1
|
Cunha M, Tavares I, Costa-Pereira JT. Centralizing the Knowledge and Interpretation of Pain in Chemotherapy-Induced Peripheral Neuropathy: A Paradigm Shift towards Brain-Centric Approaches. Brain Sci 2024; 14:659. [PMID: 39061400 PMCID: PMC11274822 DOI: 10.3390/brainsci14070659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of cancer treatment, often linked with pain complaints. Patients report mechanical and thermal hypersensitivity that may emerge during chemotherapy treatment and may persist after cancer remission. Whereas the latter situation disturbs the quality of life, life itself may be endangered by the appearance of CIPN during cancer treatment. The causes of CIPN have almost entirely been ascribed to the neurotoxicity of chemotherapeutic drugs in the peripheral nervous system. However, the central consequences of peripheral neuropathy are starting to be unraveled, namely in the supraspinal pain modulatory system. Based on our interests and experience in the field, we undertook a review of the brain-centered alterations that may underpin pain in CIPN. The changes in the descending pain modulation in CIPN models along with the functional and connectivity abnormalities in the brain of CIPN patients are analyzed. A translational analysis of preclinical findings about descending pain regulation during CIPN is reviewed considering the main neurochemical systems (serotoninergic and noradrenergic) targeted in CIPN management in patients, namely by antidepressants. In conclusion, this review highlights the importance of studying supraspinal areas involved in descending pain modulation to understand the pathophysiology of CIPN, which will probably allow a more personalized and effective CIPN treatment in the future.
Collapse
Affiliation(s)
- Mário Cunha
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (M.C.); (J.T.C.-P.)
- I3S—Institute of Investigation and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
2
|
Lin MC, Chang YY, Lee Y, Wang LJ. Tardive sensory syndrome related to lurasidone: A case report. World J Psychiatry 2023; 13:126-130. [PMID: 37033893 PMCID: PMC10075022 DOI: 10.5498/wjp.v13.i3.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Tardive sensory syndrome (TSS) is a subtype of tardive syndrome (TS), and its etiology is still uncertain. Lurasidone is an atypical antipsychotic that has high affinity for dopamine D2- and serotonergic 5HT2A- and 5-HT7-receptors.
CASE SUMMARY A 52-year-old woman, previously diagnosed with schizophrenia, and with no history of movement disorders and no sensory paresthesia, had taken lurasidone, initiate dose 40 mg daily then up titration to 120 mg daily, since March 2021, and developed mandibular sensory (pain) paresthesia after 3 mo of administration. After switching from lurasidone to quetiapine, she reported obvious impr-ovement in her mandibular pain.
CONCLUSION It is noteworthy that TSS is a rare subtype of TS, and lurasidone, an atypical antipsychotic, usually has a lower risk of causing TS. In light of the temporal relationship, it is therefore concluded that use of lurasidone might have caused TSS in this patient. We reported this rare case as a reminder that clinicians should adopt a cautious approach when prescribing atypical antipsychotics, so as to prevent TS.
Collapse
Affiliation(s)
- Mei-Chun Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Kaohsiung 83301, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Kaohsiung 83301, Taiwan
| | - Yu Lee
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Kaohsiung 83301, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
3
|
Yuan S, Wang N, Yao Y, Liu J, Gao M, Mo H, Zhang S, Su R. Role of 5-HT 2A receptor in modulating glutamatergic activity in the ventrolateral orbital cortex: implication in trigeminal neuralgia. Neuroscience 2022; 502:107-116. [PMID: 36038038 DOI: 10.1016/j.neuroscience.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
5-HT2A receptors (5-HT2ARs) are widely expressed in the central nervous system, including in the ventrolateral orbital cortex (VLO). The VLO is an important cortical component for pain processing. Brain 5-HT2ARs are implicated in both pro- and anti- nociceptive functions. However, the roles of 5-HT2ARs in the VLO in trigeminal neuralgia and neuronal synaptic function remain to be understood. We used chronic constriction injury of infraorbital nerve (IoN-CCI) model and shRNA mediated gene knockdown in mice to investigate the role of 5-HT2ARs in the VLO in trigeminal neuralgia. We found that knockdown of 5-HT2ARs in the VLO aggravated spontaneous pain and mechanical allodynia in mice after IoN-CCI. At the synaptic level, decreasing 5-HT2AR expression by shRNA or inhibition of 5-HT2AR activity by its antagonist ketanserin decreased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of the neurons in the VLO, whereas 5-HT2AR partial agonist 2,5-Dimethoxy-4-iodoamphetamine (DOI) enhanced sEPSCs of the neurons in the VLO. In summary, 5-HT2ARs in the VLO modulate the trigeminal pain by regulating neuronal glutamatergic activity.
Collapse
Affiliation(s)
- Shanshan Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China; School of Stomatology, Jiamusi University, Jiamusi, China
| | - Na Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yunxia Yao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junhong Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Mingwei Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hongbing Mo
- School of Stomatology, Jiamusi University, Jiamusi, China
| | - Shuzhuo Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Ruibin Su
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
4
|
de Kort AR, Joosten EAJ, Patijn J, Tibboel D, van den Hoogen NJ. The development of descending serotonergic modulation of the spinal nociceptive network: a life span perspective. Pediatr Res 2022; 91:1361-1369. [PMID: 34257402 DOI: 10.1038/s41390-021-01638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands. .,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
6
|
Tavares I, Costa-Pereira JT, Martins I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? FRONTIERS IN PAIN RESEARCH 2021; 2:696515. [PMID: 35295506 PMCID: PMC8915776 DOI: 10.3389/fpain.2021.696515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and antidepressants are frequently ineffective, and opioids may induce side effects, including hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated in animal models of neuropathic pain. Besides the well-established antinociception due to spinal effects, the NA system may induce pronociception by directly acting on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual action depending on the targeted spinal receptor, with an exacerbated activity of the excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids are involved in the modulation of descending modulatory circuits. During neuropathic pain, the opioidergic modulation of brainstem pain control areas is altered, with the release of enhanced local opioids along with reduced expression and desensitization of μ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids. On the whole, the data discussed in this review indicate the high plasticity of brainstem pain control circuits involving monoaminergic and opioidergic control. The data from studies of these neurochemical systems in neuropathic models indicate the importance of designing drugs that target multiple neurochemical systems, namely, maximizing the antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.
Collapse
Affiliation(s)
- Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- *Correspondence: Isaura Tavares
| | - José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin Modulates Neuropathic Pain through the Possible Involvement of Serotonergic 5-HT1A Receptor Pathway in CCI-Induced Neuropathic Pain Mice Model. Molecules 2021; 26:3677. [PMID: 34208700 PMCID: PMC8234694 DOI: 10.3390/molecules26123677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardamonin, a naturally occurring chalcone isolated from Alpinia species has shown to possess strong anti-inflammatory and anti-nociceptive activities. Previous studies have demonstrated that cardamonin exerts antihyperalgesic and antiallodynic properties in chronic constriction injury (CCI)-induced neuropathic pain animal model. However, the mechanisms underlying cardamonin's effect have yet to be fully understood. The present study aims to investigate the involvement of the serotonergic system in cardamonin induced antihyperalgesic and antiallodynic effects in CCI-induced neuropathic pain mice model. The neuropathic pain symptoms in the CCI mice model were assessed using Hargreaves Plantar test and von-Frey filament test on day 14 post-surgery. Central depletion of serotonin along the descending serotonergic pathway was done using ρ-chlorophenylalanine (PCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis for four consecutive days before cardamonin treatment, and was found to reverse the antihyperalgesic and antiallodynic effect produced by cardamonin. Pretreatment of the mice with several 5-HT receptor subtypes antagonists: methiothepin (5-HT1/6/77 receptor antagonist, 0.1 mg/kg), WAY 100635 (5-HT1A receptor antagonist, 1 mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5 mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3 mg/kg), and ondansetron (5-HT3 receptor antagonist, 0.5 mg/kg) were shown to abolish the effect of cardamonin induced antihyperalgesic and antiallodynic effects. Further evaluation of the 5-HT1A receptor subtype protein expressions reveals that cardamonin significantly upregulated its expression in the brainstem and spinal cord. Our results suggest that the serotonergic pathway is essential for cardamonin to exert its antineuropathic effect in CCI mice through the involvement of the 5-HT1A receptor subtype in the central nervous system.
Collapse
Affiliation(s)
- Nur Khalisah Kaswan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Noor Aishah Binti Mohammed Izham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Tengku Azam Shah Tengku Mohamad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Enoch Kumar Perimal
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
- Centre of Excellence for Nanoscale BioPhotonics, Australian Research Council, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Oyewole AL, Akinola O, Owoyele BV. Plasmodium berghei-induced malaria decreases pain sensitivity in mice. ACTA ACUST UNITED AC 2021; 88:e1-e18. [PMID: 33567845 PMCID: PMC7876989 DOI: 10.4102/ojvr.v88i1.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
Various types of pain were reported by people with Plasmodium falciparum and were mostly attributed to a symptom of malarial infection. Neural processes of pain sensation during malarial infection and their contributions to malaria-related death are poorly understood. Thus, these form the focus of this study. Swiss mice used for this study were randomly divided into two groups. Animals in the first group (Pb-infected group) were inoculated with Plasmodium berghei to induce malaria whilst the other group (intact group) was not infected. Formalin test was used to assess pain sensitivity in both groups and using various antagonists, the possible mechanism for deviation in pain sensitivity was probed. Also, plasma and brain samples collected from animals in both groups were subjected to biochemical and/or histological studies. The results showed that Pb-infected mice exhibited diminished pain-related behaviours to noxious chemical. The observed parasite-induced analgesia appeared to be synergistically mediated via µ-opioid, α2 and 5HT2A receptors. When varied drugs capable of decreasing pain threshold (pro-nociceptive drugs) were used, the survival rate was not significantly different in the Pb-infected mice. This showed little or no contribution of the pain processing system to malaria-related death. Also, using an anti-CD68 antibody, there was no immunopositive cell in the brain to attribute the observed effects to cerebral malaria. Although in the haematoxylin and eosin-stained tissues, there were mild morphological changes in the motor and anterior cingulate cortices. In conclusion, the pain symptom was remarkably decreased in the animal model for malaria, and thus, the model may not be appropriate for investigating malaria-linked pain as reported in humans. This is the first report showing that at a critical point, the malaria parasite caused pain-relieving effects in Swiss mice.
Collapse
Affiliation(s)
- Aboyeji L Oyewole
- Department of Physiology, Neuroscience and Inflammation Unit, College of Health Sciences, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria; and, Bioresearch Hub Laboratory, Ilorin.
| | | | | |
Collapse
|
9
|
Heijmans L, Mons MR, Joosten EA. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation. Mol Pain 2021; 17:17448069211043965. [PMID: 34662215 PMCID: PMC8527581 DOI: 10.1177/17448069211043965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic neuropathic pain is a debilitating ordeal for patients worldwide and pharmacological treatment efficacy is still limited. As many pharmacological interventions for neuropathic pain often fail, insights into the underlying mechanism and role of identified receptors is of utmost importance. An important target for improving treatment of neuropathic pain is the descending serotonergic system as these projections modulate nociceptive signaling in the dorsal horn. Also with use of last resort treatments like spinal cord stimulation (SCS), the descending serotonergic projections are known to be involved in the pain relieving effect. This systematic review summarizes the involvement of the serotonergic system on nociceptive modulation in the healthy adult rodent and the chronic neuropathic rodent and summarizes all available literature on the serotonergic system in the SCS-treated neuropathic rodent. Medline, Embase and Pubmed databases were used in the search for articles. Descending serotonergic modulation of nociceptive signaling in spinal dorsal horn in normal adult rat is mainly inhibitory and mediated by 5-HT1a, 5-HT1b, 5-HT2c, 5-HT3 and 5-HT4 receptors. Upon injury and in the neuropathic rat, this descending serotonergic modulation becomes facilitatory via activation of the 5-HT2a, 5-HT2b and 5-HT3 receptors. Analgesia due to neuromodulatory intervention like SCS restores the inhibitory function of the descending serotonergic system and involves 5-HT2, 5-HT3 and 5-HT4 receptors. The results of this systematic review provide insights and suggestions for further pharmacological and or neuromodulatory treatment of neuropathic pain based on targeting selected serotonergic receptors related to descending modulation of nociceptive signaling in spinal dorsal horn. With the novel developed SCS paradigms, the descending serotonergic system will be an important target for mechanism-based stimulation induced analgesia.
Collapse
Affiliation(s)
- Lonne Heijmans
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| | - Martijn R Mons
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht
University Medical Centre, the Netherlands
- Department of Translational Neuroscience, School of Mental
Health and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
10
|
Sachau J, Bruckmueller H, Gierthmühlen J, Magerl W, May D, Binder A, Forstenpointner J, Koetting J, Maier C, Tölle TR, Treede RD, Berthele A, Caliebe A, Diesch C, Flor H, Huge V, Maihöfner C, Rehm S, Kersebaum D, Fabig SC, Vollert J, Rolke R, Stemmler S, Sommer C, Westermann A, Cascorbi I, Baron R. The serotonin receptor 2A (HTR2A) rs6313 variant is associated with higher ongoing pain and signs of central sensitization in neuropathic pain patients. Eur J Pain 2020; 25:595-611. [PMID: 33171011 DOI: 10.1002/ejp.1696] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/08/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The serotonin receptor 2A (HTR2A) has been described as an important facilitation mediator of spinal nociceptive processing leading to central sensitization (CS) in animal models of chronic pain. However, whether HTR2A single nucleotide variants (SNVs) modulate neuropathic pain states in patients has not been investigated so far. The aim of this study was to elucidate the potential association of HTR2A variants with sensory abnormalities or ongoing pain in neuropathic pain patients. METHODS At total of 240 neuropathic pain patients and 253 healthy volunteers were included. Patients were phenotypically characterized using standardized quantitative sensory testing (QST). Patients and controls were genotyped for HTR2A g.-1438G > A (rs6311) and c.102C > T (rs6313). Genotype-related differences in QST parameters were assessed considering QST profile clusters, principal somatosensory components and sex. RESULTS There was an equal distribution of rs6313 and linked rs6311 between patients and controls. However, the rs6313 variant was significantly associated with a principal component of pinprick hyperalgesia and dynamic mechanical allodynia, indicating enhanced CS in patients with sensory loss (-0.34 ± 0.15 vs. +0.31 ± 0.11 vs., p < .001). In this cluster, the variant allele was also associated with single QST parameters of pinprick hyperalgesia (MPT, +0.64 ± 0.18 vs. -0.34 ± 0.23 p = .002; MPS, +0.66 ± 0.17 vs. -0.09 ± 0.23, p = .009) and ongoing pain was increased by 30%. CONCLUSIONS The specific association of the rs6313 variant with pinprick hyperalgesia and increased levels of ongoing pain suggests that the HTR2A receptor might be an important modulator in the development of CS in neuropathic pain. SIGNIFICANCE This article presents new insights into serotonin receptor 2A-mediating mechanisms of central sensitization in neuropathic pain patients. The rs6313 variant allele was associated with increased mechanical pinprick sensitivity and increased levels of ongoing pain supporting a contribution of central sensitization in the genesis of ongoing pain providing a possible route for mechanism-based therapies.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Denisa May
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Judith Koetting
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas R Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carolin Diesch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herta Flor
- Department of Clinical and Cognitive Neuroscience, Central Institute for Mental Health, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University Munich, München, Germany
| | - Christian Maihöfner
- Department of Neurology, General Hospital Fürth, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Vollert
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany.,Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Andrea Westermann
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
11
|
Oyewole AL, Akinola O, Owoyele BV. Plasmodium berghei-induced malaria decreases pain sensitivity in mice. Onderstepoort J Vet Res 2020. [DOI: 10.4102/ojvr.v87i1.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
Nakamoto K, Taniguchi A, Tokuyama S. Changes in opioid receptors, opioid peptides and morphine antinociception in mice subjected to early life stress. Eur J Pharmacol 2020; 881:173173. [PMID: 32511976 DOI: 10.1016/j.ejphar.2020.173173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/09/2023]
Abstract
Recent studies have shown that the endogenous opioid system is considerably affected by early life stress such as child abuse. Here, we investigated whether early life stress changes the endogenous opioid receptors and their peptides, and if such stress impacts morphine antinociception. We used mice affected by maternal separation and social isolation (MSSI) as an early life stress model. In the tail-flick test, 10-week-old MSSI mice showed a significant decrease in morphine antinociception compared to age-matched control mice. The number of c-Fos-positive cells increased in the periaqueductal gray (PAG), nucleus accumbens, and thalamus of control mice after the morphine injections, whereas hardly any positive cells were detected in the same areas of MSSI mice. The expression of μ- and κ-opioid receptor (MOR and KOR, respectively) messenger RNA (mRNA) was significantly decreased in the PAG of MSSI mice, whereas KOR expression was significantly increased in the amygdala of MSSI mice. The expression of δ-opioid receptor (DOR) mRNA was significantly reduced in the PAG and rostral ventromedial medulla of MSSI mice compared to control mice. Moreover, the lack of morphine antinociception was observed in 18-week-old MSSI mice. Our findings suggest that the supraspinal opioid system may be affected by early life stress exposure, and that this exposure may impact morphine antinociception.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Ayaka Taniguchi
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
13
|
Bardoni R. Serotonergic Modulation of Nociceptive Circuits in Spinal Cord Dorsal Horn. Curr Neuropharmacol 2020; 17:1133-1145. [PMID: 31573888 PMCID: PMC7057206 DOI: 10.2174/1570159x17666191001123900] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Despite the extensive number of studies performed in the last 50 years, aimed at describing the role of serotonin and its receptors in pain modulation at the spinal cord level, several aspects are still not entirely understood. The interpretation of these results is often complicated by the use of different pain models and animal species, together with the lack of highly selective agonists and antagonists binding to serotonin receptors. Method: In this review, a search has been conducted on studies investigating the modulatory action exerted by serotonin on specific neurons and circuits in the spinal cord dorsal horn. Particular attention has been paid to studies employing electro-physiological techniques, both in vivo and in vitro. Conclusion: The effects of serotonin on pain transmission in dorsal horn depend on several factors, including the type of re-ceptors activated and the populations of neurons involved. Recently, studies performed by activating and/or recording from identified neurons have importantly contributed to the understanding of serotonergic modulation on dorsal horn circuits.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| |
Collapse
|
14
|
Sierra S, Lippold KM, Stevens DL, Poklis JL, Dewey WL, González-Maeso J. Adjunctive effect of the serotonin 5-HT 2C receptor agonist lorcaserin on opioid-induced antinociception in mice. Neuropharmacology 2020; 167:107949. [PMID: 31987863 DOI: 10.1016/j.neuropharm.2020.107949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Opioid-sparing adjuncts are treatments that aim to reduce the overall dose of opioids needed to achieve analgesia, hence decreasing the burden of side effects through alternative mechanisms of action. Lorcaserin is a serotonin 5-HT2C receptor (5-HT2CR) agonist that has recently been reported to reduce abuse-related effects of the opioid analgesic oxycodone. The goal of our studies was to evaluate the effects of adjunctive lorcaserin on opioid-induced analgesic-like behavior using the tail-flick reflex (TFR) test as a mouse model of acute thermal nociception. We show that whereas subcutaneous (s.c.) administration of lorcaserin alone was inactive on the TFR test, adjunctive lorcaserin (s.c.) significantly increased the potency of oxycodone as an antinociceptive drug. This effect was prevented by the 5-HT2CR antagonist SB242084. A similar lorcaserin (s.c.)-induced adjunctive phenotype was observed upon administration of the opioid analgesics morphine and fentanyl. Remarkably, we also show that, opposite to the effects observed via s.c. administration, intrathecal (i.t.) administration of lorcaserin alone induced antinociceptive TFR behavior, an effect that was not prevented by the opioid receptor antagonist naloxone. This route of administration (i.t.) also led to a significant augmentation of oxycodone-induced antinociception. Lorcaserin (s.c.) did not alter the brain or blood concentrations of oxycodone, which suggests that its adjunctive effects on opioid-induced antinociception do not depend upon changes in opioid metabolism. Together, these data indicate that lorcaserin-mediated activation of the 5-HT2CR may represent a new pharmacological approach to augment opioid-induced antinociception. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Physiology & Biophysics Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Kumiko M Lippold
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - David L Stevens
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - William L Dewey
- Department of Pharmacology & Toxicology Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology & Biophysics Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
15
|
Costa‐Pereira JT, Serrão P, Martins I, Tavares I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy‐induced neuropathy: The role of spinal 5‐HT3 receptors. Eur J Neurosci 2019; 51:1756-1769. [DOI: 10.1111/ejn.14614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023]
Affiliation(s)
- José Tiago Costa‐Pereira
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Paula Serrão
- Department of Biomedicine Unit of Pharmacology and Therapeutics Faculty of Medicine University of Porto Porto Portugal
- MedInUP ‐ Center for Drug Discovery and Innovative Medicines University of Porto Porto Portugal
| | - Isabel Martins
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Isaura Tavares
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| |
Collapse
|
16
|
da Silva Soares R, Falconi-Sobrinho LL, dos Anjos-Garcia T, Coimbra NC. 5-Hydroxytryptamine 2A receptors of the dorsal raphe nucleus modulate panic-like behaviours and mediate fear-induced antinociception elicited by neuronal activation in the central nucleus of the inferior colliculus. Behav Brain Res 2019; 357-358:71-81. [DOI: 10.1016/j.bbr.2017.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/14/2017] [Accepted: 07/15/2017] [Indexed: 12/26/2022]
|
17
|
Patel R, Dickenson AH. Modality selective roles of pro-nociceptive spinal 5-HT 2A and 5-HT 3 receptors in normal and neuropathic states. Neuropharmacology 2018; 143:29-37. [PMID: 30240783 PMCID: PMC6277848 DOI: 10.1016/j.neuropharm.2018.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Descending brainstem control of spinal nociceptive processing permits a dynamic and adaptive modulation of ascending sensory information. Chronic pain states are frequently associated with enhanced descending excitatory drive mediated predominantly through serotonergic neurones in the rostral ventromedial medulla. In this study, we examine the roles of spinal 5-HT2A and 5-HT3 receptors in modulating ascending sensory output in normal and neuropathic states. In vivo electrophysiology was performed in anaesthetised spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus. In sham rats, block of spinal 5-HT3Rs with ondansetron revealed tonic facilitation of noxious punctate mechanical stimulation, whereas blocking 5-HT2ARs with ketanserin had minimal effect on neuronal responses to evoked stimuli. The inhibitory profiles of both drugs were altered in SNL rats; ondansetron additionally inhibited neuronal responses to lower intensity punctate mechanical stimuli and noxious heat evoked responses, whereas ketanserin inhibited innocuous and noxious evaporative cooling evoked responses. Neither drug had any effect on dynamic brush evoked responses nor on spontaneous firing rates in both sham and SNL rats. These data identify novel modality and intensity selective facilitatory roles of spinal 5-HT2A and 5-HT3 receptors on sensory neuronal processing within the spinothalamic-somatosensory cortical pathway.
Collapse
Affiliation(s)
- Ryan Patel
- University College London, Gower Street, Department of Neuroscience, Physiology and Pharmacology, London, WC1E 6BT, UK.
| | - Anthony H Dickenson
- University College London, Gower Street, Department of Neuroscience, Physiology and Pharmacology, London, WC1E 6BT, UK
| |
Collapse
|
18
|
|
19
|
Asano T, Tanaka KI, Tada A, Shimamura H, Tanaka R, Maruoka H, Mizushima T, Takenaga M. Ameliorative effect of chlorpromazine hydrochloride on visceral hypersensitivity in rats: possible involvement of 5-HT 2A receptor. Br J Pharmacol 2017; 174:3370-3381. [PMID: 28750135 DOI: 10.1111/bph.13960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Visceral hypersensitivity is responsible for pathogenesis of irritable bowel syndrome (IBS). Therefore, its prevention can help avoid abdominal pain and discomfort in IBS. To find candidate drugs for visceral hypersensitivity, we screened existing medicines for their ability to prevent visceral sensitivity induced by colorectal distension (CRD) in rats and identified chlorpromazine, a typical antipsychotic drug, as a candidate compound. In this study, we investigated the effect of chlorpromazine on visceral hypersensitivity. EXPERIMENTAL APPROACH Visceral sensitivity (visceromotor response) was monitored by measuring the electrical activity of the abdominal external oblique muscle contraction in response to CRD using a barostat apparatus. Visceral hypersensitivity was induced by a colonic instillation of sodium butyrate or acetic acid in neonates. KEY RESULTS Oral administration of chlorpromazine suppressed butyrate-induced visceral hypersensitivity to CRD. Interestingly, atypical antipsychotic drugs, quetiapine and risperidone, ameliorated butyrate-induced visceral hypersensitivity, whereas the typical antipsychotic drugs, haloperidol and sulpiride, did not. Pharmacological analysis using specific inhibitors showed that a selective 5-HT2A receptor antagonist, ketanserin, suppressed butyrate-induced visceral hypersensitivity, whereas a selective dopamine D2 receptor antagonist, L-741626, did not. Furthermore, the 5-HT2A receptor agonist AL-34662 stimulated visceral sensitivity to CRD in healthy control rats but not in butyrate-treated rats. These findings suggest that increased 5-HT levels in the colon contribute to the induction of visceral hypersensitivity. CONCLUSIONS AND IMPLICATIONS Our results indicate that chlorpromazine ameliorates visceral hypersensitivity and that the 5-HT2A receptor is a potential therapeutic target for treating abdominal pain and discomfort in IBS.
Collapse
Affiliation(s)
- Teita Asano
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ken-Ichiro Tanaka
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Arisa Tada
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | | | | | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
20
|
Pain modulation from the brain during diabetic neuropathy: Uncovering the role of the rostroventromedial medulla. Neurobiol Dis 2016; 96:346-356. [PMID: 27717882 DOI: 10.1016/j.nbd.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 01/17/2023] Open
Abstract
Diabetic neuropathy has a profound impact in the quality of life of patients who frequently complain of pain. The mechanisms underlying diabetic neuropathic pain (DNP) are no longer ascribed only to damage of peripheral nerves. The effects of diabetes at the central nervous system are currently considered causes of DPN. Management of DNP may be achieved by antidepressants that act on serotonin (5-HT) uptake, namely specific serotonin reuptake inhibitors. The rostroventromedial medulla (RVM) is a key pain control center involved in descending pain modulation at the spinal cord through local release of 5-HT and plays a peculiar role in the balance of bidirectional control (i.e. inhibitory and facilitatory) from the brain to the spinal cord. This review discusses recently uncovered neurobiological mechanisms that mediate nociceptive modulation from the RVM during diabetes installation. In early phases of the disease, facilitation of pain modulation from the RVM prevails through a triplet of mechanisms which include increase in serotonin expression at the RVM and consequent rise of serotonin levels at the spinal cord and upregulation of local facilitatory 5HT3 receptors, enhancement of spontaneous activity of facilitatory RVM neurons and up-regulation of the expression of transient receptor potential vanilloid type 1 (TRPV1) receptor. With the progression of diabetes the alterations in the RVM increase dramatically, with oxidative stress and neuronal death associated to microglia-mediated inflammation. In a manner similar to other central areas, like the thalamus, the RVM is likely to be a "pain generator/amplifier" during diabetes, accounting to increase DNP. Early interventions in DNP prevention using strategies that simultaneously tackle the exacerbation of 5-HT3 spinal receptors and of microglial RVM activity, namely those that increase the levels of anti-inflammatory cytokines, should be considered in the future of DNP treatment.
Collapse
|
21
|
Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK. Zerumbone alleviates chronic constriction injury-induced allodynia and hyperalgesia through serotonin 5-HT receptors. Biomed Pharmacother 2016; 83:1303-1310. [PMID: 27570173 DOI: 10.1016/j.biopha.2016.08.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Zerumbone, a bioactive sesquiterpene isolated from Zingiber zerumbet (Smith), has shown to exert antiallodynic and antihyperalgesic effects in neuropathic pain mice model in our recent study. The mechanism through which zerumbone alleviates neuropathic pain has yet to be elucidated. Thus, this study aimed to determine whether the serotonergic system, part of the descending pain modulation pathway, contributes to the antineuropathic effect of zerumbone. Participation of the serotonergic system in zerumbone-induced antiallodynia and antihyperalgesia was assessed using Dynamic Plantar Aesthesiometer von Frey test and Hargreaves plantar test respectively in chronic-constriction injury mice model. Administration of ρ-chlorophenylalanine (PCPA, 100mg/kg, i.p.) for four consecutive days to deplete serotonin (5-HT) prior to zerumbone administration blocked the antiallodynic and antihyperalgesic effects of zerumbone. Further investigation with 5-HT receptor antagonists methiothepin (5-HT1/6/7 receptor antagonist, 0.1mg/kg), WAY-100635 (5-HT1A receptor antagonist, 1mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3mg/kg) and ondansetron (5-HT3 receptor antagonist, 0.5mg/kg) managed to significantly attenuate antiallodynic and antihyperalgesic effects of zerumbone (10mg/kg). These findings demonstrate that zerumbone alleviates mechanical allodynia and thermal hyperalgesia through the descending serotonergic system via 5-HT receptors 1A, 1B, 2A, 3, 6 and 7 in chronic constriction injury neuropathic pain mice.
Collapse
Affiliation(s)
- Jasmine Siew Min Chia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Azam Shah Mohamad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
5-Hydroxytryptamine 2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars α reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior colliculus and dorsal periaqueductal grey matter. Behav Brain Res 2016; 316:294-304. [PMID: 27616344 DOI: 10.1016/j.bbr.2016.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
The electrical stimulation of the dorsolateral columns of the periaquedutal grey matter (dlPAG) or deep layers of the superior colliculus (dlSC) evokes defensive behaviours followed by an antinociceptive response. Monoaminergic brainstem reticular nuclei are suggested to comprise the endogenous pain modulatory system. The aim of the present work was to investigate the role played by 5-HT2 subfamily of serotonergic receptors of the nucleus raphe magnus (NRM) and the gigantocellularis/paragigantocellularis pars α reticular nuclei (Gi/PGiα) in the elaboration of instinctive fear-induced antinociception elicited by electrical stimulation of dlPAG or of dlSC. The nociceptive thresholds were measured by the tail-flick test in Wistar rats. The 5-HT2A/2C-serotonergic receptors antagonist ritanserin was microinjected at different concentrations (0.05, 0.5 and 5.0μg/0.2μL) either in Gi/PGiα or in NRM. The blockade of 5-HT2 receptors in both Gi/PGiα and NRM decreased the innate fear-induced antinociception elicited by electrical stimulation of the dlSC or the dlPAG. These findings indicate that serotonin is involved in the hypo-algesia induced by unconditioned fear-induced behavioural responses and the 5-HT2A/2C-serotonergic receptor subfamily in neurons situated in the Gi/PGiα complex and NRM are critically recruited in pain modulation during the panic-like emotional behaviour.
Collapse
|
23
|
Su M, Ran Y, Han X, Liu Y, Zhang X, Tan Q, Li R, Yu S. Rizatriptan overuse promotes hyperalgesia induced by dural inflammatory stimulation in rats by modulation of the serotonin system. Eur J Neurosci 2016; 44:2129-38. [PMID: 27288111 DOI: 10.1111/ejn.13296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/28/2016] [Accepted: 06/06/2016] [Indexed: 01/03/2023]
Abstract
Clinical and preclinical studies have implicated serotonin (5-HT) and the 5-HT2A receptor (5-HT2AR) in the pathogenesis of medication-overuse headache (MOH). However, with no appropriate animal model to study this phenomenon it is difficult to differentiate the effects of chronic exposure to analgesics from the consequences of frequent headache attacks during the development of MOH. Therefore, this study used a novel animal model of MOH established by a combination of the overuse of rizatriptan (RIZ) and stimulation with dural inflammatory soup (IS) to investigate whether 5-HT and 5-HT2AR are involved in central plasticity and hyperalgesia. Similar to an IS infusion, IS-RIZ treatment induced nociception-related behaviours in Sprague-Dawley rats and increased Fos expression in the cortex and trigeminal pathway, whereas the RIZ injection alone did not. In addition, overuse of RIZ, administration of an IS stimulus, and a combination of these treatments, decreased the periorbital withdrawal threshold, with IS-RIZ treatment having the most significant effects. Both chronic RIZ exposure and recurring nociception decreased 5-HT expression, whereas IS-RIZ treatment led to decreased expression of 5-HT and upregulation of 5-HT2AR, which was positively correlated with Fos activation. These findings suggest that overuse of RIZ does not directly induce pain via the activation of nociceptive pathways but may increase hyperalgesia by influencing the pain modulation system. Furthermore, decreased 5-HT levels and upregulation of 5-HT2AR may play important roles in this system. Taken together, these findings indicate that medication overuse and frequent headache attacks can promote the neural plasticity associated with MOH.
Collapse
Affiliation(s)
- Min Su
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ye Ran
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xun Han
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yufei Liu
- Department of Neurology, Tianjin Third Central Hospital, Tianjin, China
| | - Xu Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingche Tan
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruisheng Li
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
24
|
Cervantes-Durán C, Vidal-Cantú GC, Godínez-Chaparro B, Granados-Soto V. Role of spinal 5-HT2 receptors subtypes in formalin-induced long-lasting hypersensitivity. Pharmacol Rep 2015; 68:434-42. [PMID: 26922550 DOI: 10.1016/j.pharep.2015.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/21/2015] [Accepted: 11/27/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND The purpose of this study was to determine the role of spinal 5-HT2A, 5-HT2B and 5-HT2C receptors in the development and maintenance of formalin-induced long-lasting secondary allodynia and hyperalgesia in rats, as well as their expression in the dorsal root ganglia (DRG) during this process. METHODS 0.5-1% formalin was used to produce long-lasting secondary allodynia and hyperalgesia in rats. Western blot was used to determine 5-HT2 receptors expression in DRG. RESULTS Formalin (0.5-1%) injection produced long-lasting (1-12 days) secondary allodynia and hyperalgesia in both ipsilateral and contralateral hind paws. Intrathecal pre-treatment or post-treatment with the 5-HT2 receptor agonist, DOI (1-10nmol), increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. In contrast, intrathecal pre-treatment with the selective 5-HT2A (ketanserin 1-100nmol), 5-HT2B (RS 127445 1-100nmol) or 5-HT2C (RS 102221 1-100nmol) receptor antagonists prevented and reversed, respectively, 1% formalin-induced secondary allodynia and hyperalgesia in both paws. Likewise, the pronociceptive effect of DOI (10nmol) was blocked by ketanserin, RS 127445 or RS 102221 (0.01nmol). 5-HT2A/2B/2C receptors were expressed in DRG of naïve rats. Formalin injection (1%) increased bilaterally 5-HT2A/2B receptors expression in DRG. In contrast, formalin injection decreased 5-HT2C receptors expression bilaterally in DRG. CONCLUSION Data suggest that spinal 5-HT2A/2B/2C receptors have pronociceptive effects and participate in the development and maintenance of formalin-induced long-lasting hypersensitivity. These receptors are expressed in DRG and their expression is modulated by formalin.
Collapse
Affiliation(s)
- Claudia Cervantes-Durán
- División de Estudios de Posgrado de la Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Morelia Michoacán, Mexico
| | - Guadalupe C Vidal-Cantú
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México, D.F., Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, D.F., Mexico.
| |
Collapse
|
25
|
Pronociceptive and Antinociceptive Effects of Buprenorphine in the Spinal Cord Dorsal Horn Cover a Dose Range of Four Orders of Magnitude. J Neurosci 2015; 35:9580-94. [PMID: 26134641 DOI: 10.1523/jneurosci.0731-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due to its distinct pharmacological profile and lower incidence of adverse events compared with other opioids, buprenorphine is considered a safe option for pain and substitution therapy. However, despite its wide clinical use, little is known about the synaptic effects of buprenorphine in nociceptive pathways. Here, we demonstrate dose-dependent, bimodal effects of buprenorphine on transmission at C-fiber synapses in rat spinal cord dorsal horn in vivo. At an analgesically active dose of 1500 μg·kg(-1), buprenorphine reduced the strength of spinal C-fiber synapses. This depression required activation of spinal opioid receptors, putatively μ1-opioid receptors, as indicated by its sensitivity to spinal naloxone and to the selective μ1-opioid receptor antagonist naloxonazine. In contrast, a 15,000-fold lower dose of buprenorphine (0.1 μg·kg(-1)), which caused thermal and mechanical hyperalgesia in behaving animals, induced an enhancement of transmission at spinal C-fiber synapses. The ultra-low-dose buprenorphine-induced synaptic facilitation was mediated by supraspinal naloxonazine-insensitive, but CTOP-sensitive μ-opioid receptors, descending serotonergic pathways, and activation of spinal glial cells. Selective inhibition of spinal 5-hydroxytryptamine-2 receptors (5-HT2Rs), putatively located on spinal astrocytes, abolished both the induction of synaptic facilitation and the hyperalgesia elicited by ultra-low-dose buprenorphine. Our study revealed that buprenorphine mediates its modulatory effects on transmission at spinal C-fiber synapses by dose dependently acting on distinct μ-opioid receptor subtypes located at different levels of the neuraxis.
Collapse
|
26
|
Avila-Rojas SH, Velázquez-Lagunas I, Salinas-Abarca AB, Barragán-Iglesias P, Pineda-Farias JB, Granados-Soto V. Role of spinal 5-HT5A, and 5-HT1A/1B/1D, receptors in neuropathic pain induced by spinal nerve ligation in rats. Brain Res 2015; 1622:377-85. [PMID: 26168890 DOI: 10.1016/j.brainres.2015.06.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) participates in pain modulation by interacting with different 5-HT receptors. The role of 5-HT5A receptor in neuropathic pain has not previously studied. The purpose of this study was to investigate: A) the role of 5-HT5A receptors in rats subjected to spinal nerve injury; B) the expression of 5-HT5A receptors in dorsal spinal cord and dorsal root ganglia (DRG). Neuropathic pain was induced by L5/L6 spinal nerve ligation. Tactile allodynia in neuropathic rats was assessed with von Frey filaments. Western blot methodology was used to determine 5-HT5A receptor protein expression. Intrathecal administration (on day 14th) of 5-HT (10-100 nmol) or 5-carboxamidotryptamine (5-CT, 0.03-0.3 nmol) reversed nerve injury-induced tactile allodynia. Intrathecal non-selective (methiothepin, 0.1-0.8 nmol) and selective (SB-699551, 1-10 nmol) 5-HT5A receptor antagonists reduced, by ~60% and ~25%, respectively, the antiallodynic effect of 5-HT (100 nmol) or 5-CT (0.3 nmol). Moreover, both selective 5-HT1A and 5-HT1B/1D receptor antagonists, WAY-100635 (0.3-1 nmol) and GR-127935 (0.3-1 nmol), respectively, partially diminished the antiallodynic effect of 5-HT or 5-CT by about 30%. Injection of antagonists, by themselves, did not affect allodynia. 5-HT5A receptors were expressed in the ipsilateral dorsal lumbar spinal cord and DRG and L5/L6 spinal nerve ligation did not modify 5-HT5A receptor protein expression in those sites. Results suggest that 5-HT5A receptors reduce pain processing in the spinal cord and that 5-HT and 5-CT reduce neuropathic pain through activation of 5-HT5A and 5-HT1A/1B/1D receptors. These receptors could be an important part of the descending pain inhibitory system.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Lumbar Vertebrae
- Methiothepin/pharmacology
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Oxadiazoles/pharmacology
- Piperazines/pharmacology
- Pyridines/pharmacology
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1D/metabolism
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1/metabolism
- Serotonin/analogs & derivatives
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Nerves/injuries
- Touch
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico
| | - Isabel Velázquez-Lagunas
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico
| | - Ana Belen Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico.
| |
Collapse
|
27
|
Liu H, Yan WW, Lu XX, Zhang XL, Wei JQ, Wang XY, Wang T, Wu T, Cao J, Shao CJ, Zhou F, Zhang HX, Zhang P, Zang T, Lu XF, Cao JL, Ding HL, Zhang LC. Role of the cerebrospinal fluid-contacting nucleus in the descending inhibition of spinal pain transmission. Exp Neurol 2014; 261:475-85. [DOI: 10.1016/j.expneurol.2014.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/19/2014] [Accepted: 07/29/2014] [Indexed: 01/07/2023]
|
28
|
Spinal 5-HT5A receptors mediate 5-HT-induced antinociception in several pain models in rats. Pharmacol Biochem Behav 2014; 120:25-32. [DOI: 10.1016/j.pbb.2014.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/24/2014] [Accepted: 02/01/2014] [Indexed: 01/20/2023]
|
29
|
Su YS, Sun WH, Chen CC. Molecular mechanism of inflammatory pain. World J Anesthesiol 2014; 3:71-81. [DOI: 10.5313/wja.v3.i1.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/20/2013] [Accepted: 11/03/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory pain resulting from arthritis, nerve injury and tumor growth is a serious public health issue. One of the major challenges in chronic inflammatory pain research is to develop new pharmacologic treatments with long-term efficacy and few side effects. The mediators released from inflamed sites induce complex changes in peripheral and central processing by directly acting on transducer receptors located on primary sensory neurons to transmit pain signals or indirectly modulating pain signals by activating receptors coupled with G-proteins and second messengers. High local proton concentration (acidosis) is thought to be a decisive factor in inflammatory pain and other mediators such as prostaglandin, bradykinin, and serotonin enhance proton-induced pain. Proton-sensing ion channels [transient receptor potential V1 (TRPV1) and the acid-sensing ion channel (ASIC) family] are major receptors for direct excitation of nociceptive sensory neurons in response to acidosis or inflammation. G-protein-coupled receptors activated by prostaglandin, bradykinin, serotonin, and proton modulate functions of TRPV1, ASICs or other ion channels, thus leading to inflammation- or acidosis-linked hyperalgesia. Although detailed mechanisms remain unsolved, clearly different types of pain or hyperalgesia could be due to complex interactions between a distinct subset of inflammatory mediator receptors expressed in a subset of nociceptors. This review describes new directions for the development of novel therapeutic treatments in pain.
Collapse
|
30
|
Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats. Life Sci 2013; 93:637-45. [DOI: 10.1016/j.lfs.2013.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022]
|
31
|
Meske DS, Xie JY, Oyarzo J, Badghisi H, Ossipov MH, Porreca F. Opioid and noradrenergic contributions of tapentadol in experimental neuropathic pain. Neurosci Lett 2013; 562:91-6. [PMID: 23969300 DOI: 10.1016/j.neulet.2013.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Tapentadol is a dual action molecule with mu opioid agonist and norepinephrine (NE) reuptake blocking activity that has recently been introduced for the treatment of moderate to severe pain. The effects of intraperitoneal (i.p.) morphine (10mg/kg), tapentadol (10 or 30 mg/kg) or duloxetine (30 mg/kg), a norepinephrine/serotonin (NE/5HT) reuptake inhibitor, were evaluated in male, Sprague-Dawley rats with spinal nerve ligation (SNL) or sham surgery. Additionally, the effects of these drugs on spinal cerebrospinal fluid (CSF) NE levels were quantified. Response thresholds to von Frey filament stimulation decreased significantly from baseline in SNL, but not sham, operated rats. Duloxetine, tapentadol and morphine produced significant and time-related reversal of tactile hypersensitivity. Duloxetine significantly increased spinal CSF NE levels in both sham and SNL rats and no significant differences were observed in these groups. Tapentadol (10 mg/kg) produced a significant increase in spinal NE levels in SNL, but not in sham, rats. At the higher dose (30 mg/kg), tapentadol produced a significant increase in spinal CSF NE levels in both SNL and sham groups; however, spinal NE levels were elevated for an extended period in the SNL rats. This could be detected 30 min following tapentadol (30 mg/kg) in both sham and SNL groups. Surprisingly, while the dose of morphine studied reversed tactile hypersensitivity in nerve-injured rats, CSF NE levels were significantly reduced in both sham- and SNL rats. The data suggest that tapentadol elicits enhanced elevation in spinal NE levels in a model of experimental neuropathic pain offering a mechanistic correlate to observed clinical efficacy in this pain state.
Collapse
Affiliation(s)
- Diana S Meske
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| | - Jennifer Y Xie
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Janice Oyarzo
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Hamid Badghisi
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Michael H Ossipov
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| |
Collapse
|
32
|
Phospholipase D-mediated hypersensitivity at central synapses is associated with abnormal behaviours and pain sensitivity in rats exposed to prenatal stress. Int J Biochem Cell Biol 2013; 45:2706-12. [PMID: 23932932 DOI: 10.1016/j.biocel.2013.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Adverse events at critical stages of development can lead to lasting dysfunction in the central nervous system (CNS). To seek potential underlying changes in synaptic function, we used a newly developed protocol to measure alterations in receptor-mediated Ca(2+) fluorescence responses of synaptoneurosomes, freshly isolated from selected regions of the CNS concerned with emotionality and pain processing. We compared adult male controls and offspring of rats exposed to social stress in late pregnancy (prenatal stress, PS), which showed programmed behavioural changes indicating anxiety, anhedonia and pain hypersensitivity. We found corresponding increases, in PS rats compared with normal controls, in responsiveness of synaptoneurosomes from frontal cortex to a glutamate receptor (GluR) agonist, and from spinal cord to activators of nociceptive afferents. Through a combined pharmacological and biochemical strategy, we found evidence for a role of phospholipase D1 (PLD1)-mediated signalling, that may involve 5-HT2A receptor (5-HT2AR) activation, at both levels of the nervous system. These changes might participate in underpinning the enduring alterations in behaviour induced by PS.
Collapse
|
33
|
Ossipov MH. The perception and endogenous modulation of pain. SCIENTIFICA 2012; 2012:561761. [PMID: 24278716 PMCID: PMC3820628 DOI: 10.6064/2012/561761] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/19/2012] [Indexed: 06/02/2023]
Abstract
Pain is often perceived an unpleasant experience that includes sensory and emotional/motivational responses. Accordingly, pain serves as a powerful teaching signal enabling an organism to avoid injury, and is critical to survival. However, maladaptive pain, such as neuropathic or idiopathic pain, serves no survival function. Genomic studies of individuals with congenital insensitivity to pain or paroxysmal pain syndromes considerable increased our understanding of the function of peripheral nociceptors, and especially of the roles of voltage-gated sodium channels and of nerve growth factor (NGF)/TrkA receptors in nociceptive transduction and transmission. Brain imaging studies revealed a "pain matrix," consisting of cortical and subcortical regions that respond to noxious inputs and can positively or negatively modulate pain through activation of descending pain modulatory systems. Projections from the periaqueductal grey (PAG) and the rostroventromedial medulla (RVM) to the trigeminal and spinal dorsal horns can inhibit or promote further nociceptive inputs. The "pain matrix" can explain such varied phenomena as stress-induced analgesia, placebo effect and the role of expectation on pain perception. Disruptions in these systems may account for the existence idiopathic pan states such as fibromyalgia. Increased understanding of pain modulatory systems will lead to development of more effective therapeutics for chronic pain.
Collapse
Affiliation(s)
- Michael H. Ossipov
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
34
|
Godínez-Chaparro B, López-Santillán FJ, Orduña P, Granados-Soto V. Secondary mechanical allodynia and hyperalgesia depend on descending facilitation mediated by spinal 5-HT₄, 5-HT₆ and 5-HT₇ receptors. Neuroscience 2012; 222:379-91. [PMID: 22796074 DOI: 10.1016/j.neuroscience.2012.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/26/2022]
Abstract
In the present study we determined the role of spinal 5-hydroxytriptamine (5-HT) and 5-HT(4/6/7) receptors in the long-term secondary mechanical allodynia and hyperalgesia induced by formalin in the rat. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia in both paws. In addition, formalin increased the tissue content of 5-HT in the ipsilateral, but not contralateral, dorsal part of the spinal cord compared to control animals. Intrathecal (i.t.) administration of 5,7-dihydroxytriptamine (5,7-DHT), a serotonergic neurotoxin, diminished tissue 5-HT content in the ipsilateral and contralateral dorsal parts of the spinal cord. Accordingly, i.t. 5,7-DHT prevented formalin-induced secondary allodynia and hyperalgesia in both paws. I.t. pre-treatment (-10 min) with ML-10302 (5-HT(4) agonist), EMD-386088 (5-HT(6) agonist) and LP-12 (5-HT(7) agonist) significantly increased secondary mechanical allodynia and hyperalgesia in both paws. In contrast, i.t. pre-treatment (-20 min) with GR-125487 (5-HT(4) antagonist), SB-258585 (5-HT(6) antagonist) and SB-269970 (5-HT(7) antagonist) significantly prevented formalin-induced long-term effects in both paws. In addition, these antagonists prevented the pro-nociceptive effect of ML-10302, EMD-386088 and LP-12, respectively. The i.t. post-treatment (6 days after formalin injection) with GR-125487, SB-258585 and SB-269970 reversed formalin-induced secondary allodynia and hyperalgesia in both paws. These results suggest that spinal 5-HT, released from the serotonergic projections in response to formalin injection, activates pre- or post-synaptic 5-HT(4/6/7) receptors at the dorsal root ganglion/spinal cord promoting the development and maintenance of secondary allodynia and hyperalgesia.
Collapse
Affiliation(s)
- B Godínez-Chaparro
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, México, DF, Mexico
| | | | | | | |
Collapse
|
35
|
Role of peripheral and spinal 5-HT2B receptors in formalin-induced nociception. Pharmacol Biochem Behav 2012; 102:30-5. [PMID: 22476011 DOI: 10.1016/j.pbb.2012.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/05/2012] [Accepted: 03/17/2012] [Indexed: 12/13/2022]
Abstract
In this study we assessed the role of local peripheral and spinal serotonin 2B (5-HT(2B)) receptors in rats submitted to the formalin test. For this, local peripheral ipsilateral, but not contralateral, administration of the highly selective 5-HT(2B) receptor antagonist 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyridine (RS-127445, 0.01-1 nmol/paw) significantly prevented 1% formalin-induced flinching behavior. Moreover, local peripheral ipsilateral, but not contralateral, of the selective 5-HT(2) receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI, 1-10 nmol/paw) augmented 0.5% formalin-induced nociceptive behavior. The local pronociceptive effect of the 5-HT(2) receptor agonist DOI (10 nmol/paw) was significantly prevented by the local injection of RS-127445 (0.01 nmol/paw). Moreover, intrathecal injection of the selective 5-HT(2B) receptor antagonist RS-127445 (0.1-10 nmol/rat) also prevented 1% formalin-induced nociceptive behavior. In contrast, spinal injection of the 5-HT(2) receptor agonist DOI (1-10 nmol/rat) significantly increased flinching behavior induced by 0.5% formalin. The spinal pronociceptive effect of the 5-HT(2) receptor agonist DOI (10 nmol/rat) was prevented by the intrathecal injection of the 5-HT(2B) receptor antagonist RS-127445 (0.1 nmol/rat). Our results suggest that the 5-HT(2B) receptors play a pronociceptive role in peripheral as well as spinal sites in the rat formalin test. 5-HT(2B) receptors could be a target to develop analgesic drugs.
Collapse
|
36
|
Dogrul A, Seyrek M, Akgul EO, Cayci T, Kahraman S, Bolay H. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT₇ receptors. Eur J Pharmacol 2011; 677:93-101. [PMID: 22206817 DOI: 10.1016/j.ejphar.2011.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 01/23/2023]
Abstract
Although some studies have shown the essential role of descending serotonergic pathways and spinal 5-HT(1A), 5-HT(2A), or 5-HT(3) receptors in the antinociceptive effects of paracetamol, other studies have presented conflicting results, and the particular subtype of spinal 5-HT receptors involved in paracetamol-induced analgesia remains to be clarified. Recent studies have demonstrated the importance of spinal 5-HT(7) receptors in descending serotonergic pain inhibitory pathways. In this study, we investigated the role of descending serotonergic pathways and spinal 5-HT(7) receptors compared with 5-HT(3) and 5-HT(2A) receptors in the antinociceptive and antihyperalgesic effects of paracetamol. Tail-flick, hot plate and plantar incision tests were used to determine nociception in male BALB/c mice. Lesion of serotonergic bulbospinal pathways was performed by intrathecal (i.th.) injection of 5,7-dihydroxytryptamine (5,7-DHT), and spinal 5-HT levels were measured by HPLC. To evaluate the particular subtypes of the spinal 5-HT receptors, the selective 5-HT(7), 5-HT(3) and 5-HT(2A) receptor antagonists SB 269970, ondansetron and ketanserin, respectively, were given i.th. after oral administration of paracetamol. Oral paracetamol (200, 400 and 600 mg/kg) elicits dose-dependent antinociceptive and antihyperalgesic effects. I.th. pretreatment with 5,7-DHT (50 μg) sharply reduced 5-HT levels in the spinal cord. Depletion of spinal 5-HT totally abolished the antinociceptive and antihyperalgesic effects of paracetamol. I.th. injection of SB 2669970 (10 μg) blocked the antinociceptive and antihyperalgesic effects of paracetamol, but ondansetron and ketanserin (10 μg) did not. Our findings suggest that systemic administration of paracetamol may activate descending serotonergic pathways and spinal 5-HT(7) receptors to produce a central antinociceptive and antihyperalgesic effects.
Collapse
Affiliation(s)
- Ahmet Dogrul
- Department of Pharmacology, Gulhane Academy of Medicine, 06010, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|