1
|
Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats. Epilepsy Behav 2022; 137:108922. [PMID: 36279807 DOI: 10.1016/j.yebeh.2022.108922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
Pentylenetetrazol (PTZ) blocks the inhibitory action of GABA, triggering a Glu-mediated hyperexcitation of the dendritic spines in hippocampal CA1 pyramidal neurons that leads to the generation of epileptiform seizures. The aim of this work was to determine the effect of PTZ on the electrical activity of the hippocampal pyramidal neurons in male rats. Bipolar electrodes were implanted stereotaxically in the right and left hippocampal CA1 fields of adults, and PTZ (65 mg/kg) was administered i.p. Simultaneous recordings of the field activity and the firing rate (multiunitary activity, MUA) were analyzed at 10, 20, and 30 min post-administration of PTZ. Only rats that presented tonic-clonic seizures during the first 1-5 min after PTZ treatment were included in the study. The recordings of the field activity were analyzed in 4 frequency bands. In both the right and left hippocampal CA1 fields, the relative power corresponding to the slow waves (4-7 Hz) increased, while in the bands 13-30 Hz and 31-50 Hz, it decreased at 10, 20, and 30 min post-PTZ. MUA recordings were analyzed at four levels. The highest levels corresponded to larger amplitudes of the action potentials in the pyramidal neurons. The firing rates of the PTZ-treated rats did not differ from baseline but presented a significant decrement at 10, 20, and 30 min post-PTZ. The decreased firing rate of the hippocampal CA1 pyramidal neurons after PTZ treatment could be associated with plastic changes of dendritic spines along with some microenvironmental adaptations at synaptic level, after neuronal PTZ-mediated hyperexcitation.
Collapse
|
2
|
Kovalev GI, Sukhorukova NA, Vasileva EV, Kondrakhin EA, Salimov RM. [Influence of pantogam and atomoxetine on attention stability and distribution of dopamine D2 and GABAB receptors in the attention deficit mouse model]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:402-410. [PMID: 34730553 DOI: 10.18097/pbmc20216705402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The closed enriched cross maze test was employed as a new experimental model of the attention deficit disorder (ADD) for evaluation of the behavioral and neurochemical effects of the nootropic drug pantogam (100 mg/kg, intraperitoneally) and atomoxetine hydrochloride (3 mg/kg, intraperitoneally) administered subchronically to CD-1 outbred mice. Two subpopulations of rodents differed spontaneously in attention to enriched compartments (ED-Low and ED-High), were estimated on the basis of time spent by the mice in the empty or enriched compartments. The ED-Low and ED-High mice insignificantly differed in parameters associated with anxiety, exploratory efficacy and motor activity. Subchronic administration of both drugs in selected doses produced corrective effect on animal behavior seen as a selective increase in the ED-ratio values in the ED-Low subpopulation. Differences in the distribution of dopamine D2 and GABAB receptors (Bmax) between placebo-treated ED-Low and ED-High mice were found in the prefrontal cortex using the radioligand binding method. The neuroreceptor effects of atomoxetine were seen in prefrontal cortex of ED-Low mice as decrease in the Bmax values of D2 receptors by 14%. Pantogam in the prefrontal cortex of ED-Low subpopulation showed a decrease in the Bmax values of D2 receptors by 22% and an increase for GABAB receptors by 44%. Therefore, subchronic administration of pantogam had a positive corrective effect on the behavior parameters and the density of the studied receptor subtypes in animals with severe attention deficit.
Collapse
Affiliation(s)
- G I Kovalev
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | | | - E V Vasileva
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - E A Kondrakhin
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - R M Salimov
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
3
|
Becari C, Pereira GL, Oliveira JAC, Polonis K, Garcia-Cairasco N, Costa-Neto CM, Pereira MGAG. Epilepsy Seizures in Spontaneously Hypertensive Rats After Acoustic Stimulation: Role of Renin-Angiotensin System. Front Neurosci 2020; 14:588477. [PMID: 33424536 PMCID: PMC7787150 DOI: 10.3389/fnins.2020.588477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/20/2020] [Indexed: 12/03/2022] Open
Abstract
Hypertension is a common comorbidity observed in individuals with epilepsy. Growing evidence suggests that lower blood pressure is associated with reduced frequency and severity of seizures. In this study, we sought to investigate whether the renin–angiotensin system (RAS), which is a critical regulator of blood pressure, is involved in the pathogenesis of audiogenic epilepsy-related seizures in a hypertensive rat model. Spontaneously hypertensive rats (SHRs) were given RAS inhibitors, angiotensin-converting enzyme (ACE) inhibitor or angiotensin II type I receptor (AT1R) antagonist, for 7 days prior to inducing epileptic seizures by acoustic stimulation. After the pretreatment phase, blood pressure (BP) of SHRs normalized as expected, and there was no difference in systolic and diastolic BP between the pretreated SHRs and normotensive rat group (Wistar). Next, treated and untreated SHRs (a high BP control) were individually subjected to acoustic stimuli twice a day for 2 weeks. The severity of tonic–clonic seizures and the severity of temporal lobe epilepsy seizures (product of forebrain recruitment) were evaluated by the mesencephalic severity index (Rossetti et al. scale) and the limbic index (Racine’s scale), respectively. Seizures were observed in both untreated (a high BP control) SHRs and in SHRs treated with AT1R antagonist and ACE inhibitor. There was no statistical difference in the mesencephalic severity and limbic index between these groups. Our results demonstrate that SHRs present seizure susceptibility with acoustic stimulation. Moreover, although RAS inhibitors effectively reduce blood pressure in SHR, they do not prevent developing epileptic seizures upon acoustic stimulation in SHR. In conclusion, our study shows that RAS is an unlikely link between hypertension and susceptibility to epileptic seizures induced by acoustic stimulation in SHRs, which is in contrast with the anticonvulsant effect of losartan in other animal models of epilepsy.
Collapse
Affiliation(s)
- Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giorgia Lemes Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - José A C Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Katarzyna Polonis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marilia G A G Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
4
|
Ivanova N, Tchekalarova J. The Potential Therapeutic Capacity of Inhibiting the Brain Renin-Angiotensin System in the Treatment of Co-Morbid Conditions in Epilepsy. CNS Drugs 2019; 33:1101-1112. [PMID: 31680223 DOI: 10.1007/s40263-019-00678-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases and although numerous novel anticonvulsants have been approved, the proportion of patients who are refractory to medical treatment of seizures and have progressive co-morbidities such as cognitive impairment and depression remains at about 20-30%. In the last decade, extensive research has identified a therapeutic capacity of the components of the brain renin-angiotensin system (RAS) in seizure- and epilepsy-related phenomena. Alleviating the activity of RAS in the central nervous system is considered to be a potential adjuvant strategy for the treatment of numerous detrimental consequences of epileptogenesis. One of the main advantages of RAS is associated with its modulatory influence on different neurotransmitter systems, thereby exerting a fine-tuning control mechanism for brain excitability. The most recent scientific findings regarding the involvement of the components of brain RAS show that angiotensin II (Ang II), angiotensin-converting enzyme (ACE), Ang II type 1 (AT1) and type 2 (AT2) receptors are involved in the control of epilepsy and its accompanying complications, and therefore they are currently of therapeutic interest in the treatment of this disease. However, data on the role of different components of brain RAS on co-morbid conditions in epilepsy, including hypertension, are insufficient. Experimental and clinical findings related to the involvement of Ang II, ACE, AT1, and AT2 receptors in the control of epilepsy and accompanying complications may point to new therapeutic opportunities and adjuvants for the treatment of common co-morbid conditions of epilepsy.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
5
|
Yokota T, Struzik ZR, Jurica P, Horiuchi M, Hiroyama S, Li J, Takahara Y, Ogawa K, Nishitomi K, Hasegawa M, Cichocki A. Semi-Automated Biomarker Discovery from Pharmacodynamic Effects on EEG in ADHD Rodent Models. Sci Rep 2018; 8:5202. [PMID: 29581452 PMCID: PMC5980101 DOI: 10.1038/s41598-018-23450-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2018] [Indexed: 11/16/2022] Open
Abstract
We propose a novel semi-automatic approach to design biomarkers for capturing pharmacodynamic effects induced by pharmacological agents on the spectral power of electroencephalography (EEG) recordings. We apply this methodology to investigate the pharmacodynamic effects of methylphenidate (MPH) and atomoxetine (ATX) on attention deficit/hyperactivity disorder (ADHD), using rodent models. We inject the two agents into the spontaneously hypertensive rat (SHR) model of ADHD, the Wistar-Kyoto rat (WKY), and the Wistar rat (WIS), and record their EEG patterns. To assess individual EEG patterns quantitatively, we use an integrated methodological approach, which consists of calculating the mean, slope and intercept parameters of temporal records of EEG spectral power using a smoothing filter, outlier truncation, and linear regression. We apply Fisher discriminant analysis (FDA) to identify dominant discriminants to be heuristically consolidated into several new composite biomarkers. Results of the analysis of variance (ANOVA) and t-test show benefits in pharmacodynamic parameters, especially the slope parameter. Composite biomarker evaluation confirms their validity for genetic model stratification and the effects of the pharmacological agents used. The methodology proposed is of generic use as an approach to investigating thoroughly the dynamics of the EEG spectral power.
Collapse
Affiliation(s)
- Tatsuya Yokota
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | - Peter Jurica
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | | | - Junhua Li
- RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan
| | - Yuji Takahara
- SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan
| | - Koichi Ogawa
- SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan.
| | | | | | | |
Collapse
|
6
|
Vorobyov V, Bobkova N. Intracerebral interplay and neurotransmitter systems involvement in animal models of neurodegenerative disorders: EEG approach expectations. Neural Regen Res 2017; 12:66-67. [PMID: 28250746 PMCID: PMC5319240 DOI: 10.4103/1673-5374.198981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Russia
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Russia
| |
Collapse
|
7
|
Comparative power spectrum analysis of EEG activity in spontaneously hypertensive and Wistar rats in kainate model of temporal model of epilepsy. Brain Res Bull 2016; 124:62-75. [DOI: 10.1016/j.brainresbull.2016.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 11/23/2022]
|
8
|
Botanas CJ, Lee H, de la Peña JB, Dela Peña IJ, Woo T, Kim HJ, Han DH, Kim BN, Cheong JH. Rearing in an enriched environment attenuated hyperactivity and inattention in the Spontaneously Hypertensive Rats, an animal model of Attention-Deficit Hyperactivity Disorder. Physiol Behav 2015; 155:30-7. [PMID: 26656767 DOI: 10.1016/j.physbeh.2015.11.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/17/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder, characterized by symptoms of hyperactivity, inattention, and impulsivity. It is commonly treated with psychostimulants that typically begins during childhood and lasts for an extended period of time. However, there are concerns regarding the consequences of chronic psychostimulant treatment; thus, there is a growing search for an alternative management for ADHD. One non-pharmacological management that is gaining much interest is environmental enrichment. Here, we investigated the effects of rearing in an enriched environment (EE) on the expression of ADHD-like symptoms in the Spontaneously Hypertensive Rats (SHRs), an animal model of ADHD. SHRs were reared in EE or standard environment (SE) from post-natal day (PND) 21 until PND 49. Thereafter, behavioral tests that measure hyperactivity (open field test [OFT]), inattention (Y-maze task), and impulsivity (delay discounting task) were conducted. Additionally, electroencephalography (EEG) was employed to assess the effects of EE on rat's brain activity. Wistar-Kyoto (WKY) rats, the normotensive counterpart of the SHRs, were used to determine whether the effects of EE were specific to a particular genetic background. EE improved the performance of the SHRs and WKY rats in the OFT and Y-maze task, but not the delay discounting task. Interestingly, EE induced significant EEG changes in WKY rats, but not in the SHRs. These findings show that rearing environment may play a role in the expression of ADHD-like symptoms in the SHRs and that EE may be considered as a putative complementary approach in managing ADHD symptoms.
Collapse
Affiliation(s)
- Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Hyelim Lee
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Taeseon Woo
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Medical School, 102 Heukseok-ro, Dongjak-gu, Seoul 156-755, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Clinical Research Institute, Seoul National University Hospital, 28 Yungundong, Chongrogu, Seoul 110-744, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
9
|
Funck V, Ribeiro L, Pereira L, de Oliveira C, Grigoletto J, Della-Pace I, Fighera M, Royes L, Furian A, Larrick J, Oliveira M. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models. Neuroscience 2015; 298:171-9. [DOI: 10.1016/j.neuroscience.2015.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/02/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
10
|
Petkova Z, Tchekalarova J, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Popov D, Markova P, Lozanov V, Atanasova D, Lazarov N, Stoynev A. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. Epilepsy Behav 2014; 31:198-208. [PMID: 24440891 DOI: 10.1016/j.yebeh.2013.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/14/2013] [Accepted: 12/15/2013] [Indexed: 11/16/2022]
Abstract
Melatonin is involved in the control of circadian and seasonal rhythmicity, possesses potent antioxidant activity, and exerts a neuroprotective and anticonvulsant effect. Spontaneously hypertensive rats (SHRs) are widely accepted as an experimental model of essential hypertension with hyperactivity, deficient sustained attention, and alterations in circadian autonomic profiles. The purpose of the present study was to determine whether melatonin treatment during epileptogenesis can prevent the deleterious consequences of status epilepticus (SE) in SHRs in the kainate (KA) model of temporal lobe of epilepsy (TLE). Spontaneous recurrent seizures (SRSs) were EEG- and video-recorded during and after the treatment protocol. Melatonin (10mg/kg diluted in drinking water, 8weeks) increased the seizure-latent period, decreased the frequency of SRSs, and attenuated the circadian rhythm of seizure activity in SHRs. However, melatonin was unable to affect the disturbed diurnal rhythms and behavioral changes associated with epilepsy, including the decreased anxiety level, depression, and impaired spatial memory. Melatonin reduced neuronal damage specifically in the CA1 area of the hippocampus and piriform cortex and decreased hippocampal serotonin (5-HT) levels both in control and epileptic SHRs. Although long-term melatonin treatment after SE shows a potential to attenuate seizure activity and neuronal loss, it is unable to restore epilepsy-associated behavioral abnormalities in SHRs.
Collapse
Affiliation(s)
- Zlatina Petkova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Daniela Pechlivanova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Slavianka Moyanova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rumiana Mitreva
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Deyan Popov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Petya Markova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Valentin Lozanov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dimitrina Atanasova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Alexander Stoynev
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
11
|
Atanasova M, Petkova Z, Pechlivanova D, Dragomirova P, Blazhev A, Tchekalarova J. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins. Pharmacol Biochem Behav 2013; 111:44-50. [DOI: 10.1016/j.pbb.2013.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
|
12
|
Wang C, Wu H, He F, Jing X, Liang Q, Heng G, Wang L, Gao G, Zhang H. Alleviation of Ferric Chloride-Induced Seizures and Retarded Behaviour in Epileptic Rats by Cortical Electrical Stimulation Treatment. J Int Med Res 2012; 40:266-81. [PMID: 22429366 DOI: 10.1177/147323001204000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE: To study the effects of low-frequency cortical electrical stimulation (CES) on seizures and behaviour in a rat model of epilepsy induced by ferric chloride (FeCl3). METHODS: Rats were randomly assigned into four groups ( n = 8 per group): normal healthy rats; saline-treated control rats; FeCl3-induced epileptic rats; CES-treated FeCl3-induced epileptic rats. Behavioural tests, analysis of the levels of brain-derived neurotrophic factor (BDNF) protein in brain tissue, and ultrastructural studies using transmission electron microscopy (TEM) were undertaken. RESULTS: CES significantly decreased the number and grade of seizures, and improved rat behaviour, compared with untreated epileptic rats. CES reduced levels of BDNF protein in the forebrain and increased levels of BDNF protein in the hippocampus compared with untreated epileptic rats. TEM showed less damage and ultrastructural changes in the neurons of CES-treated epileptic rats. CONCLUSIONS: CES inhibited seizures in FeCl3-induced epileptic rats and improved their behaviour. These effects might be mediated by altering BDNF protein levels in the brain.
Collapse
Affiliation(s)
- C Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - F He
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - X Jing
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - Q Liang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - L Wang
- Department of Biomedical Engineering, Fourth Military Medical University, ShanXi, Xi'an, China
| | - G Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| | - H Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, ShanXi, Xi'an, China
| |
Collapse
|