1
|
Banki L, Büki A, Horvath G, Kekesi G, Kis G, Somogyvári F, Jancsó G, Vécsei L, Varga E, Tuboly G. Distinct changes in chronic pain sensitivity and oxytocin receptor expression in a new rat model (Wisket) of schizophrenia. Neurosci Lett 2020; 714:134561. [DOI: 10.1016/j.neulet.2019.134561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022]
|
2
|
ZUBRZYCKI M, STASIOLEK M, ZUBRZYCKA M. Opioid and Endocannabinoid System in Orofacial Pain. Physiol Res 2019; 68:705-715. [DOI: 10.33549/physiolres.934159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Orofacial pain disorders are frequent in the general population and their pharmacological treatment is difficult and controversial. Therefore, the search for novel, safe and efficient analgesics is an important but still elusive goal for contemporary medicine. In the recent years, the antinociceptive potential of endocannabinoids and opioids has been emphasized. However, concerns for the safety of their use limit their clinical applications. the possibility of modulating the activity of endocannabinoids by regulation of their synthesis and/or degradation offers an innovative approach to the treatment of pain. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neurotransmitter solutions can be used in the pharmacological studies of nociception in the orofacial area. The aim of this review is to present the effects of pharmacological activity of opioids and endocannabinoids affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats.
Collapse
Affiliation(s)
- M. ZUBRZYCKI
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany,
| | - M. STASIOLEK
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | - M. ZUBRZYCKA
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Zubrzycki M, Janecka A, Liebold A, Ziegler M, Zubrzycka M. Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats. Br J Pharmacol 2017; 174:3780-3789. [PMID: 28771697 DOI: 10.1111/bph.13970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. EXPERIMENTAL APPROACH The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. KEY RESULTS Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. CONCLUSIONS AND IMPLICATIONS We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andreas Liebold
- Department of Cardiovascular and Thoracic Surgery, University of Ulm, Ulm, Germany
| | - Mechthild Ziegler
- Department of Cardiac Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Interdepartmental Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Araújo IWF, Chaves HV, Pachêco JM, Val DR, Vieira LV, Santos R, Freitas RS, Rivanor RL, Monteiro VS, Clemente-Napimoga JT, Bezerra MM, Benevides NMB. Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain. Int Immunopharmacol 2017; 44:160-167. [DOI: 10.1016/j.intimp.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/15/2016] [Accepted: 01/04/2017] [Indexed: 01/31/2023]
|
5
|
Kazi JA, Ibrahim BK. Gabapentin Differentially Modulate c-Fos Expression in Hypothalamus and Spinal Trigeminal Nucleus in Surgical Molar Extraction. Braz Dent J 2016; 27:744-750. [PMID: 27982189 DOI: 10.1590/0103-6440201600207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
The study on the efficacy of oral analgesics reported that no single class of drug is effective in post-surgical dental pain. Pain following removal of third molar is most commonly used and widely accepted acute pain model for assessing the analgesic effect of drugs in humans. Reports demonstrated that analgesic efficacy in the human dental model is highly predictive. The high incidence of false-negative findings in analgesic investigations hinders the process of molecular discovery. Molecular mechanism of post-surgical pain is not known. More importantly, the animal model for postoperative dental pain is not well established. In an attempt to discover an effective post-surgical dental pain blocker with acceptable side effects, it is essential to elucidate the molecular mechanism of post-operative dental pain. The present study investigated mandibular molars extraction in rat as an animal model for the post-operative dental pain in central nervous system. Using c-Fos immunohistochemistry, we demonstrated that pre administration of GBP (150 mg/kg. i.p) significantly (p< 0.01) neutralized the surgical molar extraction induced c-Fos expression bilaterally in rat hypothalamus. Present results indicate that pain after surgical molar extraction might follow novel neural pathways therefore difficult to treat with existing anti-nociceptive drugs.
Collapse
Affiliation(s)
- Jamil Ahsan Kazi
- Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Ban Kahtan Ibrahim
- Universiti Teknologi MARA (UiTM), Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
6
|
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:948-57. [PMID: 27387403 DOI: 10.1016/j.phymed.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. HYPOTHESIS/PURPOSE To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. STUDY DESIGN The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. METHODS The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. RESULTS All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. CONCLUSION We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP.
Collapse
Affiliation(s)
- Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Adriana G Guimarães
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Márcio R V Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil..
| | | |
Collapse
|
7
|
Nascimento SS, Araújo AAS, Brito RG, Serafini MR, Menezes PP, DeSantana JM, Lucca W, Alves PB, Blank AF, Oliveira RCM, Oliveira AP, Albuquerque RLC, Almeida JRGS, Quintans LJ. Cyclodextrin-complexed Ocimum basilicum leaves essential oil increases Fos protein expression in the central nervous system and produce an antihyperalgesic effect in animal models for fibromyalgia. Int J Mol Sci 2014; 16:547-63. [PMID: 25551603 PMCID: PMC4307262 DOI: 10.3390/ijms16010547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022] Open
Abstract
O. basilicum leaves produce essential oils (LEO) rich in monoterpenes. The short half-life and water insolubility are limitations for LEO medical uses. β-Cyclodextrin (β-CD) has been employed to improve the pharmacological properties of LEO. We assessed the antihyperalgesic profile of LEO, isolated or complexed in β-CD (LEO/β-CD), on an animal model for fibromyalgia. Behavioral tests: mice were treated every day with either LEO/β-CD (25, 50 or 100 mg/kg, p.o.), LEO (25 mg/kg, p.o.), tramadol (TRM 4 mg/kg, i.p.) or vehicle (saline), and 60 min after treatment behavioral parameters were assessed. Therefore, mice were evaluated for mechanical hyperalgesia (von Frey), motor coordination (Rota-rod) and muscle strength (Grip Strength Metter) in a mice fibromyalgia model. After 27 days, we evaluated the central nervous system (CNS) pathways involved in the effect induced by experimental drugs through immunofluorescence protocol to Fos protein. The differential scanning analysis (DSC), thermogravimetry/derivate thermogravimetry (TG/DTG) and infrared absorption spectroscopy (FTIR) curves indicated that the products prepared were able to incorporate the LEO efficiently. Oral treatment with LEO or LEO-βCD, at all doses tested, produced a significant reduction of mechanical hyperalgesia and we were able to significantly increase Fos protein expression. Together, our results provide evidence that LEO, isolated or complexed with β-CD, produces analgesic effects on chronic non-inflammatory pain as fibromyalgia.
Collapse
Affiliation(s)
- Simone S Nascimento
- Laboratory of Pre-Clinical Pharmacology (LAPEC), Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Renan G Brito
- Laboratory of Pre-Clinical Pharmacology (LAPEC), Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Josimari M DeSantana
- Department of Physical Therapy, Federal University of Sergipe, Aracaju, Sergipe 49.060-108, Brazil.
| | - Waldecy Lucca
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Pericles B Alves
- Department of Chemistry, Federal University of Sergipe, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Arie F Blank
- Department of Agronomic Engineering, Federal University of Sergipe, São Cristóvão, Sergipe 49.100-000, Brazil.
| | - Rita C M Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí 64.049-550, Brazil.
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí 64.049-550, Brazil.
| | - Ricardo L C Albuquerque
- Institute of Technology and Research, University Tiradentes, Aracaju, Sergipe 49.032-490, Brazil.
| | - Jackson R G S Almeida
- Department of Pharmacy, Federal University of San Francisco Valley, Petrolina, Pernambuco 56.304-917, Brazil.
| | - Lucindo J Quintans
- Laboratory of Pre-Clinical Pharmacology (LAPEC), Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, Sergipe 49.100-000, Brazil.
| |
Collapse
|
8
|
Nascimento SS, Camargo EA, DeSantana JM, Araújo AAS, Menezes PP, Lucca-Júnior W, Albuquerque-Júnior RLC, Bonjardim LR, Quintans-Júnior LJ. Linalool and linalool complexed in β-cyclodextrin produce anti-hyperalgesic activity and increase Fos protein expression in animal model for fibromyalgia. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:935-42. [PMID: 24958161 DOI: 10.1007/s00210-014-1007-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
The analgesic activity of (-)-linalool (LIN), a monoterpene present in essential oils of Lamiaceae species, has been previously demonstrated in rodents. However, its possible use in the treatment of fibromyalgia (FM) was never demonstrated. Additionally, as a short half-life is a limitation for the LIN medicinal application, the employment of drug delivery systems has been used to improve pharmaceutical properties of this compound. We investigated the anti-nociceptive effect of LIN, isolated or in β-cyclodextrin complex (LIN-CD), in an animal model of chronic non-inflammatory muscle pain (a FM animal model), as well as its effect on the central nervous system (CNS). Male Swiss mice were subjected to two injections of acidic saline (pH 4; 20 μL/gastrocnemius) and were treated on alternate days, with LIN-CD (25 mg/kg, p.o.), LIN (25 mg/kg, p.o.), tramadol (TRM 4 mg/kg, i.p.), or vehicle (neutral saline). After 60 min, they were screened for mechanical hyperalgesia (von Frey), motor coordination (rotarod), and muscle strength (grip strength meter) for 27 days. The CNS areas involved in the anti-hyperalgesic activity were evaluated by immunofluorescence. LIN or LIN-CD produced a significant reduction (p < 0.001) of mechanical hyperalgesia on chronic non-inflammatory muscle pain model, which remained for 24 h only in LIN-CD, and these compounds significantly (p < 0.05) activated neurons of the locus coeruleus, nucleus raphe magnus, and periaqueductal gray areas. So, our results suggest that LIN-CD improved analgesic profile of LIN, with a probable involvement of descending pain pathways and the anti-nociceptive effect of linalool in an animal model of chronic non-inflammatory muscle pain. So far, only the investigations in animal models of inflammatory pain and supraspinatus were published.
Collapse
Affiliation(s)
- Simone S Nascimento
- Department of Physiology, Federal University of Sergipe (DFS/UFS), Av. Marechal Rondom, s/n, São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nonsocial functions of hypothalamic oxytocin. ISRN NEUROSCIENCE 2013; 2013:179272. [PMID: 24967304 PMCID: PMC4045544 DOI: 10.1155/2013/179272] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/23/2013] [Indexed: 01/06/2023]
Abstract
Oxytocin (OXT) is a hypothalamic neuropeptide composed of nine amino acids. The functions of OXT cover a variety of social and nonsocial activity/behaviors. Therapeutic effects of OXT on aberrant social behaviors are attracting more attention, such as social memory, attachment, sexual behavior, maternal behavior, aggression, pair bonding, and trust. The nonsocial behaviors/functions of brain OXT have also received renewed attention, which covers brain development, reproduction, sex, endocrine, immune regulation, learning and memory, pain perception, energy balance, and almost all the functions of peripheral organ systems. Coordinating with brain OXT, locally produced OXT also involves the central and peripheral actions of OXT. Disorders in OXT secretion and functions can cause a series of aberrant social behaviors, such as depression, autism, and schizophrenia as well as disturbance of nonsocial behaviors/functions, such as anorexia, obesity, lactation failure, osteoporosis, diabetes, and carcinogenesis. As more and more OXT functions are identified, it is essential to provide a general view of OXT functions in order to explore the therapeutic potentials of OXT. In this review, we will focus on roles of hypothalamic OXT on central and peripheral nonsocial functions.
Collapse
|
10
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Brito RG, Santos PL, Prado DS, Santana MT, Araújo AAS, Bonjardim LR, Santos MRV, de Lucca Júnior W, Oliveira AP, Quintans-Júnior LJ. Citronellol reduces orofacial nociceptive behaviour in mice - evidence of involvement of retrosplenial cortex and periaqueductal grey areas. Basic Clin Pharmacol Toxicol 2012; 112:215-21. [PMID: 23035741 DOI: 10.1111/bcpt.12018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/16/2012] [Indexed: 12/15/2022]
Abstract
Citronellol (CT) is a monoterpenoid alcohol present in the essential oil of many medicinal plants, such as Cymbopogon citratus. We evaluated the antinociceptive effects of CT on orofacial nociception in mice and investigated the central pathway involved in the effect. Male Swiss mice were pretreated with CT (25, 50 and 100 mg/kg, i.p.), morphine (5 mg/kg, i.p.) or vehicle (saline + tween 80 0.2%). Thirty minutes after the treatment, we injected formalin (20 μl, 2%), capsaicin (20 μl, 2.5 μg) or glutamate (40 μl, 25 μM) into the right limb. For the action in the CNS, ninety minutes after the treatment, the animals were perfused, the brains collected, crioprotected, cut in a criostate and submitted in an immunofluorescence protocol for Fos protein. CT produced significant (p < 0.01) antinociceptive effect, in all doses, in the formalin, capsaicin and glutamate tests. The immunofluorescence showed that the CT activated significantly (p < 0.05) the olfactory bulb, the piriform cortex, the retrosplenial cortex and the periaqueductal grey of the CNS. Together, our results provide first-time evidence that this monoterpene attenuates orofacial pain at least, in part, through an activation of CNS areas, mainly retrosplenial cortex and periaqueductal grey.
Collapse
Affiliation(s)
- Renan G Brito
- Department of Physiology, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zubrzycka M, Janecka A. Effect of tooth pulp and periaqueductal central gray electrical stimulation on β-endorphin release into the fluid perfusing the cerebral ventricles in rats. Brain Res 2011; 1405:15-22. [DOI: 10.1016/j.brainres.2011.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/01/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
|