1
|
Khurram OU, Pearcey GEP, Chardon MK, Kim EH, García M, Heckman CJ. The Cellular Basis for the Generation of Firing Patterns in Human Motor Units. ADVANCES IN NEUROBIOLOGY 2022; 28:233-258. [PMID: 36066828 DOI: 10.1007/978-3-031-07167-6_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motor units, which comprise a motoneuron and the set of muscle fibers it innervates, are the fundamental neuromuscular transducers for all motor commands. The one to one relationship between a motoneuron and its innervated muscle fibers allow motoneuron firing patterns to be readily measured in humans. In this chapter, we summarize the current understanding of the cellular basis for the generation of firing patterns in human motor units. We provide a brief review of landmark insights from classic studies and then proceed to consider the features of motor unit firing patterns that are most likely to be sensitive estimators of motoneuron inputs and properties. In addition, we discuss recent advances in technology for recording human motor unit firing patterns and highly realistic computer simulations of motoneurons. The final section presents our recent efforts to use the power of supercomputers for implementation of the motoneuron models, with a goal of achieving a true "reverse engineering" approach that maximizes the insights from motor unit firing patterns into the synaptic structure of motor commands.
Collapse
Affiliation(s)
- Obaid U Khurram
- Departments of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gregory E P Pearcey
- Departments of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthieu K Chardon
- Departments of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern-Argonne Institute of Science and Engineering, Evanston, IL, USA
| | - Edward H Kim
- Departments of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marta García
- Northwestern-Argonne Institute of Science and Engineering, Evanston, IL, USA
- Computational Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - C J Heckman
- Departments of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Bączyk M, Drzymała-Celichowska H, Mrówczyński W, Krutki P. Polarity-dependent adaptations of motoneuron electrophysiological properties after 5-wk transcutaneous spinal direct current stimulation in rats. J Appl Physiol (1985) 2020; 129:646-655. [DOI: 10.1152/japplphysiol.00301.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcutaneous spinal direct current stimulation applied systematically for 5 wk evoked polarity-dependent adaptations in the electrophysiological properties of rat spinal motoneurons. After anodal polarization sessions, motoneurons became more excitable and could evoke higher maximum discharge frequencies during repetitive firing than motoneurons in the sham polarization group. However, no significant adaptive changes of motoneuron properties were observed after repeated cathodal polarization in comparison with the sham control group.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Hanna Drzymała-Celichowska
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
- Department of Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | | - Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
3
|
Callister RJ, Brichta AM, Schaefer AT, Graham BA, Stuart DG. Pioneers in CNS inhibition: 2. Charles Sherrington and John Eccles on inhibition in spinal and supraspinal structures. Brain Res 2019; 1734:146540. [PMID: 31704081 DOI: 10.1016/j.brainres.2019.146540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
This article reviews the contributions of the English neurophysiologist, Charles Scott Sherrington [1857-1952], and his Australian PhD trainee and collaborator, John Carew Eccles [1903-1997], to the concept of central inhibition in the spinal cord and brain. Both were awarded Nobel Prizes; Sherrington in 1932 for "discoveries regarding the function of neurons," and Eccles in 1963 for "discoveries concerning the ionic mechanisms involved in excitation and inhibition in central portions of the nerve cell membrane." Both spoke about central inhibition at their Nobel Prize Award Ceremonies. The subsequent publications of their talks were entitled "Inhibition as a coordinative factor" and "The ionic mechanism of postsynaptic inhibition", respectively. Sherrington's work on central inhibition spanned 41 years (1893-1934), and for Eccles 49 years (1928-1977). Sherrington first studied central inhibition by observing hind limb muscle responses to electrical (peripheral nerve) and mechanical (muscle) stimulation. He used muscle length and force measurements until the early 1900s and electromyography in the late 1920s. Eccles used these techniques while working with Sherrington, but later employed extracellular microelectrode recording in the spinal cord followed in 1951 by intracellular recording from spinal motoneurons. This considerably advanced our understanding of central inhibition. Sherrington's health was poor during his retirement years but he nonetheless made a small number of largely humanities contributions up to 1951, one year before his death at the age of 94. In contrast, Eccles retained his health and vigor until 3 years before his death and published prolifically on many subjects during his 22 years of official retirement. His last neuroscience article appeared in 1994 when he was 91. Despite poor health he continued thinking about his life-long interest, the mind-brain problem, and was attempting to complete his autobiography in the last years of his life.
Collapse
Affiliation(s)
- Robert J Callister
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom; Department of Neuroscience, Physiology & Pharmacology, University College, London, United Kingdom.
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| | - Douglas G Stuart
- Department of Physiology, University of Arizona, PO Box 210093, Tucson, AZ 85721-0093, USA
| |
Collapse
|
4
|
One, no-one and a hundred thousand brains: J.C. Eccles, J.Z. Young and the establishment of the neurosciences (1930s-1960s). PROGRESS IN BRAIN RESEARCH 2018. [PMID: 30514527 DOI: 10.1016/bs.pbr.2018.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Contemporary neurosciences have grown beyond the limits of a natural science. To its most vocal advocates, the study of the human brain can provide nothing short of the basis for a new science of man-the link between the "natural" and "human" sciences-as a simple consequence of the growing mass of facts relating to this most marvelous organ, accumulated in the last four decades. This straightforward picture of the growing import of the neurosciences simplifies and obscures the myriad different interpretations and images of "the brain" that have inspired the development of the neurosciences. Among them, this chapter will consider two deeply contrasting early images of the brain: the cellular-physiological brain proposed since the 1950s by John Carew Eccles, and the model-"whole" brain championed by John Zachary Young. Eccles' program was focused on the vertebrate synapse, and Young's on the whole brain of an "advanced" invertebrate (the octopus). The former was the programmatic extension of a long neurophysiological tradition, and the latter an outspoken attempt at providing a revolutionary model for the organization of an unprecedented research effort. One underscored continuity and scientific "soundness," and the other promised rupture and new, imaginative solutions to age-old problems. Nevertheless, they have been later lumped together into a single, marvelous and progressive history, or mythology, of the Science of the Brain. This chapter will show how the organizing principle of these two opposed (if almost equally successful) research efforts was not the foggy, ever-changing image of an experimental brain-in-becoming, but the clear, fixed horizon of a promised brain.
Collapse
|
5
|
Thompson CK, Negro F, Johnson MD, Holmes MR, McPherson LM, Powers RK, Farina D, Heckman CJ. Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output. J Physiol 2018; 596:2643-2659. [PMID: 29726002 DOI: 10.1113/jp276153] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the in vivo cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. ABSTRACT The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibres represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allow for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the in vivo cat. Our results showed that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period.
Collapse
Affiliation(s)
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Chicago, IL, USA
| | | | - Matthew R Holmes
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | | | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Stein PSG. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors. J Neurophysiol 2018; 119:422-440. [PMID: 29070633 PMCID: PMC5867383 DOI: 10.1152/jn.00602.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Neuronal networks in the turtle spinal cord have considerable computational complexity even in the absence of connections with supraspinal structures. These networks contain central pattern generators (CPGs) for each of several behaviors, including three forms of scratch, two forms of swim, and one form of flexion reflex. Each behavior is activated by a specific set of cutaneous or electrical stimuli. The process of selection among behaviors within the spinal cord has multisecond memories of specific motor patterns. Some spinal cord interneurons are partially shared among several CPGs, whereas other interneurons are active during only one type of behavior. Partial sharing is a proposed mechanism that contributes to the ability of the spinal cord to generate motor pattern blends with characteristics of multiple behaviors. Variations of motor patterns, termed deletions, assist in characterization of the organization of the pattern-generating components of CPGs. Single-neuron recordings during both normal and deletion motor patterns provide support for a CPG organizational structure with unit burst generators (UBGs) whose members serve a direction of a specific degree of freedom of the hindlimb, e.g., the hip-flexor UBG, the hip-extensor UBG, the knee-flexor UBG, the knee-extensor UBG, etc. The classic half-center hypothesis that includes all the hindlimb flexors in a single flexor half-center and all the hindlimb extensors in a single extensor half-center lacks the organizational complexity to account for the motor patterns produced by turtle spinal CPGs. Thus the turtle spinal cord is a valuable model system for studies of mechanisms responsible for selection and generation of motor behaviors. NEW & NOTEWORTHY The concept of the central pattern generator (CPG) is a major tenet in motor neuroethology that has influenced the design and interpretations of experiments for over a half century. This review concentrates on the turtle spinal cord and describes studies from the 1970s to the present responsible for key developments in understanding the CPG mechanisms responsible for the selection and production of coordinated motor patterns during turtle hindlimb motor behaviors.
Collapse
Affiliation(s)
- Paul S G Stein
- Department of Biology, Washington University , St. Louis, Missouri
| |
Collapse
|
7
|
Abstract
Soon after the glass micropipette was invented as a micro-tool for manipulation of single bacteria and the microinjection and microsurgery of living cells, it was seen to hold promise as a microelectrode to stimulate individual cells electrically and to study electrical potentials in them. Initial successes and accurate mechanistic explanations of the results were achieved in giant plant cells in the 1920s. Long known surface electrical activity in nerves and muscles was only resolved at a similar cellular level in the 1930s and 1940s after the discovery of giant nerve fibers and the development of finer tipped microelectrodes for normal-sized cells.
Collapse
Affiliation(s)
- Allan H Bretag
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
8
|
Tadros MA, Fuglevand AJ, Brichta AM, Callister RJ. Intrinsic excitability differs between murine hypoglossal and spinal motoneurons. J Neurophysiol 2016; 115:2672-80. [PMID: 26936988 DOI: 10.1152/jn.01114.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
Motoneurons differ in the behaviors they control and their vulnerability to disease and aging. For example, brain stem motoneurons such as hypoglossal motoneurons (HMs) are involved in licking, suckling, swallowing, respiration, and vocalization. In contrast, spinal motoneurons (SMs) innervating the limbs are involved in postural and locomotor tasks requiring higher loads and lower movement velocities. Surprisingly, the properties of these two motoneuron pools have not been directly compared, even though studies on HMs predominate in the literature compared with SMs, especially for adult animals. Here we used whole cell patch-clamp recording to compare the electrophysiological properties of HMs and SMs in age-matched neonatal mice (P7-P10). Passive membrane properties were remarkably similar in HMs and SMs, and afterhyperpolarization properties did not differ markedly between the two populations. HMs had narrower action potentials (APs) and a faster upstroke on their APs compared with SMs. Furthermore, HMs discharged APs at higher frequencies in response to both step and ramp current injection than SMs. Therefore, while HMs and SMs have similar passive properties, they differ in their response to similar levels of depolarizing current. This suggests that each population possesses differing suites of ion channels that allow them to discharge at rates matched to the different mechanical properties of the muscle fibers that drive their distinct motor functions.
Collapse
Affiliation(s)
- M A Tadros
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and
| | - A J Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - A M Brichta
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia; and
| |
Collapse
|
9
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
10
|
Barbara JG, Clarac F. Historical concepts on the relations between nerves and muscles. Brain Res 2011; 1409:3-22. [DOI: 10.1016/j.brainres.2011.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
11
|
Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res 2011; 1409:42-61. [PMID: 21762884 DOI: 10.1016/j.brainres.2011.06.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 12/17/2022]
Abstract
Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements.
Collapse
Affiliation(s)
- Jacques Duchateau
- Laboratory of Applied Biology, Université Libre de Bruxelles, 808 Route de Lennik, CP 640, 1070, Brussels, Belgium.
| | | |
Collapse
|
12
|
Clarac F, Barbara JG. The emergence of the "motoneuron concept": from the early 19th C to the beginning of the 20th C. Brain Res 2011; 1409:23-41. [PMID: 21723536 DOI: 10.1016/j.brainres.2011.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 02/07/2023]
Abstract
This article addresses the emergence of the "motoneuron concept," i.e., the idea that this cell had properties of particular advantage for its control of muscle activation. The motor function of the ventral roots was established early in the 19th C and the term "motor cell," (or "motor nerve cell") was introduced shortly thereafter by Albrecht von Kölliker and some other histologists. They knew that motor cells were among the neurons with the largest soma in vertebrates and for this reason they were, and remained for many decades, the best and most studied neuronal model. The work of clinicians like Guillaume Duchenne de Boulogne and Jean-Martin Charcot on motor degenerative syndromes began before a clear description of motor cells was available, because it was initially more difficult to establish whether the deficits of paralysis and muscle weakness were due to neuronal or muscular lesions. Next, the pioneering physiologist, Charles Sherrington, who was influenced greatly by the anatomical contributions and speculations of Santiago Ramón y Cajal, used the term, "motor neuron," rather than motor cell for the neuron that he considered was functionally "the final common path" for providing command signals to the musculature. In the early 20th C he proposed that activation of a motor neuron resulted from the sum of its various excitatory and inhibitory CNS inputs. The contraction of motor neuron to "motoneuron(e)" was put into common usage by John Fulton (among possibly others) in 1926. The motoneuron concept is still evolving with new discoveries on the horizon.
Collapse
Affiliation(s)
- François Clarac
- P3M, CNRS, Université de la Méditerranée, 31 chemin Joseph Aiguier, 13402 Marseille, France.
| | | |
Collapse
|
13
|
Abstract
In the preceding series of articles, the history of vertebrate motoneuron and motor unit neurobiological studies has been discussed. In this article, we select a few examples of recent advances in neuroscience and discuss their application or potential application to the study of motoneurons and the control of movement. We conclude, like Sherrington, that in order to understand normal, traumatized, and diseased human behavior, it is critical to continue to study motoneuron biology using all available and emerging tools. This article is part of a Special Issue entitled Historical Review.
Collapse
Affiliation(s)
- Robert M Brownstone
- Departments of Surgery (Neurosurgery) and Anatomy & Neurobiology, Dalhousie University, Halifax, NS, Canada B3H 1X5.
| | | |
Collapse
|