1
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
2
|
Fann DY, Nickles EP, Poh L, Rajeev V, Selvaraji S, Schwarz H, Arumugam TV. CD137 Ligand-CD137 Interaction is Required For Inflammasome-Associated Brain Injury Following Ischemic Stroke. Neuromolecular Med 2020; 22:474-483. [PMID: 33073305 DOI: 10.1007/s12017-020-08623-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
The CD137L-CD137 axis is a potent co-stimulatory immune checkpoint regulator that forms a bidirectional signaling pathway between the CD137 ligand (CD137L) and CD137 receptor to regulate immunological activities. This study investigated the potential involvement of the CD137L-CD137 axis on inflammasome-associated brain injury and neurological deficits in a mouse model of focal ischemic stroke. Cerebral ischemia was induced in male C57BL/6J wild-type (WT), CD137L-deficient (CD137L KO) and CD137-deficient (CD137 KO) mice by middle cerebral artery occlusion (MCAO; 60 min), followed by reperfusion (6 h and 24 h). Brain infarct volume and neurological deficit scores were significantly lower in both CD137L KO and CD137 KO mice compared to WT controls. Moreover, CD137L-deficient brains had significantly lower levels of the pyroptotic protein, NT-Gasdermin D, while CD137-deficient brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3, pyroptotic protein, NT-Gasdermin D, and of the secondary pyroptotic protein NT-Gasdermin E, following ischemic stroke. This protection by CD137L and CD137 deletion was associated with a significant decrease in inflammasome signaling. In conclusion, our data provide evidence for the first time that the CD137L-CD137 axis contributes to brain injury and neurological deficits by activating the inflammasome signaling pathway following ischemic stroke.
Collapse
Affiliation(s)
- David Y Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emily Pauline Nickles
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea. .,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|