1
|
Bhat UA, Kumar SA, Chakravarty S, Patel AB, Kumar A. Differential Effects of Chronic Ethanol Use on Mouse Neuronal and Astroglial Metabolic Activity. Neurochem Res 2023:10.1007/s11064-023-03922-y. [PMID: 37069415 DOI: 10.1007/s11064-023-03922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
Chronic alcohol use disorder, a major risk factor for the development of neuropsychiatric disorders including addiction to other substances, is associated with several neuropathology including perturbed neuronal and glial activities in the brain. It affects carbon metabolism in specific brain regions, and perturbs neuro-metabolite homeostasis in neuronal and glial cells. Alcohol induced changes in the brain neurochemical profile accompany the negative emotional state associated with dysregulated reward and sensitized stress response to withdrawal. However, the underlying alterations in neuro-astroglial activities and neurochemical dysregulations in brain regions after chronic alcohol use are poorly understood. This study evaluates the impact of chronic ethanol use on the regional neuro-astroglial metabolic activity using 1H-[13C]-NMR spectroscopy in conjunction with infusion of [1,6-13C2]glucose and sodium [2-13C]acetate, respectively, after 48 h of abstinence. Besides establishing detailed 13C labeling of neuro-metabolites in a brain region-specific manner, our results show chronic ethanol induced-cognitive deficits along with a reduction in total glucose oxidation rates in the hippocampus and striatum. Furthermore, using [2-13C]acetate infusion, we showed an alcohol-induced increase in astroglial metabolic activity in the hippocampus and prefrontal cortex. Interestingly, increased astroglia activity in the hippocampus and prefrontal cortex was associated with a differential expression of monocarboxylic acid transporters that are regulating acetate uptake and metabolism in the brain.
Collapse
Affiliation(s)
- Unis Ahmad Bhat
- Epigenetics and Neuropsychiatric Disorders Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad, Telangana State (TS), 500007, India
| | - Sreemantula Arun Kumar
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anant Bahadur Patel
- Epigenetics and Neuropsychiatric Disorders Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad, Telangana State (TS), 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad, Telangana State (TS), 500007, India.
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad, Telangana State (TS), 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Häni A, Diserens G, Oevermann A, Vermathen P, Precht C. Sampling Method Affects HR-MAS NMR Spectra of Healthy Caprine Brain Biopsies. Metabolites 2021; 11:metabo11010038. [PMID: 33419191 PMCID: PMC7825498 DOI: 10.3390/metabo11010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The metabolic profiling of tissue biopsies using high-resolution–magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy may be influenced by experimental factors such as the sampling method. Therefore, we compared the effects of two different sampling methods on the metabolome of brain tissue obtained from the brainstem and thalamus of healthy goats by 1H HR-MAS NMR spectroscopy—in vivo-harvested biopsy by a minimally invasive stereotactic approach compared with postmortem-harvested sample by dissection with a scalpel. Lactate and creatine were elevated, and choline-containing compounds were altered in the postmortem compared to the in vivo-harvested samples, demonstrating rapid changes most likely due to sample ischemia. In addition, in the brainstem samples acetate and inositols, and in the thalamus samples ƴ-aminobutyric acid, were relatively increased postmortem, demonstrating regional differences in tissue degradation. In conclusion, in vivo-harvested brain biopsies show different metabolic alterations compared to postmortem-harvested samples, reflecting less tissue degradation. Sampling method and brain region should be taken into account in the analysis of metabolic profiles. To be as close as possible to the actual situation in the living individual, it is desirable to use brain samples obtained by stereotactic biopsy whenever possible.
Collapse
Affiliation(s)
- Annakatrin Häni
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
| | - Gaëlle Diserens
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Anna Oevermann
- NeuroCenter, Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstr. 109a, 3012 Bern, Switzerland;
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
- Correspondence: ; Tel.: +41-31-631-2918
| |
Collapse
|
3
|
Age differences in brain structural and metabolic responses to binge ethanol exposure in fisher 344 rats. Neuropsychopharmacology 2021; 46:368-379. [PMID: 32580206 PMCID: PMC7852871 DOI: 10.1038/s41386-020-0744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
An overarching goal of our research has been to develop a valid animal model of alcoholism with similar imaging phenotypes as those observed in humans with the ultimate objective of assessing the effectiveness of pharmacological agents. In contrast to our findings in humans with alcohol use disorders (AUD), our animal model experiments have not demonstrated enduring brain pathology despite chronic, high ethanol (EtOH) exposure protocols. Relative to healthy controls, older individuals with AUD demonstrate accelerating brain tissue loss with advanced age. Thus, this longitudinally controlled study was conducted in 4-month old (equivalent to ~16-year-old humans) and 17-month old (equivalent to ~45-year-old humans) male and female Fisher 344 rats to test the hypothesis that following equivalent alcohol exposure protocols, older relative to younger animals would exhibit more brain changes as evaluated using in vivo structural magnetic resonance imaging (MRI) and MR spectroscopy (MRS). At baseline, total brain volume as well as the volumes of each of the three constituent tissue types (i.e., cerebral spinal fluid (CSF), gray matter, white matter) were greater in old relative to young rats. Baseline metabolite levels (except for glutathione) were higher in older than younger animals. Effects of binge EtOH exposure on brain volumes and neurometabolites replicated our previous findings in Wistar rats and included ventricular enlargement and reduced MRS-derived creatine levels. Brain changes in response to binge EtOH treatment were more pronounced in young relative to older animals, negating our hypothesis. Higher baseline glutathione levels in female than male rats suggest that female rats are perhaps protected against the more pronounced changes in CSF and gray matter volumes observed in male rats due to superior metabolic homeostasis mechanisms. Additional metabolite changes including low inositol levels in response to high blood alcohol levels support a mechanism of reversible osmolarity disturbances due to temporarily altered brain energy metabolism.
Collapse
|
4
|
Prisciandaro JJ, Schacht JP, Prescot AP, Brenner HM, Renshaw PF, Brown TR, Anton RF. Intraindividual changes in brain GABA, glutamate, and glutamine during monitored abstinence from alcohol in treatment-naive individuals with alcohol use disorder. Addict Biol 2020; 25:e12810. [PMID: 31373138 PMCID: PMC7953366 DOI: 10.1111/adb.12810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Proton magnetic resonance spectroscopy (1 H-MRS) studies have demonstrated abnormal levels of a variety of neurometabolites in treatment-seeking individuals with moderate-severe alcohol use disorder (AUD) following acute withdrawal. In contrast, few studies have investigated neurochemical changes across early abstinence in less severe, treatment-naïve AUD. The present study, which represents the primary report of a research grant from ABMRF/The Alcohol Research Fund, measured dorsal anterior cingulate cortex (dACC) GABA, glutamate, and glutamine levels in treatment-naïve AUD (n = 23) via three 1 H-MRS scans spaced across a planned week of abstinence from alcohol. In addition to AUD participants, 12 light drinkers completed two scans, separated by 48 hours, to ensure that results in AUD were not produced by between-scan differences other than abstinence from alcohol. 1 H-MRS spectra were acquired in dACC at each scan using 2D J-resolved point-resolved spectroscopy. Linear mixed modeling results demonstrated a significant increase in GABA, but not glutamate or glutamine (Ps = .237-.626), levels between scans 1 and 2 (+8.88%, .041), with no difference between scans 2 and 3 (+1.00%, .836), in AUD but not LD (F = 1.24, .290) participants. Exploratory regression analyses tentatively revealed a number of significant prospective associations between changes in glutamine levels and heavy drinking, craving, and withdrawal symptoms. Most notably, the present study demonstrated return from abnormally low to normal GABA levels in treatment-naïve AUD within 3 days of their last drink; the pattern of results was consistent with glutamate and glutamine disturbances being exclusive to relatively more severe AUD.
Collapse
Affiliation(s)
- James J. Prisciandaro
- Department of Psychiatry and Behavioral Sciences Medical University of South Carolina Charleston SC USA
| | - Joseph P. Schacht
- Department of Psychiatry and Behavioral Sciences Medical University of South Carolina Charleston SC USA
| | | | - Helena M. Brenner
- Department of Psychiatry and Behavioral Sciences Medical University of South Carolina Charleston SC USA
| | - Perry F. Renshaw
- Department of Psychiatry University of Utah Salt Lake City UT USA
| | - Truman R. Brown
- Department of Radiology Medical University of South Carolina Charleston SC USA
| | - Raymond F. Anton
- Department of Psychiatry and Behavioral Sciences Medical University of South Carolina Charleston SC USA
| |
Collapse
|
5
|
Yi S, Lin K, Jiang T, Shao W, Huang C, Jiang B, Li Q, Lin D. NMR-based metabonomic analysis of HUVEC cells during replicative senescence. Aging (Albany NY) 2020; 12:3626-3646. [PMID: 32074082 PMCID: PMC7066908 DOI: 10.18632/aging.102834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
Cellular senescence is a physiological process reacting to stimuli, in which cells enter a state of irreversible growth arrest in response to adverse consequences associated with metabolic disorders. Molecular mechanisms underlying the progression of cellular senescence remain unclear. Here, we established a replicative senescence model of human umbilical vein endothelial cells (HUVEC) from passage 3 (P3) to 18 (P18), and performed biochemical characterizations and NMR-based metabolomic analyses. The cellular senescence degree advanced as the cells were sequentially passaged in vitro, and cellular metabolic profiles were gradually altered. Totally, 8, 16, 21 and 19 significant metabolites were primarily changed in the P6, P10, P14 and P18 cells compared with the P3 cells, respectively. These metabolites were mainly involved in 14 significantly altered metabolic pathways. Furthermore, we observed taurine retarded oxidative damage resulting from senescence. In the case of energy deficiency, HUVECs metabolized neutral amino acids to replenish energy, thus increased glutamine, aspartate and asparagine at the early stages of cellular senescence but decreased them at the later stages. Our results indicate that cellular replicative senescence is closely associated with promoted oxidative stress, impaired energy metabolism and blocked protein synthesis. This work may provide mechanistic understanding of the progression of cellular senescence.
Collapse
Affiliation(s)
- Shenghui Yi
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China.,Department of Medical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Kejiang Lin
- Department of Medical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Jiang
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China
| | - Wei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361024, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Prisciandaro JJ, Schacht JP, Prescot AP, Renshaw PF, Brown TR, Anton RF. Brain Glutamate, GABA, and Glutamine Levels and Associations with Recent Drinking in Treatment-Naïve Individuals with Alcohol Use Disorder Versus Light Drinkers. Alcohol Clin Exp Res 2019; 43:221-226. [PMID: 30537347 DOI: 10.1111/acer.13931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Proton magnetic resonance spectroscopy (1 H-MRS) studies have demonstrated abnormal levels of a variety of neurometabolites in inpatients/outpatients with alcohol use disorder (AUD) following acute alcohol withdrawal relative to healthy controls. In contrast, few studies have compared neurometabolite levels between less severe, treatment-naïve AUD individuals and light drinkers (LD) or related them to recent alcohol consumption. The present study compared neurometabolite levels between treatment-naïve AUD and LD individuals. METHODS Twenty treatment-naïve individuals with AUD and 20 demographically matched LD completed an 1 H-MRS scan, approximately 2.5 days following their last reported drink. 1 H-MRS data were acquired in dorsal anterior cingulate (dACC) using a 2-dimensional J-resolved point-resolved spectroscopy sequence. dACC neurometabolite levels, with a focus on glutamate, glutamine, and GABA, were compared between AUD and LD participants. The associations between metabolite levels and recent drinking were explored. RESULTS AUD participants had significantly lower concentrations of GABA (Cohen's d = 0.79, p = 0.017) and glutamine (Cohen's d = 1.12, p = 0.005), but not glutamate (Cohen's d = 0.05, p = 0.893), relative to LD. As previously reported, AUD participants' glutamate and N-acetylaspartate concentrations were inversely associated with their number of heavy drinking days. In contrast, neither number of drinking (mean p = 0.56) nor heavy drinking (mean p = 0.47) days were associated with metabolite concentrations in LD. CONCLUSIONS The present study demonstrated significantly lower levels of prefrontal γ-aminobutyric acid and glutamine in treatment-naïve individuals with AUD relative to LD. Whether these findings reflect the neurotoxic consequence and/or neuroadaptive response of alcohol consumption versus a predrinking trait, and therefore a more durable neurochemical disturbance, awaits elucidation from longitudinal studies.
Collapse
Affiliation(s)
- James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Joseph P Schacht
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew P Prescot
- Department of Radiology, University of Utah, Salt Lake City, Utah
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Truman R Brown
- Department of Radiology, Medical University of South Carolina, Charleston, South Carolina
| | - Raymond F Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
7
|
Precht C, Diserens G, Vermathen M, Oevermann A, Lauper J, Vermathen P. Metabolic profiling of listeria rhombencephalitis in small ruminants by 1 H high-resolution magic angle spinning NMR spectroscopy. NMR IN BIOMEDICINE 2018; 31:e4023. [PMID: 30328643 DOI: 10.1002/nbm.4023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Listeria rhombencephalitis is caused by infection with Listeria monocytogenes and is associated with a high mortality rate in humans and ruminants. Little is known about the metabolic changes associated with neurolisteriosis in particular and infectious central nervous system (CNS) diseases in general. The purpose of our study was to investigate the metabolic changes associated with listeria rhombencephalitis in small ruminants (goats and sheep) as a model for inflammatory CNS disease by 1 H high-resolution magic angle spinning nuclear magnetic resonance (1 H HR-MAS NMR) spectroscopy of brain biopsies obtained from the brainstem and thalamus. Statistical analysis revealed distinct differences in the metabolic profile of brainstem biopsies, the primary location of listeria rhombencephalitis with moderate or severe inflammatory changes. N-Acetylaspartate (NAA), N-acetylaspartylglutamate, choline, myo-inositol and scyllo-inositol were decreased, and glycine, phosphocholine, taurine and lactate were increased, in the diseased group (n = 13) in comparison with the control group (n = 12). In the thalamus, which showed no or only mild inflammatory changes in the majority of animals, no statistically significant metabolic changes were observed. However, trends for metabolic alterations were partly the same as those found in the brainstem, including NAA, choline and lactate. This may be an indicator of metabolic changes occurring in the early stages of the disease. Therefore, further research with a larger number of animals is needed to evaluate the presence of subtle metabolic changes associated with mild inflammatory changes in the thalamus. In conclusion, 1 H HR-MAS NMR investigation of listeria rhombencephalitis identified brain metabolite changes, offering new insights into the disease pathophysiology.
Collapse
Affiliation(s)
- Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| | - Gaëlle Diserens
- AMSM, Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Josiane Lauper
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, University of Bern, Bern, Switzerland
| | - Peter Vermathen
- AMSM, Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Wang J, Zeng HL, Du H, Liu Z, Cheng J, Liu T, Hu T, Kamal GM, Li X, Liu H, Xu F. Evaluation of metabolites extraction strategies for identifying different brain regions and their relationship with alcohol preference and gender difference using NMR metabolomics. Talanta 2018; 179:369-376. [DOI: 10.1016/j.talanta.2017.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
|
9
|
Xu S, Zhu W, Wan Y, Wang J, Chen X, Pi L, Lobo MK, Ren B, Ying Z, Morris M, Cao Q. Decreased Taurine and Creatine in the Thalamus May Relate to Behavioral Impairments in Ethanol-Fed Mice: A Pilot Study of Proton Magnetic Resonance Spectroscopy. Mol Imaging 2018; 17:1536012117749051. [PMID: 29318932 PMCID: PMC5768247 DOI: 10.1177/1536012117749051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Minimal hepatic encephalopathy (MHE) is highly prevalent, observed in up to 80% of patients with liver dysfunction. Minimal hepatic encephalopathy is defined as hepatic encephalopathy with cognitive deficits and no grossly evident neurologic abnormalities. Clinical management may be delayed due to the lack of in vivo quantitative methods needed to reveal changes in brain neurobiochemical biomarkers. To gain insight into the development of alcoholic liver disease-induced neurological dysfunction (NDF), a mouse model of late-stage alcoholic liver fibrosis (LALF) was used to investigate changes in neurochemical levels in the thalamus and hippocampus that relate to behavioral changes. Proton magnetic resonance spectroscopy of the brain and behavioral testing were performed to determine neurochemical alterations and their relationships to behavioral changes in LALF. Glutamine levels were higher in both the thalamus and hippocampus of alcohol-treated mice than in controls. Thalamic levels of taurine and creatine were significantly diminished and strongly correlated with alcohol-induced behavioral changes. Chronic long-term alcohol consumption gives rise to advanced liver fibrosis, neurochemical changes in the nuclei, and behavioral changes which may be linked to NDF. Magnetic resonance spectroscopy represents a sensitive and noninvasive measurement of pathological alterations in the brain, which may provide insight into the pathogenesis underlying the development of MHE.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yamin Wan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - JiaBei Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Xi Chen
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Liya Pi
- The Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Mary Kay Lobo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bin Ren
- Blood Research Institute, Blood Center of Wisconsin, Department of Medicine, Medical College of Wisconsin Milwaukee, WI, USA
| | - Zhekang Ying
- The Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Morris
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Kaebisch E, Fuss TL, Vandergrift L, Toews K, Habbel P, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies I-cell line and animal models. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3700. [PMID: 28301071 PMCID: PMC5501085 DOI: 10.1002/nbm.3700] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 12/31/2016] [Indexed: 05/09/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS allows for direct measurements of non-liquid tissue and cell specimens to present valuable insights into the cellular metabolisms of physiological and pathological processes. HRMAS produces high-resolution spectra comparable to those obtained from solutions of specimen extracts but without complex metabolite extraction processes, and preserves the tissue cellular structure in a form suitable for pathological examinations following spectroscopic analysis. The technique has been applied in a wide variety of biomedical and biochemical studies and become one of the major platforms of metabolomic studies. By quantifying single metabolites, metabolite ratios, or metabolic profiles in their entirety, HRMAS presents promising possibilities for diagnosis and prediction of clinical outcomes for various diseases, as well as deciphering of metabolic changes resulting from drug therapies or xenobiotic interactions. In this review, we evaluate HRMAS MRS results on animal models and cell lines reported in the literature, and present the diverse applications of the method for the understanding of pathological processes and the effectiveness of therapies, development of disease animal models, and new progress in HRMAS methodology.
Collapse
Affiliation(s)
- Eva Kaebisch
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Taylor L. Fuss
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Lindsey Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Karin Toews
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding Author: Leo L. Cheng, PhD, 149 13 Street, CNY-6, Charlestown, MA 02129, Ph.617-724-6593, Fax.617-726-5684,
| |
Collapse
|
11
|
Sun L, Zhang H, Fan Y, Guo Y, Zhang G, Nie H, Wang F. Metabolomic profiling in umbilical venous plasma reveals effects of dietary rumen-protected arginine or N-carbamylglutamate supplementation in nutrient-restricted Hu sheep during pregnancy. Reprod Domest Anim 2017; 52:376-388. [PMID: 28220550 DOI: 10.1111/rda.12919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
Maternal nutrient restriction during pregnancy is a major problem worldwide for human and animal production. Arginine (Arg) is critical to health, growth and reproduction. N-carbamylglutamate (NCG), a key enzyme in arginine synthesis, is not extensively degraded in rumen. The aim of this study was to investigate ameliorating effects of rumen-protected arginine (RP-Arg) and NCG supplementation on dietary in undernourished Hu sheep during gestation. From day 35 to 110 of gestation, 32 Hu ewes carrying twin foetuses were randomly divided into four groups: a control (CG) group (n = 8; fed 100% National Research Council (NRC) requirements for pregnant sheep), a nutrient-restricted (RG) group (n = 8; fed 50% NRC requirements, which included 50% mineral-vitamin mixture) and two treatment (Arg and NCG) groups (n = 8; fed 50% NRC requirements supplemented with 20 g/day RP-Arg or 5 g/day NCG, which included 50% mineral-vitamin mixture). The umbilical venous plasma samples of foetus were tested by 1 H-nuclear magnetic resonance. Thirty-two differential metabolites were identified, indicating altered metabolic pathways of amino acid, carbohydrate and energy, lipids and oxidative stress metabolism among the four groups. Our results demonstrate that the beneficial effect of dietary RP-Arg and NCG supplementation on mammalian reproduction is associated with complex metabolic networks.
Collapse
Affiliation(s)
- L Sun
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - H Zhang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Y Fan
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Y Guo
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - G Zhang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - H Nie
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - F Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Xu HD, Wang JS, Li MH, Liu Y, Chen T, Jia AQ. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:69-80. [PMID: 25528421 DOI: 10.1016/j.aquatox.2014.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 05/24/2023]
Abstract
Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment.
Collapse
Affiliation(s)
- Hua-Dong Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Ming-Hui Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yan Liu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Chen
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ai-Qun Jia
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
13
|
Lee DW, Nam YK, Kim TK, Kim JH, Kim SY, Min JW, Lee JH, Kim HY, Kim DJ, Choe BY. Dose-dependent influence of short-term intermittent ethanol intoxication on cerebral neurochemical changes in rats detected by ex vivo proton nuclear magnetic resonance spectroscopy. Neuroscience 2014; 262:107-17. [DOI: 10.1016/j.neuroscience.2013.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 01/26/2023]
|
14
|
Liu H, Zheng W, Yan G, Liu B, Kong L, Ding Y, Shen Z, Tan H, Zhang G. Acute ethanol-induced changes in edema and metabolite concentrations in rat brain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:351903. [PMID: 24783201 PMCID: PMC3982422 DOI: 10.1155/2014/351903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study is to describe the acute effects of EtOH on brain edema and cerebral metabolites, using diffusion weight imaging (DWI) and proton magnetic resonance spectroscopy ((1)H-MRS) at a 7.0T MR and to define changes in apparent diffusion coefficient (ADC) values and the concentration of metabolites in the rat brain after acute EtOH intoxication. ADC values in each ROI decreased significantly at 1 h and 3 h after ethanol administration. ADC values in frontal lobe were decreased significantly compared with other regions at 3 h. For EtOH/Cr+PCr and cerebral metabolites (Cho, Tau, and Glu) differing over time, no significant differences for Ins, NAA, and Cr were observed in frontal lobes. Regression analysis revealed a significant association between TSEtOH/Cr+PCr and TSCho, TSTau, TSGlu, and TSADC. The changes of ADC values in different brain regions reflect the process of the cytotoxic edema in vivo. The characterization of frontal lobes metabolites changes and the correlations between TSEtOH/Cr+PCr and TSCho, TSTau, and TSGlu provide a better understanding for the biological mechanisms in neurotoxic effects of EtOH on the brain. In addition, the correlations between TSEtOH/Cr+PCr and TSADC will help us to understand development of the ethanol-induced brain cytotoxic edema.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Ultrasound, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong 512025, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- *Wenbin Zheng:
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Baoguo Liu
- Department of Neurosurgery, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong 512025, China
| | - Lingmei Kong
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yan Ding
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhiwei Shen
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hui Tan
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guishan Zhang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
15
|
Pang X, Panee J, Liu X, Berry MJ, Chang SL, Chang L. Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration. J Neuroimmune Pharmacol 2013; 8:691-704. [PMID: 23546885 PMCID: PMC3773562 DOI: 10.1007/s11481-013-9454-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/17/2013] [Indexed: 11/24/2022]
Abstract
HIV infection and methamphetamine (Meth) abuse both may lead to oxidative stress. This study used HIV-1 transgenic (HIV-1Tg) rats to investigate the independent and combined effects of HIV viral protein expression and low dose repeated Meth exposure on the glutathione (GSH)-centered antioxidant system and oxidative stress in the brain. Total GSH content, gene expression and/or enzymatic activities of glutamylcysteine synthetase (GCS), gamma-glutamyltransferase (GGT), glutathione reductase (GR), glutathione peroxidase (GPx), glutaredoxin (Glrx), and glutathione-s-transferase (GST) were measured. The protein expression of cystine transporter (xCT) and oxidative stress marker 4-hydroxynonenal (HNE) were also analyzed. Brain regions studied include thalamus, frontal and remainder cortex, striatum, cerebellum and hippocampus. HIV-1Tg rats and Meth exposure showed highly regional specific responses. In the F344 rats, the thalamus had the highest baseline GSH concentration and potentially higher GSH recycle rate. HIV-1Tg rats showed strong transcriptional responses to GSH depletion in the thalamus. Both HIV-1Tg and Meth resulted in decreased GR activity in thalamus, and decreased Glrx activity in frontal cortex. However, the increased GR and Glrx activities synergized with increased GSH concentration, which might have partially prevented Meth-induced oxidative stress in striatum. Interactive effects between Meth and HIV-1Tg were observed in thalamus on the activities of GCS and GGT, and in thalamus and frontal cortex on Glrx activity and xCT protein expression. Findings suggest that HIV viral protein and low dose repeated Meth exposure have separate and combined effects on the brain's antioxidant capacity and the oxidative stress response that are regional specific.
Collapse
Affiliation(s)
- Xiaosha Pang
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Xiangqian Liu
- Institute of NeuroImmune Pharmacology and Department of
Biological Sciences, Seton Hall University, South Orange, NJ 07079
- Department of Histology and Embryology, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, P.R.
China
| | - Marla J. Berry
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology and Department of
Biological Sciences, Seton Hall University, South Orange, NJ 07079
| | - Linda Chang
- Department of Cell and Molecular Biology, John A. Burns
School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street BSB 222,
Honolulu HI 96813
| |
Collapse
|
16
|
McClay JL, Adkins DE, Vunck SA, Batman AM, Vann RE, Clark SL, Beardsley PM, van den Oord EJCG. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics 2013; 9:392-402. [PMID: 23554582 PMCID: PMC3611962 DOI: 10.1007/s11306-012-0456-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate (p = 4.4 × 10-5, q = 0.013), tryptophan (p = 7.0 × 10-4, q = 0.035) and 2-hydroxyglutarate (p = 1.1 × 10-4, q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate (p = 3.8 × 10-7). Associations specific to repeated (5 day) MA exposure included phosphocholine (p = 4.0 × 10-4, q = 0.087) and ergothioneine (p = 3.0 × 10-4, q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects.
Collapse
Affiliation(s)
- Joseph L. McClay
- Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA 23298-0533, USA
| | - Daniel E. Adkins
- Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA 23298-0533, USA
| | - Sarah A. Vunck
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angela M. Batman
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert E. Vann
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Shaunna L. Clark
- Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA 23298-0533, USA
| | - Patrick M. Beardsley
- Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA 23298-0533, USA
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin J. C. G. van den Oord
- Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Medical College of Virginia Campus, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA 23298-0533, USA
| |
Collapse
|
17
|
Parthasarathy RN, Lakshmanan J, Thangavel M, Seelan RS, Stagner JI, Janckila AJ, Vadnal RE, Casanova MF, Parthasarathy LK. Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein. Mol Cell Biochem 2013; 378:83-9. [PMID: 23504145 DOI: 10.1007/s11010-013-1597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022]
Abstract
The therapeutic effects of lithium in bipolar disorder are poorly understood. Lithium decreases free inositol levels by inhibiting inositol monophosphatase 1 and myo-inositol 3-phosphate synthase (IPS). In this study, we demonstrate for the first time that IPS can be phosphorylated. This was evident when purified rat IPS was dephosphorylated by lambda protein phosphatase and analyzed by phospho-specific ProQ-Diamond staining and Western blot analysis. These techniques demonstrated a mobility shift consistent with IPS being phosphorylated. Mass spectral analysis revealed that Serine-524 (S524), which resides in the hinge region derived from exon 11 of the gene, is the site for phosphorylation. Further, an antibody generated against a synthetic peptide of IPS containing monophosphorylated-S524, was able to discriminate the phosphorylated and non-phosphorylated forms of IPS. The phosphoprotein is found in the brain and testis, but not in the intestine. The intestinal IPS isoform lacks the peptide bearing S524, and hence, cannot be phosphorylated. Evidences suggest that IPS is monophosphorylated at S524 and that the removal of this phosphate does not alter its enzymatic activity. These observations suggest a novel function for IPS in brain and other tissues. Future studies should resolve the functional role of phospho-IPS in brain inositol signaling.
Collapse
Affiliation(s)
- R N Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories, Mental Health, Behavioral Science and Research Services, Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Quantitative assessment of neurochemical changes in a rat model of long-term alcohol consumption as detected by in vivo and ex vivo proton nuclear magnetic resonance spectroscopy. Neurochem Int 2013; 62:502-9. [PMID: 23411411 DOI: 10.1016/j.neuint.2013.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/18/2013] [Accepted: 02/03/2013] [Indexed: 01/12/2023]
Abstract
The aim of present study was to quantitatively investigate the neurochemical profile of the frontal cortex region in a rat model of long-term alcohol consumption, by using in vivo proton magnetic resonance spectroscopy ((1)H-MRS) at 4.7 T and ex vivo(1)H high-resolution magic angle spinning (HR-MAS) technique at 11.7 T. Twenty male rats were divided into two groups and fed a liquid diet for 10 weeks. After 10 weeks, in vivo(1)H MRS spectra were acquired from the frontal cortex brain region. After in vivo(1)H MRS experiments, all animals were sacrificed and 20 frontal cortex tissue samples were harvested. All tissue examinations were performed with the 11.7 T HR-MAS spectrometer and high-resolution spectra were acquired. The in vivo and ex vivo spectra were quantified as absolute metabolite concentrations and normalized ratios of total signal-intensity (i.e., metabolitesNorm), respectively. The absolute quantifications of in vivo spectra showed significantly higher glycerophosphocholine plus phosphocholine (GPC+PCh) and lower myo-inositol (mIns) concentrations in ethanol-treated rats compared to controls. The quantifications of ex vivo spectra showed significantly higher PChNorm, ChoNorm and tChoNorm, and lower GPCNorm and mInsNorm ratio levels in ethanol-treated rats compared to controls. Our findings suggest that reduced mIns concentrations caused by the long-term alcohol consumption may lead to hypo-osmolarity syndrome and astrocyte hyponatremia. In addition, increased choline-containing compound concentrations may reflect an increased cell turnover rate of phosphatidylcholine and other phospholipids, indicating an adaptive mechanism. Therefore, these results might be utilized as key markers in chronic alcohol intoxication metabolism.
Collapse
|