoted the sensitivity of U87 cells to adriamycin, an anticancer drug. Taken together, our study demonstrated that MIR137 attenuated starvation-induced autophagy by regulating the expression of ATG7.
Collapse
Affiliation(s)
- Yuecheng Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Huo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yongbiao Mo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wentao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Zhang D, Tang B, Xie X, Xiao YF, Yang SM, Zhang JW. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 2015; 16:1005-13. [PMID: 25985143 DOI: 10.1080/15384047.2015.1046022] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- ATG5, autophagy-related gene 5
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BER, base excision repair
- Chk1, check-point kinase 1
- Chk2, check-point kinase 2
- DDR, DNA damage response
- DNA damage
- DNA damage response
- DNA repair
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DSBs, double-strand breaks
- HDAC, histone deacetylases
- HR, homologous recombination
- IR, ionizing radiation
- MGMT, O6 methylguanine –DNA methyltransferase
- MMR, mismatch repair
- MRN, Mre11-Rad50-Nbs1
- NER, nucleotide excision recombination
- NHEJ, non-homologous end joining
- OGG1, 8-oxoguannine DNA glycosidase
- PARP-1, poly (ADP-ribose) polymerase 1
- PI3K, phosphoinositide 3-kinase
- PML, promyelocytic leukemia
- SSBs, single-strand break
- TMZ, temozolomide
- TSC2, tuberous sclerosis complex 2
- anticancer therapy
- apoptosis
- autophagy
- cell cycle arrest
- mTOR, mammalian target of rapamycin
- γ-H2AX, phosphorylated histone
Collapse
Affiliation(s)
- Dan Zhang
- a Department of Gastroenterology; Xinqiao Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | |
Collapse
|
29
|
Liu Y, Zhang L, Liu Y, Sun C, Zhang H, Miao G, Di CX, Zhou X, Zhou R, Wang Z. DNA-PKcs deficiency inhibits glioblastoma cell-derived angiogenesis after ionizing radiation. J Cell Physiol 2015; 230:1094-103. [PMID: 25294801 DOI: 10.1002/jcp.24841] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/26/2014] [Indexed: 01/31/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a critical role in non-homologous end-joining repair of DNA double-strand breaks (DSB) induced by ionizing radiation (IR). Little is known, however, regarding the relationship between DNA-PKcs and IR-induced angiogenesis; thus, in this study we aimed to further elucidate this relationship. Our findings revealed that lack of DNA-PKcs expression or activity sensitized glioma cells to radiation due to the defective DNA DSB repairs and inhibition of phosphorylated Akt(Ser473) . Moreover, DNA-PKcs deficiency apparently mitigated IR-induced migration, invasion and tube formation of human microvascular endothelial cell (HMEC-1) in conditioned media derived from irradiated DNA-PKcs mutant M059J glioma cells or M059K glioma cells that have inhibited DNA-PKcs kinase activity due to the specific inhibitor NU7026 or siRNA knockdown. Moreover, IR-elevated vascular endothelial growth factor (VEGF) secretion was abrogated by DNA-PKcs suppression. Supplemental VEGF antibody to irradiated-conditioned media was negated enhanced cell motility with a concomitant decrease in phosphorylation of the FAK(Try925) and Src(Try416) . Furthermore, DNA-PKcs suppression was markedly abrogated in IR-induced transcription factor hypoxia inducible factor-1α (HIF-1α) accumulation, which is related to activation of VEGF transcription. These findings, taken together, demonstrate that depletion of DNA-PKcs in glioblastoma cells at least partly suppressed IR-inflicted migration, invasion, and tube formation of HMEC-1 cells, which may be associated with the reduced HIF-1α level and VEGF secretion. Inhibition of DNA-PKcs may be a promising therapeutic approach to enhance radio-therapeutic efficacy for glioblastoma by hindering its angiogenesis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiation Medicine, Institute of Modern physics, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015; 11:1711-28. [PMID: 26018563 PMCID: PMC4824607 DOI: 10.1080/15548627.2015.1043076] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.
Collapse
Affiliation(s)
- Xinlei Yu
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Yun Chau Long
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Han-Ming Shen
- b Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| |
Collapse
|
31
|
Zhang SM, Shang ZF, Zhou PK. Autophagy as the effector and player in DNA damage response of cells to genotoxicants. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00043b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we provide an overview and discuss the molecular mechanism of DNA damage induced autophagy, and their mutual regulation and its role in cell fate determination in response to genotoxic effects of environmental toxicants.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology (BKLRB)
- Beijing Institute of Radiation Medicine
- Beijing
- China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection
- Medical College of Soochow University
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Suzhou 215123
- China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology
- Beijing Key Laboratory for Radiobiology (BKLRB)
- Beijing Institute of Radiation Medicine
- Beijing
- China
| |
Collapse
|
32
|
Autophagy in cancer stem/progenitor cells. Cancer Chemother Pharmacol 2014; 75:879-86. [PMID: 25424280 DOI: 10.1007/s00280-014-2634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022]
Abstract
Macroautophagy is widely accepted as a cytoprotective mechanism against various environmental stresses. While inhibition of autophagy is generally considered to increase the susceptibility of cancer cells to therapeutic agents, whether it also plays a similar role in tumor stem cells is unclear and still controversial. With increased attention and efforts focused on the cytoprotective feature of autophagy in cancer, it is also essential to understand its role in the biology of cancer stem cells, including self-renewal, differentiation, and tumorigenicity. Although there are very few studies that evaluate autophagy in cancer stem/progenitor cells, understanding the mechanisms governing autophagic responses in various cancer stem cells could provide support for the future development of clinical therapeutics. The present review summarizes current studies that assess the role of autophagy in various types of cancer stem cells and those that evaluate the application of inhibitors of key components within the autophagy pathway in cancer stem/progenitor cells.
Collapse
|
33
|
Meng MB, Wang HH, Guo WH, Wu ZQ, Zeng XL, Zaorsky NG, Shi HS, Qian D, Niu ZM, Jiang B, Zhao LJ, Yuan ZY, Wang P. Targeting pyruvate kinase M2 contributes to radiosensitivity of non-small cell lung cancer cells in vitro and in vivo. Cancer Lett 2014; 356:985-93. [PMID: 25444918 DOI: 10.1016/j.canlet.2014.11.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/17/2014] [Accepted: 11/09/2014] [Indexed: 02/05/2023]
Abstract
Aerobic glycolysis, a metabolic hallmark of cancer, is associated with radioresistance in non-small cell lung cancer (NSCLC). Pyruvate kinase M2 isoform (PKM2), a key regulator of glycolysis, is expressed exclusively in cancers. However, the impact of PKM2 silencing on the radiosensitivity of NSCLC has not been explored. Here, we show a plasmid of shRNA-PKM2 for expressing a short hairpin RNA targeting PKM2 (pshRNA-PKM2) and demonstrate that treatment with pshRNA-PKM2 effectively inhibits PKM2 expression in NSCLC cell lines and xenografts. Silencing of PKM2 expression enhanced ionizing radiation (IR)-induced apoptosis and autophagy in vitro and in vivo, accompanied by inhibiting AKT and PDK1 phosphorylation, but enhanced ERK and GSK3β phosphorylation. These results demonstrated that knockdown of PKM2 expression enhances the radiosensitivity of NSCLC cell lines and xenografts as well as may aid in the design of new therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wen-Hao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Clinical Medicine School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xian-Liang Zeng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Hua-Shan Shi
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Clinical Medicine School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Qian
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhi-Min Niu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Jiang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu-Jun Zhao
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
34
|
Ramzan Z, Nassri AB, Huerta S. Genotypic characteristics of resistant tumors to pre-operative ionizing radiation in rectal cancer. World J Gastrointest Oncol 2014; 6:194-210. [PMID: 25024812 PMCID: PMC4092337 DOI: 10.4251/wjgo.v6.i7.194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/19/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Due to a wide range of clinical response in patients undergoing neo-adjuvant chemoradiation for rectal cancer it is essential to understand molecular factors that lead to the broad response observed in patients receiving the same form of treatment. Despite extensive research in this field, the exact mechanisms still remain elusive. Data raging from DNA-repair to specific molecules leading to cell survival as well as resistance to apoptosis have been investigated. Individually, or in combination, there is no single pathway that has become clinically applicable to date. In the following review, we describe the current status of various pathways that might lead to resistance to the therapeutic applications of ionizing radiation in rectal cancer.
Collapse
|
35
|
Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers. Breast Cancer Res Treat 2014; 146:309-20. [PMID: 24972688 DOI: 10.1007/s10549-014-3035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end-joining pathway required for the repair of DNA double-strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. We evaluated clinicopathological significance of DNA-PKcs protein expression in 1,161 tumours and DNA-PKcs mRNA expression in 1,950 tumours. We correlated DNA-PKcs to markers of aggressive phenotypes, DNA repair, apoptosis, cell cycle regulation and survival. Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps < 0.05). The absence of BRCA1, low XRCC1, low SMUG1, low APE1 and low Polβ was also more likely in low DNA-PKcs expressing tumours (ps < 0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer-specific survival (BCSS) in univariate and multivariate analysis (ps < 0.01). At the mRNA level, similarly, low DNA-PKcs was associated with poor BCSS. In patients with ER-positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER-negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers.
Collapse
|
36
|
Hönscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol 2014; 90:628-35. [PMID: 24678799 DOI: 10.3109/09553002.2014.907932] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Macroautophagy is a catabolic pathway that degrades cellular components through the lysosomal machinery. Cytoplasmic components are sequestered in double-membrane autophagosomes. They fuse with lysosomes where their cargo is delivered for degradation and recycling. Autophagy acts as a survival mechanism under stress by producing energy and as an intracellular quality management system by clearing damaged organelles like mitochondria and proteins. In this review, the regulation and the role of autophagy in cancer and therapy response are discussed. Furthermore, we will summarize methods for detecting autophagy in vitro and in vivo. CONCLUSION During the early and late stages of cancer development, the role of autophagy differs. In the very early stages of carcinogenesis, autophagy has an important function by reducing cancer initiating genetic instability and aberrant protein aggregates as well as promoting anti-cancer immune response. In established malignant tumors autophagy confers resistance against metabolic stress caused by nutrient deprivation and the rapid proliferation of carcinoma cells. This function of autophagy is also important for radiation and chemotherapy resistance in cancer. Our laboratory has found that Neuropilin-2-induced autophagy is a potent mediator of therapy resistance in different cancer types. Autophagy not only promotes the survival of tumor cells, but also leads to autophagic cell death. During dysfunctional apoptosis this form of cell death mainly sensitizes cancer cells for therapy such as ionizing radiation. Therefore, the functions of autophagy during cancer progression and therapy are two-sided and further research is needed to understand these in more detail.
Collapse
Affiliation(s)
- Pia Hönscheid
- Institute of Pathology, University Hospital 'Carl Gustav Carus' Dresden , TU Dresden , Germany
| | | | | |
Collapse
|
37
|
Cytotoxic autophagy in cancer therapy. Int J Mol Sci 2014; 15:10034-51. [PMID: 24905404 PMCID: PMC4100138 DOI: 10.3390/ijms150610034] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/17/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.
Collapse
|
38
|
Sotiropoulou PA, Christodoulou MS, Silvani A, Herold-Mende C, Passarella D. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today 2014; 19:1547-62. [PMID: 24819719 DOI: 10.1016/j.drudis.2014.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with high clonogenic capacity and ability to reform parental tumors upon transplantation. Resistance to therapy has been shown for several types of CSC and, therefore, they have been proposed as the cause of tumor relapse. Consequently, much effort has been made to design molecules that can target CSCs specifically and sensitize them to therapy. In this review, we summarize the mechanisms underlying CSC resistance, the potential biological targets to overcome resistance and the chemical compounds showing activity against different types of CSC. The chemical compounds discussed here have been divided according to their origin: natural, natural-derived and synthetic compounds.
Collapse
Affiliation(s)
- Panagiota A Sotiropoulou
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808 route de Lennik, BatC, 1070 Bruxelles, Belgium
| | - Michael S Christodoulou
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
39
|
NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol Sin 2013; 34:681-90. [PMID: 23603977 DOI: 10.1038/aps.2013.22] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor and shows dramatic effects on gliomas. The aim of this study was to investigate the effects of NVP-BEZ235 on the radiosensitivity and autophagy of glioma stem cells (GSCs) in vitro. METHODS Human GSCs (SU-2) were tested. The cell viability and survival from ionizing radiation (IR) were evaluated using MTT and clonogenic survival assay, respectively. Immunofluorescence assays were used to identify the formation of autophagosomes. The apoptotic cells were quantified with annexin V-FITC/PI staining and flow cytometry, and observed using Hoechst 33258 staining and fluorescence microscope. Western blot analysis was used to analyze the expression levels of proteins. Cell cycle status was determined by measuring DNA content after staining with PI. DNA repair in the cells was assessed using a comet assay. RESULTS Treatment of SU-2 cells with NVP-BEZ235 (10-320 nmol/L) alone suppressed the cell growth in a concentration-dependent manner. A low concentration of NVP-BEZ235 (10 nmol/L) significantly increased the radiation sensitivity of SU-2 cells, which could be blocked by co-treatment with 3-MA (50 μmol/L). In NVP-BEZ235-treated SU-2 cells, more punctate patterns of microtubule-associated protein LC3 immunoreactivity was observed, and the level of membrane-bound LC3-II was significantly increased. A combination of IR with NVP-BEZ235 significantly increased the apoptosis of SU-2 cells, as shown in the increased levels of BID, Bax, and active caspase-3, and decreased level of Bcl-2. Furthermore, the combination of IR with NVP-BEZ235 led to G1 cell cycle arrest. Moreover, NVP-BEZ235 significantly attenuated the repair of IR-induced DNA damage as reflected by the tail length of the comet. CONCLUSION NVP-BEZ235 increases the radiosensitivity of GSCs in vitro by activating autophagy that is associated with synergistic increase of apoptosis and cell-cycle arrest and decrease of DNA repair capacity.
Collapse
|
40
|
Yang J, Xu X, Hao Y, Chen J, Lu H, Qin J, Peng L, Chen B. Expression of DNA-PKcs and BRCA1 as prognostic indicators in nasopharyngeal carcinoma following intensity-modulated radiation therapy. Oncol Lett 2013; 5:1199-1204. [PMID: 23599763 PMCID: PMC3629188 DOI: 10.3892/ol.2013.1196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
Abstract
The mechanisms of radiation-induced effects in cancer mainly involve double-strand breaks (DSBs) which are important in maintaining the stability of genes. The DNA repair genes breast cancer 1 (BRCA1) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are capable of maintaining genetic stability through two distinct and complementary repair mechanisms for DNA DSBs, known as repair-homologous recombination (HR) and non-homologous end joining (NHEJ). DNA-PKcs is a member of the phosphatidylinositol 3-kinase (PI3K) family. The PI3K/AKT cell signaling pathway is implicated in cell migration and invasion. The BRCA1 protein is implicated in multiple complex cellular processes that are related to chromosome sensitivity to mutagens. To determine the protein expression and clinical implications of DNA-PKcs and BRCA1 in nasopharyngeal carcinoma (NPC) and cancer progression, we evaluated its expression status by immunohistochemistry in 87 patients who received intensity-modulated radiation therapy (IMRT). In NPC, negative expression of DNA-PKcs was detected in 35 of the 87 (40.2%) cancer types and was significantly associated with poor patient survival (P<0.05). The overexpression of DNA-PKcs and BRCA1 also led to significantly improved distant metastasis-free survival compared with patients who did not overexpress both genes, although the expression level of BRCA1 and distant metastasis-free survival were not closely correlated. In addition, multivariate analysis indicated that DNA-PKcs status is a predictive marker of distant metastasis-free survival. In conclusion, lower expression of DNA-PKcs may be correlated with higher distant metastasis in patients with NPC. DNA-PKcs may be a predictive marker of distant metastasis after IMRT, independent of the classical prognostic marker. BRCA1 may additionally exert a synergistic effect to predict distant metastasis-free survival.
Collapse
Affiliation(s)
- Jiao Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060; ; Department of Radiotherapy, Clinical Cancer Center, People's Hospital of Guangxi Autonomous Region, Nanning 530021, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhuang WZ, Long LM, Ji WJ, Liang ZQ. Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy. CHINESE JOURNAL OF CANCER 2013; 30:712-20. [PMID: 21959048 PMCID: PMC4012271 DOI: 10.5732/cjc.011.10234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma stem/progenitor cells (GSPCs) are considered to be responsible for the initiation, propagation, and recurrence of gliomas. The factors determining their differentiation remain poorly defined. Accumulating evidences indicate that alterations in autophagy may influence cell fate during mammalian development and differentiation. Here, we investigated the role of autophagy in GSPC differentiation. SU-2 cells were treated with rapamycin, 3-methyladenine (3-MA) plus rapamycin, E64d plus rapamycin, or untreated as control. SU-2 cell xenografts in nude mice were treated with rapamycin or 3-MA plus rapamycin, or untreated as control. Western blotting and immunocytochemistry showed up-regulation of microtubule-associated protein light chain-3 (LC3)–II in rapamycin-treated cells. The neurosphere formation rate and the number of cells in each neurosphere were significantly lower in the rapamycin treatment group than in other groups. Real-time PCR and immunocytochemistry showed down-regulation of stem/progenitor cell markers and up-regulation of differentiation markers in rapamycin-treated cells. Transmission electron microscopy revealed autophagy activation in rapamycin-treated tumor cells in mice. Immunohistochemistry revealed decreased Nestin-positive cells and increased GFAP-positive cells in rapamycin-treated tumor sections. These results indicate that rapamycin induces differentiation of GSPCs by activating autophagy.
Collapse
Affiliation(s)
- Wen-Zhuo Zhuang
- Department of Pharmacology, Medical School of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Yoshimoto K, Mizoguchi M, Hata N, Murata H, Hatae R, Amano T, Nakamizo A, Sasaki T. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol 2012; 2:186. [PMID: 23227453 PMCID: PMC3514620 DOI: 10.3389/fonc.2012.00186] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022] Open
Abstract
Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.
Collapse
Affiliation(s)
- Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Koike M, Yutoku Y, Koike A. The defect of Ku70 affects sensitivity to x-ray and radiation-induced caspase-dependent apoptosis in lung cells. J Vet Med Sci 2012; 75:415-20. [PMID: 23149547 DOI: 10.1292/jvms.12-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The DNA repair protein Ku70 is a key player in chemoresistance to anticancer agents (e.g., etoposide) or radioresistance. The responses of different organs to radiation vary widely and likely depend on the cell population in the organs. Previously, we established and characterized Ku70-deficient murine lung epithelial (Ku70 -/- MLE) cells and found that these cells are more sensitive than Ku70 +/- MLE cells (control cells) to X-irradiation, as determined by clonogenic survival assay; however, the mechanism underlying this sensitivity remains unclear. In this study, we examined the mechanism by which X-irradiation triggers the death of Ku70 -/- MLE cells. Our results showed that Ku70 -/- MLE cells were more sensitive to radiation-induced apoptosis than control cells, although X-irradiation activated caspase-3 and caspase-7, and cleaved PARP in both cell lines. We also examined the expression level of phosphorylated H2AX (γH2AX), which is a marker of DSB, and observed the phosphorylation of H2AX and the elimination of γH2AX in both cell lines after X-irradiation. The elimination in Ku70 -/- MLE cells was slower than that in control cells, suggesting that DSB repair activity in the Ku70 -/- MLE cells is lower than that in control cells. These findings suggest that Ku70 might play a key role in the inhibition of apoptosis through the DSB repair pathway in lung epithelial cells. Our findings also suggest that these cell lines might be useful for the study of Ku70 functions and the Ku70-dependent DSB repair pathway in lung epithelial cells.
Collapse
Affiliation(s)
- Manabu Koike
- DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | | | | |
Collapse
|
44
|
Hsu FM, Zhang S, Chen BPC. Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 2012; 1:22-34. [PMID: 22943041 DOI: 10.3978/j.issn.2218-676x.2012.04.01] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key component of the non-homologous end-joining (NHEJ) pathway, is involved in DNA double-strand break repair, immunocompetence, genomic integrity, and epidermal growth factor receptor signaling. Clinical studies indicate that expression and activity of DNA-PKcs is correlated with cancer progression and response to treatment. Various anti-DNA-PKcs strategies have been developed and tested in preclinical studies to exploit the benefit of DNA-PKcs inhibition in sensitization of radiotherapy and in combined modality therapy with other antitumor agents. In this article, we review the association between DNA-PKcs and cancer development and discuss current approaches and mechanisms for inhibition of DNA-PKcs. The future challenges are to understand how DNA-PKcs activity is correlated with cancer susceptibility and to identify those patients who would most benefit from DNA-PKcs inhibition.
Collapse
Affiliation(s)
- Feng-Ming Hsu
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
45
|
Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M. Cancer Stem Cells as a Predictive Factor in Radiotherapy. Semin Radiat Oncol 2012; 22:151-74. [DOI: 10.1016/j.semradonc.2011.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magné N. Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett 2012; 322:139-47. [PMID: 22459349 DOI: 10.1016/j.canlet.2012.03.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 12/26/2022]
Abstract
In radiation oncology, cancer stem cells (CSCs) have become an important research field. In fact, it appears that most cancer types contain populations of cells that exhibit stem-cell properties. CSCs have the ability to renew indefinitely, which can drive tumor development and metastatic invasion. As those cells are classically resistant to conventional chemotherapy and to radiation therapy, they may contribute to treatment failure and relapse. Over past decades, preclinical research has highlighted that variations in the CSCs content within tumor could affect their radiocurability by interfering with mechanisms of DNA repair, redistribution in the cell cycle, tumor cells repopulation, and hypoxia. It is now possible to isolate particular cells expressing specific surface markers and thus better investigating CSCs pathways. Numerous inhibitory agents targeting these specific signaling pathways, such as Notch and Wnt/B-catenin, are currently evaluated in early clinical trials. By targeting CSCs, tumor radioresistance could be potentially overcome to improve outcome for patients with solid malignancies. Radiation therapy using ion particles (proton and carbon) may be also more effective than classic photon on CSCs. This review presents the major pathophysiological mechanisms involved in CSCs radioresistance and recent developments for targeted strategies.
Collapse
Affiliation(s)
- Coralie Moncharmont
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Université de Lyon, Oullins, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Conventional treatment of glioblastoma has advanced only incrementally in the last 30 years and still yields poor outcomes. The current strategy of surgery, radiation, and chemotherapy has increased median survival to approximately 15 months. With the advent of molecular biology and consequent improved understanding of basic tumor biology, targeted therapies have become cornerstones for cancer treatment. Many pathways (RTKs, PI3K/AKT/mTOR, angiogenesis, etc.) have been identified in GBM as playing major roles in tumorigenesis, treatment resistance, or natural history of disease. Despite the growing understanding of the complex networks regulating GBM tumors, many targeted therapies have fallen short of expectations. In this paper, we will discuss novel therapies and the successes and failures that have occurred. One clear message is that monotherapies yield minor results, likely due to functionally redundant pathways. A better understanding of underlying tumor biology may yield insights into optimal targeting strategies which could improve the overall therapeutic ratio of conventional treatments.
Collapse
|
48
|
Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, Liang Z. Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 2012; 103:684-90. [PMID: 22192169 DOI: 10.1111/j.1349-7006.2011.02198.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/30/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. Recently, a growing body of evidence suggests that glioma-initiating cells (GICs) are responsible for the initiation and recurrence of GBM. However, the factors determining the differential development of GICs remain poorly defined. In the present study, we show that curcumin, a natural compound with low toxicity in normal cells, significantly induced differentiation of GICs in vivo and in vitro by inducing autophagy. Moreover, curcumin also suppressed tumor formation on intracranial GICs implantation into mice. Our results suggest that autophagy plays an essential role in the regulation of GIC self-renewal, differentiation, and tumorigenic potential, suggesting autophagy could be a promising therapeutic target in a subset of glioblastomas. This is the first evidence that curcumin has differentiating and tumor-suppressing actions on GICs.
Collapse
Affiliation(s)
- Wenzhuo Zhuang
- Department of Pharmacology, Medical School of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Nambiar D, Rajamani P, Singh RP. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat Res 2011; 728:139-57. [PMID: 22030216 DOI: 10.1016/j.mrrev.2011.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 02/01/2023]
Abstract
Ionizing radiation (IR)-induced cellular damage is implicated in carcinogenesis as well as therapy of cancer. Advances in radiation therapy have led to the decrease in dosage and localizing the effects to the tumor; however, the development of radioresistance in cancer cells and radiation toxicity to normal tissues are still the major concerns. The development of radioresistance involves several mechanisms, including the activation of mitogenic and survival signaling, induction of DNA repair, and changes in redox signaling and epigenetic regulation. The current strategy of combining radiation with standard cytotoxic chemotherapeutic agents can potentially lead to unwanted side effects due to both agents. Thus agents are needed that could improve the efficacy of radiation killing of cancer cells and prevent the damage to normal cells and tissues caused by the direct and bystander effects of radiation, without have its own systemic toxicity. Chemopreventive phytochemicals, usually non-toxic agents with both cancer preventive and therapeutic activities, could rightly fit in this approach. In this regard, naturally occurring compounds, including curcumin, parthenolide, genistein, gossypol, ellagic acid, withaferin, plumbagin and resveratrol, have shown considerable potential. These agents suppress the radiation-induced activation of receptor tyrosine kinases and nuclear factor-κB signaling, can modify cell survival and DNA repair efficacy, and may potentiate ceramide signaling. These radiosensitizing and counter radioresistance mechanisms of phytochemicals in cancer cells are also associated with changes in epigenetic gene regulation. Because radioresistance involves multiple mechanisms, more studies are needed to discover novel phytochemicals having multiple mechanisms of radiosensitization and to overcome radioresistance of cancer cells. Pre-clinical studies are needed to address the appropriate dosage, timing, and duration of the application of phytochemicals with radiation to justify clinical trials. Nonetheless, some phytochemicals in combination with IR may play a significant role in enhancing the therapeutic index of cancer treatment.
Collapse
Affiliation(s)
- Dhanya Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
50
|
Impact of PARP-1 and DNA-PK expression on survival in patients with glioblastoma multiforme. Radiother Oncol 2011; 101:127-31. [PMID: 21775006 DOI: 10.1016/j.radonc.2011.06.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/11/2011] [Accepted: 06/11/2011] [Indexed: 12/13/2022]
Abstract
PURPOSE To analyze, whether higher tumor levels of DNA repair enzymes contribute to worse treatment results of glioblastoma multiforme (GBM) patients after postoperative radiotherapy. MATERIALS AND METHODS Thirty four patients with GBM received postoperative radiotherapy. Tumor sections were examined for poly-ADP ribose polymerase-1 (PARP-1) and DNA protein kinase (DNA-PK) expression. Immunohistochemical staining intensities of PARP-1 and DNA-PK were determined (score 0-3) and expression levels were correlated with patients overall survival. RESULTS Median survival time of the whole study group was 10.0 months (95% CI 8.1-11.9). Median survival of patients with high and low (≥median and <median) tumor PARP-1 levels were 10.0 months (95% CI 7.9-12.1) and 12.0 months (95% CI 8.3-15.7), respectively (p=0.93). In contrast, median survival of patients with high and low tumor DNA-PK levels were 9.0 months (95% CI 7.2-10.8) and 13.0 months (95% CI 10.7-15.3), respectively (p=0.02). In multivariate analysis, DNA-PK expression emerged as a significant independent predictor for overall survival (HR 3.9, 95% CI 1.5-10.7, p=0.01). CONCLUSION This hypothesis generating study showed that high tumor levels of DNA-PK correlate with poor survival of GBM patients. Further studies are needed to confirm these results and to clarify whether DNA-PK inhibitors might have a potential to radiosensitize GBM and improve the treatment outcome of this devastating disease.
Collapse
|