1
|
Koch L, Pollak R, Ebbinghaus S, Huber K. Early Stages of FUS Droplet Formation via Liquid-Liquid Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16151-16159. [PMID: 39069878 DOI: 10.1021/acs.langmuir.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The phase behavior of complex biomolecular solutions may explain different cellular processes, including the organization of cells by membraneless organelles. The early stages of phase separation are crucial to understanding the underlying mechanism and identifying biomolecules that trigger or drive the transition. Here, we analyze the early events of liquid-liquid phase separation (LLPS) of FUS by multiangle time-resolved static and dynamic light scattering. LLPS was triggered by TEV-catalyzed cleavage of the MBP-tag from FUS-MBP. The light scattering measurements revealed the existence of at least two fractions of FUS-MBP aggregates already prior to the onset of LLPS. The orders of magnitude of the aggregate size in these two fractions are 10 and 100 nm, respectively. LLPS started after an induction period, which depended on the concentration of FUS-MBP. The data from time-dependent light scattering revealed a coalescence of droplets also denoted as a step growth process. A step growth process instead of nucleation and growth via monomer addition suggests that LLPS takes place within the spinodal rather than between the binodal and the spinodal.
Collapse
Affiliation(s)
- Leon Koch
- Physical Chemistry, University of Paderborn, Warburger Str. 100, Paderborn 33098, Germany
| | - Roland Pollak
- Biophysical Chemistry, Ruhr-University Bochum, Bochum 44780, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Universitätsstraße 150, Bochum 44780, Germany
- Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Simon Ebbinghaus
- Biophysical Chemistry, Ruhr-University Bochum, Bochum 44780, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Universitätsstraße 150, Bochum 44780, Germany
- Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Klaus Huber
- Physical Chemistry, University of Paderborn, Warburger Str. 100, Paderborn 33098, Germany
| |
Collapse
|
2
|
Wu J, Lu X, Yu J, Li P, Yu X. LINC02253 promote the malignant phenotype of Colon adenocarcinoma cells by up-regulating WWP1-mediated SMAD3 ubiquitination. Mol Cell Probes 2023; 72:101928. [PMID: 37597669 DOI: 10.1016/j.mcp.2023.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES Colon adenocarcinoma (COAD) represents a type of common malignant tumor originating in the digestive tract. Long non-coding RNAs (lncRNAs) have been identified to engage in regulating the initiation and development of COAD. LncRNA LINC02253 has been reported abnormal expressed in COAD, but the underlying mechanism has not been discussed so far. This study aimed to determine the role and the molecular biology mechanism of LINC02253 in COAD progression and unearthed its specific molecular mechanism. MATERIALS AND RESULTS RT-qPCR and Western blot assays were conducted to detect gene expression. Function assays were performed to evaluate the effect of gene expression on COAD cell phenotype. Mechanism analyses were done to verify the association among genes after bioinformatics analysis. The obtained data revealed that LINC02253 demonstrated a high expression in COAD tissues and cells. This gene served as an oncogene, permitting to stimulate proliferation and suppress apoptosis of COAD cells. Mechanically, it was found that LINC02253 recruited FUS to stabilize WWP1 mRNA and WWP1 could mediate SMAD3 ubiquitination, thereby promoting the malignant phenotype formation of COAD cells. CONCLUSIONS LINC02253 was uncovered to exert an oncogenic role, enhancing the proliferation of COAD cells and repressing the cell apoptosis by recruiting FUS and encouraging WWP1-mediated SMAD3 ubiquitination.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Gastroenterology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, China
| | - Xianhong Lu
- Department of Gastroenterology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, China
| | - Jinzhong Yu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, 200120, China
| | - Pan Li
- Institute of Ultrasound Imaging Engineering, Chongqing Medical University, Chongqing, 400000, China
| | - Xiqiu Yu
- Department of Gastroenterology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
3
|
Duranti E, Villa C. Muscle Involvement in Amyotrophic Lateral Sclerosis: Understanding the Pathogenesis and Advancing Therapeutics. Biomolecules 2023; 13:1582. [PMID: 38002264 PMCID: PMC10669302 DOI: 10.3390/biom13111582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal condition characterized by the selective loss of motor neurons in the motor cortex, brainstem, and spinal cord. Muscle involvement, muscle atrophy, and subsequent paralysis are among the main features of this disease, which is defined as a neuromuscular disorder. ALS is a persistently progressive disease, and as motor neurons continue to degenerate, individuals with ALS experience a gradual decline in their ability to perform daily activities. Ultimately, muscle function loss may result in paralysis, presenting significant challenges in mobility, communication, and self-care. While the majority of ALS research has traditionally focused on pathogenic pathways in the central nervous system, there has been a great interest in muscle research. These studies were carried out on patients and animal models in order to better understand the molecular mechanisms involved and to develop therapies aimed at improving muscle function. This review summarizes the features of ALS and discusses the role of muscle, as well as examines recent studies in the development of treatments.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
4
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
5
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
6
|
Fortuna TR, Kour S, Anderson EN, Ward C, Rajasundaram D, Donnelly CJ, Hermann A, Wyne H, Shewmaker F, Pandey UB. DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathol 2021; 142:515-536. [PMID: 34061233 DOI: 10.1007/s00401-021-02333-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration. We observed the expression levels of DEAD-Box Helicase 17 (DDX17) to be significantly downregulated in response to mutant FUS in Drosophila and human cell lines. Mutant FUS recruits nuclear DDX17 into cytoplasmic stress granules and physically interacts with DDX17 through the RGG1 domain of FUS. Ectopic expression of DDX17 reduces cytoplasmic mislocalization and sequestration of mutant FUS into cytoplasmic stress granules. We identified DDX17 as a novel regulator of the DNA damage response pathway whose upregulation repairs defective DNA damage repair machinery caused by mutant neuronal FUS ALS. In addition, we show DDX17 is a novel modifier of FUS-mediated neurodegeneration in vivo. Our findings indicate DDX17 is downregulated in response to mutant FUS, and restoration of DDX17 levels suppresses FUS-mediated neuropathogenesis and toxicity in vivo.
Collapse
|
7
|
Wild-Type and Mutant FUS Expression Reduce Proliferation and Neuronal Differentiation Properties of Neural Stem Progenitor Cells. Int J Mol Sci 2021; 22:ijms22147566. [PMID: 34299185 PMCID: PMC8304973 DOI: 10.3390/ijms22147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Nervous system development involves proliferation and cell specification of progenitor cells into neurons and glial cells. Unveiling how this complex process is orchestrated under physiological conditions and deciphering the molecular and cellular changes leading to neurological diseases is mandatory. To date, great efforts have been aimed at identifying gene mutations associated with many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mutations in the RNA/DNA binding protein Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) have been associated with motor neuron degeneration in rodents and humans. Furthermore, increased levels of the wild-type protein can promote neuronal cell death. Despite the well-established causal link between FUS mutations and ALS, its role in neural cells remains elusive. In order to shed new light on FUS functions we studied its role in the control of neural stem progenitor cell (NSPC) properties. Here, we report that human wild-type Fused in Sarcoma (WT FUS), exogenously expressed in mouse embryonic spinal cord-derived NSPCs, was localized in the nucleus, caused cell cycle arrest in G1 phase by affecting cell cycle regulator expression, and strongly reduced neuronal differentiation. Furthermore, the expression of the human mutant form of FUS (P525L-FUS), associated with early-onset ALS, drives the cells preferentially towards a glial lineage, strongly reducing the number of developing neurons. These results provide insight into the involvement of FUS in NSPC proliferation and differentiation into neurons and glia.
Collapse
|
8
|
Ferreira D, Martins B, Soares M, Correia J, Adega F, Ferreira F, Chaves R. Gene expression association study in feline mammary carcinomas. PLoS One 2019; 14:e0221776. [PMID: 31461477 PMCID: PMC6713336 DOI: 10.1371/journal.pone.0221776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Works on cancer-related genes expression using feline mammary carcinomas (FMCs) are scarce but crucial, not only to validate these tumours as models for human breast cancer studies but also to improve small animal practice. Here, the expression of the cancer-related genes TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2 was evaluated by real-time RT-qPCR, in a population of FMCs clinically characterized and compared with the disease-free tissue of the same individual. In most of the FMCs analysed, RNA quantification revealed normal expression levels for TP53, c-MYC, YBX1 and FUS, but overexpression in the genes CCND1, PTBP1 and PKM2. The expression levels of these cancer-related genes are strongly correlated with each other, with exception of c-MYC and PKM2 genes. The integration of clinicopathological data with the transcriptional levels revealed several associations. The oral contraceptive administration showed to be positively related with the TP53, YBX1, CCND1, FUS and PTBP1 RNA levels. Positive associations were found between tumour size and YBX1 RNA, and lymph node metastasis with c-MYC RNA levels. This work allowed to verify that many of these cancer-related genes are associated but may also, indirectly, influence other genes, creating a complex molecular cancer network that in the future can provide new cancer biomarkers.
Collapse
Affiliation(s)
- Daniela Ferreira
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bárbara Martins
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Soares
- CBiOS - Research Center for Biosciences & Health Technologies, Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Jorge Correia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Filomena Adega
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Fernando Ferreira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Raquel Chaves
- CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
9
|
Chen C, Ding X, Akram N, Xue S, Luo SZ. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases. Molecules 2019; 24:molecules24081622. [PMID: 31022909 PMCID: PMC6514960 DOI: 10.3390/molecules24081622] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma (FUS) is a DNA/RNA binding protein that is involved in RNA metabolism and DNA repair. Numerous reports have demonstrated by pathological and genetic analysis that FUS is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and polyglutamine diseases. Traditionally, the fibrillar aggregation of FUS was considered to be the cause of those diseases, especially via its prion-like domains (PrLDs), which are rich in glutamine and asparagine residues. Lately, a nonfibrillar self-assembling phenomenon, liquid–liquid phase separation (LLPS), was observed in FUS, and studies of its functions, mechanism, and mutual transformation with pathogenic amyloid have been emerging. This review summarizes recent studies on FUS self-assembling, including both aggregation and LLPS as well as their relationship with the pathology of ALS, FTLD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiufang Ding
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Nimrah Akram
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Song Xue
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Matsumoto T, Matsukawa K, Watanabe N, Kishino Y, Kunugi H, Ihara R, Wakabayashi T, Hashimoto T, Iwatsubo T. Self-assembly of FUS through its low-complexity domain contributes to neurodegeneration. Hum Mol Genet 2019; 27:1353-1365. [PMID: 29425337 DOI: 10.1093/hmg/ddy046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Aggregation of fused in sarcoma (FUS) protein, and mutations in FUS gene, are causative to a range of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. To gain insights into the molecular mechanism whereby FUS causes neurodegeneration, we generated transgenic Drosophila melanogaster overexpressing human FUS in the photoreceptor neurons, which exhibited mild retinal degeneration. Expression of familial ALS-mutant FUS aggravated the degeneration, which was associated with an increase in cytoplasmic localization of FUS. A carboxy-terminally truncated R495X mutant FUS also was localized in cytoplasm, whereas the degenerative phenotype was diminished. Double expression of R495X and wild-type FUS dramatically exacerbated degeneration, sequestrating wild-type FUS into cytoplasmic aggregates. Notably, replacement of all tyrosine residues within the low-complexity domain, which abolished self-assembly of FUS, completely eliminated the degenerative phenotypes. Taken together, we propose that self-assembly of FUS through its low-complexity domain contributes to FUS-induced neurodegeneration.
Collapse
Affiliation(s)
- Taisei Matsumoto
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji Matsukawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naruaki Watanabe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuya Kishino
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hayato Kunugi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoko Ihara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Zhao M, Kim JR, van Bruggen R, Park J. RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol Cells 2018; 41:818-829. [PMID: 30157547 PMCID: PMC6182225 DOI: 10.14348/molcells.2018.0243] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| |
Collapse
|
12
|
Anderson EN, Gochenaur L, Singh A, Grant R, Patel K, Watkins S, Wu JY, Pandey UB. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet 2018; 27:1366-1381. [PMID: 29432563 PMCID: PMC6455923 DOI: 10.1093/hmg/ddy047] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) has been predicted to be a predisposing factor for amyotrophic lateral sclerosis (ALS) and other neurological disorders. Despite the importance of TBI in ALS progression, the underlying cellular and molecular mechanisms are still an enigma. Here, we examined the contribution of TBI as an extrinsic factor and investigated whether TBI influences the susceptibility of developing neurodegenerative symptoms. To evaluate the effects of TBI in vivo, we applied mild to severe trauma to Drosophila and found that TBI leads to the induction of stress granules (SGs) in the brain. The degree of SGs induction directly correlates with the level of trauma. Furthermore, we observed that the level of mortality is directly proportional to the number of traumatic hits. Interestingly, trauma-induced SGs are ubiquitin, p62 and TDP-43 positive, and persistently remain over time suggesting that SGs might be aggregates and exert toxicity in our fly models. Intriguingly, TBI on animals expressing ALS-linked genes increased mortality and locomotion dysfunction suggesting that mild trauma might aggravate neurodegenerative symptoms associated with ALS. Furthermore, we found elevated levels of high molecular weight ubiquitinated proteins and p62 in animals expressing ALS-causing genes with TBI, suggesting that TBI may lead to the defects in protein degradation pathways. Finally, we observed that genetic and pharmacological induction of autophagy enhanced the clearance of SGs and promoted survival of flies in vivo. Together, our study demonstrates that trauma can induce SG formation in vivo and might enhance neurodegenerative phenotypes in the fly models of ALS.
Collapse
Affiliation(s)
- Eric N Anderson
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Lauren Gochenaur
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi Singh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rogan Grant
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Krishani Patel
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Simon Watkins
- Center for Biological Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Mackenzie IRA, Neumann M. Fused in Sarcoma Neuropathology in Neurodegenerative Disease. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024299. [PMID: 28096243 DOI: 10.1101/cshperspect.a024299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal intracellular accumulation of the fused in sarcoma (FUS) protein is the characteristic pathological feature of cases of familial amyotrophic lateral sclerosis (ALS) caused by FUS mutations (ALS-FUS) and several uncommon disorders that may present with sporadic frontotemporal dementia (FTLD-FUS). Although these findings provide further support for the concept that ALS and FTD are closely related clinical syndromes with an overlapping molecular basis, important differences in the pathological features and results from experimental models indicate that ALS-FUS and FTLD-FUS have distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| |
Collapse
|
14
|
FUS toxicity is rescued by the modulation of lncRNA hsrω expression in Drosophila melanogaster. Sci Rep 2017; 7:15660. [PMID: 29142303 PMCID: PMC5688078 DOI: 10.1038/s41598-017-15944-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
FUS is an aggregation-prone hnRNP involved in transcriptional and post-transcriptional regulation that aberrantly forms immunoreactive inclusion bodies in a range of neurological diseases classified as FUS-proteinopathies. Although FUS has been extensively examined, the underlying molecular mechanisms of these diseases have not yet been elucidated in detail. We previously reported that RNAi of the lncRNA hsrω altered the expression and sub-cellular localization of Drosophila FUS in the central nervous system of the fly. In order to obtain a clearer understanding of the role of hsrω in FUS toxicity, we herein drove the expression of human FUS in Drosophila eyes with and without a hsrω RNAi background. We found that hFUS was largely soluble and also able to form aggregates. As such, hFUS was toxic, inducing an aberrant eye morphology with the loss of pigmentation. The co-expression of hsrω double-stranded RNA reduced hFUS transcript levels and induced the formation of cytoplasmic non-toxic hFUS-LAMP1-insoluble inclusions. The combination of these events caused the titration of hFUS molar excess and a removal of hFUS aggregates to rescue toxicity. These results revealed the presence of a lncRNA-dependent pathway involved in the management of aggregation-prone hnRNPs, suggesting that properly formed FUS inclusions are not toxic to cells.
Collapse
|
15
|
HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 2017; 8:861. [PMID: 29021520 PMCID: PMC5636840 DOI: 10.1038/s41467-017-00911-y] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)–mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs. Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.
Collapse
|
16
|
Ederle H, Dormann D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 2017; 591:1489-1507. [PMID: 28380257 DOI: 10.1002/1873-3468.12646] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 12/13/2022]
Abstract
Misfolded or mislocalized RNA-binding proteins (RBPs) and, consequently, altered mRNA processing, can cause neuronal dysfunction, eventually leading to neurodegeneration. Two prominent examples are the RBPs TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), which form pathological messenger ribonucleoprotein aggregates in patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative disorders. Here, we review the multiple functions of TDP-43 and FUS in mRNA processing, both in the nucleus and in the cytoplasm. We discuss how TDP-43 and FUS may exit the nucleus and how defects in both nuclear and cytosolic mRNA processing events, and possibly nuclear export defects, may contribute to neurodegeneration and ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Helena Ederle
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Germany
| |
Collapse
|
17
|
Jun MH, Ryu HH, Jun YW, Liu T, Li Y, Lim CS, Lee YS, Kaang BK, Jang DJ, Lee JA. Sequestration of PRMT1 and Nd1-L mRNA into ALS-linked FUS mutant R521C-positive aggregates contributes to neurite degeneration upon oxidative stress. Sci Rep 2017; 7:40474. [PMID: 28094300 PMCID: PMC5240339 DOI: 10.1038/srep40474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022] Open
Abstract
Mutations in fused in sarcoma (FUS), a DNA/RNA binding protein, are associated with familial amyotrophic lateral sclerosis (ALS). However, little is known about how ALS-causing mutations alter protein-protein and protein-RNA complexes and contribute to neurodegeneration. In this study, we identified protein arginine methyltransferase 1 (PRMT1) as a protein that more avidly associates with ALS-linked FUS-R521C than with FUS-WT (wild type) or FUS-P525L using co-immunoprecipitation and LC-MS analysis. Abnormal association between FUS-R521C and PRMT1 requires RNA, but not methyltransferase activity. PRMT1 was sequestered into cytosolic FUS-R521C-positive stress granule aggregates. Overexpression of PRMT1 rescued neurite degeneration caused by FUS-R521C upon oxidative stress, while loss of PRMT1 further accumulated FUS-positive aggregates and enhanced neurite degeneration. Furthermore, the mRNA of Nd1-L, an actin-stabilizing protein, was sequestered into the FUS-R521C/PRMT1 complex. Nd1-L overexpression rescued neurite shortening caused by FUS-R521C upon oxidative stress, while loss of Nd1-L further exacerbated neurite shortening. Altogether, these data suggest that the abnormal stable complex of FUS-R521C/PRMT1/Nd1-L mRNA could contribute to neurodegeneration upon oxidative stress. Overall, our study provides a novel pathogenic mechanism of the FUS mutation associated with abnormal protein-RNA complexes upon oxidative stress in ALS and provides insight into possible therapeutic targets for this pathology.
Collapse
Affiliation(s)
- Mi-Hee Jun
- Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Daejeon 34053, South Korea
| | - Hyun-Hee Ryu
- Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Daejeon 34053, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Yong-Woo Jun
- Department of Applied Biology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, South Korea
| | - Tongtong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Deok-Jin Jang
- Department of Applied Biology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, South Korea
| | - Jin-A Lee
- Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Daejeon 34053, South Korea
| |
Collapse
|
18
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
19
|
Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection. Expert Opin Pharmacother 2016; 17:1669-82. [PMID: 27356036 DOI: 10.1080/14656566.2016.1202919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), one in a family of age-related neurodegenerative disorders, is marked by predominantly cryptogenic causes, partially elucidated pathophysiology, and elusive treatments. The challenges of ALS are illustrated by two decades of negative drug trials. AREAS COVERED In this article, we lay out the current understanding of disease genesis and physiology in relation to drug development in ALS, stressing important accomplishments and gaps in knowledge. We briefly consider clinical ALS, the ongoing search for biomarkers, and the latest in trial design, highlighting major recent and ongoing clinical trials; and we discuss, in a concluding section on future directions, the prion-protein hypothesis of neurodegeneration and what steps can be taken to end the drought that has characterized drug discovery in ALS. EXPERT OPINION Age-related neurodegenerative disorders are fast becoming major public health problems for the world's aging populations. Several agents offer promise in the near-term, but drug development is hampered by an interrelated cycle of obstacles surrounding etiological, physiological, and biomarkers discovery. It is time for the type of government-funded, public-supported offensive on neurodegenerative disease that has been effective in other fields.
Collapse
Affiliation(s)
- H Blasco
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - F Patin
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - C R Andres
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - P Corcia
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,d Centre SLA, Service de Neurologie , CHRU Bretonneau , Tours , France
| | - P H Gordon
- e Northern Navajo Medical Center , Neurology Unit , Shiprock , NM , USA
| |
Collapse
|
20
|
Daigle JG, Krishnamurthy K, Ramesh N, Casci I, Monaghan J, McAvoy K, Godfrey EW, Daniel DC, Johnson EM, Monahan Z, Shewmaker F, Pasinelli P, Pandey UB. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity. Acta Neuropathol 2016; 131:605-20. [PMID: 26728149 DOI: 10.1007/s00401-015-1530-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics.
Collapse
Affiliation(s)
- J Gavin Daigle
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karthik Krishnamurthy
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nandini Ramesh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Ian Casci
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - John Monaghan
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin McAvoy
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Earl W Godfrey
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Dianne C Daniel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Zachary Monahan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Frank Shewmaker
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Piera Pasinelli
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Ichiyanagi N, Fujimori K, Yano M, Ishihara-Fujisaki C, Sone T, Akiyama T, Okada Y, Akamatsu W, Matsumoto T, Ishikawa M, Nishimoto Y, Ishihara Y, Sakuma T, Yamamoto T, Tsuiji H, Suzuki N, Warita H, Aoki M, Okano H. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:496-510. [PMID: 26997647 PMCID: PMC4834049 DOI: 10.1016/j.stemcr.2016.02.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
Collapse
Affiliation(s)
- Naoki Ichiyanagi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koki Fujimori
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan.
| | - Chikako Ishihara-Fujisaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yohei Okada
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Neurology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi 480-1195, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduated School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Matsumoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshinori Nishimoto
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuharu Ishihara
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
22
|
Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet 2015; 31:263-73. [DOI: 10.1016/j.tig.2015.03.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
|
23
|
Overexpression of nuclear FUS induces neuronal cell death. Neuroscience 2015; 287:113-24. [DOI: 10.1016/j.neuroscience.2014.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
|
24
|
Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. N Biotechnol 2015; 32:212-28. [DOI: 10.1016/j.nbt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
|
25
|
Galbiati M, Crippa V, Rusmini P, Cristofani R, Cicardi ME, Giorgetti E, Onesto E, Messi E, Poletti A. ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int 2014; 79:70-8. [PMID: 25451799 DOI: 10.1016/j.neuint.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy
| | - Elisa Giorgetti
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elisa Onesto
- Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy; InterUniversity Center on Neurodegenerative Diseases (CIMN), Università degli Studi di Firenze, Roma "Tor Vergata", Genova and Milano, Italy.
| |
Collapse
|
26
|
RNA-Binding Proteins Associated Molecular Mechanisms of Motor Neuron Degeneration Pathogenesis. Mol Biotechnol 2014; 56:779-86. [DOI: 10.1007/s12033-014-9785-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 2014; 10:337-48. [DOI: 10.1038/nrneurol.2014.78] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. Genetic heterogeneity of amyotrophic lateral sclerosis: Implications for clinical practice and research. Muscle Nerve 2014; 49:786-803. [DOI: 10.1002/mus.24198] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaowei W. Su
- Department of Neurosurgery; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - James R. Broach
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - James R. Connor
- Department of Neurosurgery; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - Glenn S. Gerhard
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - Zachary Simmons
- Department of Neurology; Penn State Milton S. Hershey Medical Center; 30 Hope Drive (Suite EC037) Hershey Pennsylvania 17033 USA
| |
Collapse
|
29
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
30
|
Defects in synapse structure and function precede motor neuron degeneration in Drosophila models of FUS-related ALS. J Neurosci 2014; 33:19590-8. [PMID: 24336723 DOI: 10.1523/jneurosci.3396-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads invariably to fatal paralysis associated with motor neuron degeneration and muscular atrophy. One gene associated with ALS encodes the DNA/RNA-binding protein Fused in Sarcoma (FUS). There now exist two Drosophila models of ALS. In one, human FUS with ALS-causing mutations is expressed in fly motor neurons; in the other, the gene cabeza (caz), the fly homolog of FUS, is ablated. These FUS-ALS flies exhibit larval locomotor defects indicative of neuromuscular dysfunction and early death. The locus and site of initiation of this neuromuscular dysfunction remain unclear. We show here that in FUS-ALS flies, motor neuron cell bodies fire action potentials that propagate along the axon and voltage-dependent inward and outward currents in the cell bodies are indistinguishable in wild-type and FUS-ALS motor neurons. In marked contrast, the amplitude of synaptic currents evoked in the postsynaptic muscle cell is decreased by >80% in FUS-ALS larvae. Furthermore, the frequency but not unitary amplitude of spontaneous miniature synaptic currents is decreased dramatically in FUS-ALS flies, consistent with a change in quantal content but not quantal size. Although standard confocal microscopic analysis of the larval neuromuscular junction reveals no gross abnormalities, superresolution stimulated emission depletion (STED) microscopy demonstrates that the presynaptic active zone protein bruchpilot is aberrantly organized in FUS-ALS larvae. The results are consistent with the idea that defects in presynaptic terminal structure and function precede, and may contribute to, the later motor neuron degeneration that is characteristic of ALS.
Collapse
|
31
|
Marcora MS, Fernández-Gamba AC, Avendaño LA, Rotondaro C, Podhajcer OL, Vidal R, Morelli L, Ceriani MF, Castaño EM. Amyloid peptides ABri and ADan show differential neurotoxicity in transgenic Drosophila models of familial British and Danish dementia. Mol Neurodegener 2014; 9:5. [PMID: 24405716 PMCID: PMC3898387 DOI: 10.1186/1750-1326-9-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/29/2013] [Indexed: 11/16/2022] Open
Abstract
Background Familial British and Familial Danish dementias (FBD and FDD, respectively) are associated with mutations in the BRI2 gene. Processing of the mutated BRI2 protein leads to the accumulation in the brain of the 34-mer amyloid Bri (ABri) and amyloid Dan (ADan) peptides, accompanied by neurofibrillary tangles. Recently, transgenic mice successfully reproduced different aspects of FDD, while modeling of FBD in vivo has been more difficult. In this work we have modeled FBD and FDD in Drosophila and tested the hypothesis that ABri and ADan are differentially neurotoxic. Results By using site-directed insertion, we generated transgenic lines carrying ABri, ADan, Bri2-23 (the normal product of wild-type BRI2 processing) and amyloid-β (Aβ) 1–42 as a well-characterized neurotoxic peptide, alone or with a His-tag. Therefore, we avoided random insertion effects and were able to compare levels of accumulation accurately. Peptides were expressed with the GAL4-Upstream Activating Sequence (UAS) system using specific drivers. Despite low levels of expression, toxicity in the eye was characterized by mild disorganization of ommatidia and amyloid peptides accumulation. The highest toxicity was seen for ADan, followed by Aβ42 and ABri. Pan-neuronal expression in the CNS revealed an age-dependent toxicity of amyloid peptides as determined by the ability of flies to climb in a geotaxis paradigm when compared to Bri2-23. This effect was stronger for ADan, detected at 7 days post-eclosion, and followed by ABri and Aβ42, whose toxicity became evident after 15 and 21 days, respectively. Histological analysis showed mild vacuolization and thioflavine-S-negative deposits of amyloid peptides. In contrast, the over-expression of amyloid peptides in the specific subset of lateral neurons that control circadian locomotor activity showed no toxicity. Conclusions Our results support the differential neurotoxicity of ADan and ABri in the Drosophila eye and CNS at low expression levels. Such differences may be partially attributed to rates of aggregation and accumulation. In the CNS, both peptides appear to be more neurotoxic than wild-type Aβ42. These Drosophila models will allow a systematic and unambiguous comparison of differences and similarities in the mechanisms of toxicity of diverse amyloid peptides associated with dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eduardo M Castaño
- From Fundación Instituto Leloir, Av, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
32
|
Orozco D, Edbauer D. FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J Mol Med (Berl) 2013; 91:1343-54. [PMID: 23974990 DOI: 10.1007/s00109-013-1077-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Mutations in fused in sarcoma (FUS) in a subset of patients with amyotrophic lateral sclerosis (ALS) linked this DNA/RNA-binding protein to neurodegeneration. Most of the mutations disrupt the nuclear localization signal which strongly suggests a loss-of-function pathomechanism, supported by cytoplasmic inclusions. FUS-positive neuronal cytoplasmic inclusions are also found in a subset of patients with frontotemporal lobar degeneration (FTLD). Here, we discuss recent data on the role of alternative splicing in FUS-mediated pathology in the central nervous system. Several groups have shown that FUS binds broadly to many transcripts in the brain and have also identified a plethora of putative splice targets; however, only ABLIM1, BRAF, Ewing sarcoma protein R1 (EWSR1), microtubule-associated protein tau (MAPT), NgCAM cell adhesion molecule (NRCAM), and netrin G1 (NTNG1) have been identified in at least three of four studies. Gene ontology analysis of all putative targets unanimously suggests a role in axon growth and cytoskeletal organization, consistent with the altered morphology of dendritic spines and axonal growth cones reported upon loss of FUS. Among the axonal targets, MAPT/tau and NTNG1 have been further validated in biochemical studies. The next challenge will be to confirm changes of FUS-mediated alternative splicing in patients and define their precise role in the pathophysiology of ALS and FTLD.
Collapse
Affiliation(s)
- Denise Orozco
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
33
|
Abstract
Dysfunctions at the level of RNA processing have recently been shown to play a fundamental role in the pathogenesis of many neurodegenerative diseases. Several proteins responsible for these dysfunctions (TDP-43, FUS/TLS, and hnRNP A/Bs) belong to the nuclear class of heterogeneous ribonucleoproteins (hnRNPs) that predominantly function as general regulators of both coding and noncoding RNA metabolism. The discovery of the importance of these factors in mediating neuronal death has represented a major paradigmatic shift in our understanding of neurodegenerative processes. As a result, these discoveries have also opened the way toward novel biomolecular screening approaches in our search for therapeutic options. One of the major hurdles in this search is represented by the correct identification of the most promising targets to be prioritized. These may include aberrant aggregation processes, protein-protein interactions, RNA-protein interactions, or specific cellular pathways altered by disease. In this review, we discuss these four major options together with their various advantages and drawbacks.
Collapse
Affiliation(s)
- Maurizio Romano
- 1Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
34
|
Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 2013; 8:28. [PMID: 23941283 PMCID: PMC3766231 DOI: 10.1186/1750-1326-8-28] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving both upper motor neurons (UMN) and lower motor neurons (LMN). Enormous research has been done in the past few decades in unveiling the genetics of ALS, successfully identifying at least fifteen candidate genes associated with familial and sporadic ALS. Numerous studies attempting to define the pathogenesis of ALS have identified several plausible determinants and molecular pathways leading to motor neuron degeneration, which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function, protein misfolding and subsequent aggregation, impairment of RNA processing, defects in axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial dysfunction. This review is to update the recent discoveries in genetics of ALS, which may provide insight information to help us better understanding of the disease neuropathogenesis.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Neurology, Jiao Tong University School of Medicine, 1201 Room, 11 Building, Ruijin Er Road, Shanghai 200025, China.
| | | | | | | |
Collapse
|
35
|
Watabe K, Akiyama K, Kawakami E, Ishii T, Endo K, Yanagisawa H, Sango K, Tsukamoto M. Adenoviral expression of TDP-43 and FUS genes and shRNAs for protein degradation pathways in rodent motoneurons in vitro and in vivo. Neuropathology 2013; 34:83-98. [DOI: 10.1111/neup.12058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kazuhiko Watabe
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Keiko Akiyama
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Emiko Kawakami
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Tomohiro Ishii
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Kentaro Endo
- Center for Basic Technology Research; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Hiroko Yanagisawa
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Kazunori Sango
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Masami Tsukamoto
- ALS/Neuropathy Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| |
Collapse
|
36
|
Peviani M, Tortarolo M, Battaglia E, Piva R, Bendotti C. Specific induction of Akt3 in spinal cord motor neurons is neuroprotective in a mouse model of familial amyotrophic lateral sclerosis. Mol Neurobiol 2013; 49:136-48. [PMID: 23873136 DOI: 10.1007/s12035-013-8507-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
Evidence is accumulating that an imbalance between pathways for degeneration or survival in motor neurons may play a central role in mechanisms that lead to neurodegeneration in amyotrophic lateral sclerosis (ALS). We and other groups have observed that downregulation, or lack of induction, of the PI3K/Akt prosurvival pathway may be responsible for defective response of motor neurons to injury and their consequent cellular demise. Some of the neuroprotective effects mediated by growth factors may involve activation of Akt, but a proof of concept of Akt as a target for therapy is lacking. We demonstrate that specific expression of constitutively activated Akt3 in motor neurons through the use of the promoter of homeobox gene Hb9 prevents neuronal loss induced by SOD1.G93A both in vitro (in mixed neuron/astrocyte cocultures) and in vivo (in a mouse model of ALS). Inhibition of ASK1 and GSK3beta was involved in the neuroprotective effects of activated Akt3, further supporting the hypothesis that induction of Akt3 may be a key step in activation of pathways for survival in the attempt to counteract motor neuronal degeneration in ALS.
Collapse
Affiliation(s)
- Marco Peviani
- Laboratory of Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| | | | | | | | | |
Collapse
|
37
|
Sabatelli M, Moncada A, Conte A, Lattante S, Marangi G, Luigetti M, Lucchini M, Mirabella M, Romano A, Del Grande A, Bisogni G, Doronzio PN, Rossini PM, Zollino M. Mutations in the 3' untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22:4748-55. [PMID: 23847048 DOI: 10.1093/hmg/ddt328] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the gene encoding fused-in-sarcoma (FUS) have been identified in a subset of patients with sporadic and familial amyotrophic lateral sclerosis (ALS). Variants in the 3' untranslated region (3'UTR) of FUS have also been reported in ALS patients, but their pathogenic role has not been assessed. We sequenced the whole 3'UTR of FUS in 420 ALS patients who were negative for mutations in the currently known ALS genes and in 480 ethnically matched controls. We detected four 3'UTR variants (c.*48 G>A, c.*59 G>A, c.*108 C>T and c.*110 G>A) in four sporadic and in one familial ALS patients compared with none in controls (P = 0.02).We investigated whether these variants impaired FUS expression in primary fibroblast cultures from three patients harbouring the c.*59 G>A, c.*108 C>T and c.*110 G>A variants, respectively. The pattern of FUS expression was also investigated in fibroblasts from one ALS patient with FUS R521C mutation, in two ALS patients without mutations in the known ALS genes and in four control individuals. By immunostaining and immunoblotting, large amounts of FUS were observed in both the cytoplasm and nuclei of mutant 3'UTR FUS fibroblasts. In FUS R521C mutant fibroblasts, we observed a slight increase of FUS in the cytoplasm associated with a remarkable loss of detection in nuclei. Our findings show that mutations in 3'UTR of FUS are overrepresented in ALS patients and result into translation de-regulation of FUS. Overexpression and mislocalization of wild-type FUS likely contribute to ALS pathogenesis in these cases.
Collapse
Affiliation(s)
- Mario Sabatelli
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Groen EJN, Fumoto K, Blokhuis AM, Engelen-Lee J, Zhou Y, van den Heuvel DMA, Koppers M, van Diggelen F, van Heest J, Demmers JAA, Kirby J, Shaw PJ, Aronica E, Spliet WGM, Veldink JH, van den Berg LH, Pasterkamp RJ. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum Mol Genet 2013; 22:3690-704. [PMID: 23681068 DOI: 10.1093/hmg/ddt222] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the RNA binding protein fused in sarcoma/translated in liposarcoma (FUS/TLS) cause amyotrophic lateral sclerosis (ALS). Although ALS-linked mutations in FUS often lead to a cytosolic mislocalization of the protein, the pathogenic mechanisms underlying these mutations remain poorly understood. To gain insight into these mechanisms, we examined the biochemical, cell biological and functional properties of mutant FUS in neurons. Expression of different FUS mutants (R521C, R521H, P525L) in neurons caused axonal defects. A protein interaction screen performed to explain these phenotypes identified numerous FUS interactors including the spinal muscular atrophy (SMA) causing protein survival motor neuron (SMN). Biochemical experiments showed that FUS and SMN interact directly and endogenously, and that this interaction can be regulated by FUS mutations. Immunostaining revealed co-localization of mutant FUS aggregates and SMN in primary neurons. This redistribution of SMN to cytosolic FUS accumulations led to a decrease in axonal SMN. Finally, cell biological experiments showed that overexpression of SMN rescued the axonal defects induced by mutant FUS, suggesting that FUS mutations cause axonal defects through SMN. This study shows that neuronal aggregates formed by mutant FUS protein may aberrantly sequester SMN and concomitantly cause a reduction of SMN levels in the axon, leading to axonal defects. These data provide a functional link between ALS-linked FUS mutations, SMN and neuronal connectivity and support the idea that different motor neuron disorders such as SMA and ALS may be caused, in part, by defects in shared molecular pathways.
Collapse
Affiliation(s)
- Ewout J N Groen
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cassel JA, Reitz AB. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: characterization of inhibition by nucleic acids and 4-aminoquinolines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:964-71. [PMID: 23541532 DOI: 10.1016/j.bbapap.2013.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/13/2022]
Abstract
Recently, it was reported that mutations in the ubiquitin-like protein ubiquilin-2 (UBQLN2) are associated with X-linked amyotrophic lateral sclerosis (ALS), and that both wild-type and mutant UBQLN2 can co-localize with aggregates of C-terminal fragments of TAR DNA binding protein (TDP-43). Here, we describe a high affinity interaction between UBQLN2 and TDP-43 and demonstrate that overexpression of both UBQLN2 and TDP-43 reduces levels of both exogenous and endogenous TDP-43 in human H4 cells. UBQLN2 bound with high affinity to both full length TDP-43 and a C-terminal TDP-43 fragment (261-414 aa) with KD values of 6.2nM and 8.7nM, respectively. Both DNA oligonucleotides and 4-aminoquinolines, which bind to TDP-43, also inhibited UBQLN2 binding to TDP-43 with similar rank order affinities compared to inhibition of oligonucleotide binding to TDP-43. Inhibitor characterization experiments demonstrated that the DNA oligonucleotides noncompetitively inhibited UBQLN2 binding to TDP-43, which is consistent with UBQLN2 binding to the C-terminal region of TDP-43. Interestingly, the 4-aminoquinolines were competitive inhibitors of UBQLN2 binding to TDP-43, suggesting that these compounds also bind to the C-terminal region of TDP-43. In support of the biochemical data, co-immunoprecipitation experiments demonstrated that both TDP-43 and UBQLN2 interact in human neuroglioma H4 cells. Finally, overexpression of UBQLN2 in the presence of overexpressed full length TDP-43 or C-terminal TDP-43 (170-414) dramatically lowered levels of both full length TDP-43 and C-terminal TDP-43 fragments (CTFs). Consequently, these data suggest that UBQLN2 enhances the clearance of TDP-43 and TDP-43 CTFs and therefore may play a role in the development of TDP-43 associated neurotoxicity.
Collapse
|
40
|
Verma A, Tandan R. RNA quality control and protein aggregates in amyotrophic lateral sclerosis: a review. Muscle Nerve 2013; 47:330-8. [PMID: 23381726 DOI: 10.1002/mus.23673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. The biologic basis of ALS remains unknown. However, ALS research has taken a dramatic turn over the past 4 years. Ground breaking discoveries of mutations of genes that encode RNA processing proteins, and demonstration that abnormal aggregates of these and other proteins precede motor neuron loss in familial and sporadic ALS, have initiated a paradigm shift in understanding the pathogenic mechanisms of ALS. Curiously, some of these RNA binding proteins have prion-like domains, with a propensity to self-aggregation. The emerging hypothesis that a focal cascade of toxic protein aggregates, and their consequent non-cell-autonomous spread to neighborhood groups of neurons, fits the classical temporo-spatial progression of ALS. This article reviews the current research efforts toward understanding the role of RNA-processing regulation and protein aggregates in ALS.
Collapse
Affiliation(s)
- Ashok Verma
- Department of Neurology, University of Miami Miller School of Medicine, Clinical Research Building, 1120 NW 14 Street, Suite 1317, Miami, Florida 33136, USA.
| | | |
Collapse
|
41
|
Abstract
Frontotemporal dementia (FTD) is the second most common type of presenile dementia and is the most common form of dementia with the onset before 60 years of age. Its typical symptoms include behavioral disorders, affective symptoms, and language disorders. The FTD is a genetically and pathologically heterogeneous degenerative disorder. Animal models have provided more insights into the pathogenic mechanisms. There are currently no medications that are specifically approved for the treatment of FTD by the Food and Drug Administration. In this article, we review the recent advances in the molecular pathogenesis, pathology, animal models, and therapy for FTD. Better understanding of the pathogenesis and the use of animal models will help develop novel therapeutic strategies and provide new targets for FTD treatment.
Collapse
Affiliation(s)
- Xinling Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, China
| | - Yuedi Shen
- Center for Cognition and Brain Disorders & The Affiliated Hospital, Hangzhou Normal University School, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Hangzhou, China
| |
Collapse
|
42
|
Musarò A. Understanding ALS: new therapeutic approaches. FEBS J 2013; 280:4315-22. [PMID: 23217177 DOI: 10.1111/febs.12087] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis. Although numerous pathological mechanisms have been elucidated, ALS remains an invariably fatal disease in the absence of any effective therapy. The heterogeneity of the disease and the failure to develop satisfactory therapeutic protocols reinforce the view that ALS is a multi-factorial and multi-systemic disease. Thus, a better understanding of the pathogenic mechanisms and study of the potential pathological relationship between the various cellular processes is required to ensure efficacious therapy. The pathogenic mechanisms associated with ALS are reviewed, and the strengths and limitations of some new therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Antonio Musarò
- Institute Pasteur Cenci Bolognetti, Istituto Italiano di Tecnologia, Department of Anatomy, Histology, Forensic Medicine and Orthopedics - Unit of Histology and Medical Embryology, Istituto Interuniversitario di Miologia, Sapienza University of Rome, Italy.
| |
Collapse
|
43
|
Belzil VV, Gendron TF, Petrucelli L. RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 2012; 56:406-19. [PMID: 23280309 DOI: 10.1016/j.mcn.2012.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular viability depends upon the well-orchestrated functions carried out by numerous protein-coding and non-coding RNAs, as well as RNA-binding proteins. During the last decade, it has become increasingly evident that abnormalities in RNA processing represent a common feature among many neurodegenerative diseases. In "RNAopathies", which include diseases caused by non-coding repeat expansions, RNAs exert toxicity via diverse mechanisms: RNA foci formation, bidirectional transcription, and the production of toxic RNAs and proteins by repeat associated non-ATG translation. The mechanisms of toxicity in "RNA-binding proteinopathies", diseases in which RNA-binding proteins like TDP-43 and FUS play a prominent role, have yet to be fully elucidated. Nonetheless, both loss of function of the RNA binding protein, and a toxic gain of function resulting from its aggregation, are thought to be involved in disease pathogenesis. As part of the special issue on RNA and Splicing Regulation in Neurodegeneration, this review intends to explore the diverse RNA-related mechanisms contributing to neurodegeneration, with a special emphasis on findings emerging from animal models.
Collapse
Affiliation(s)
- Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
44
|
Daigle JG, Lanson NA, Smith RB, Casci I, Maltare A, Monaghan J, Nichols CD, Kryndushkin D, Shewmaker F, Pandey UB. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 2012; 22:1193-205. [PMID: 23257289 DOI: 10.1093/hmg/dds526] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an uncommon neurodegenerative disease caused by degeneration of upper and lower motor neurons. Several genes, including SOD1, TDP-43, FUS, Ubiquilin 2, C9orf72 and Profilin 1, have been linked with the sporadic and familiar forms of ALS. FUS is a DNA/RNA-binding protein (RBP) that forms cytoplasmic inclusions in ALS and frontotemporal lobular degeneration (FTLD) patients' brains and spinal cords. However, it is unknown whether the RNA-binding ability of FUS is required for causing ALS pathogenesis. Here, we exploited a Drosophila model of ALS and neuronal cell lines to elucidate the role of the RNA-binding ability of FUS in regulating FUS-mediated toxicity, cytoplasmic mislocalization and incorporation into stress granules (SGs). To determine the role of the RNA-binding ability of FUS in ALS, we mutated FUS RNA-binding sites (F305L, F341L, F359L, F368L) and generated RNA-binding-incompetent FUS mutants with and without ALS-causing mutations (R518K or R521C). We found that mutating the aforementioned four phenylalanine (F) amino acids to leucines (L) (4F-L) eliminates FUS RNA binding. We observed that these RNA-binding mutations block neurodegenerative phenotypes seen in the fly brains, eyes and motor neurons compared with the expression of RNA-binding-competent FUS carrying ALS-causing mutations. Interestingly, RNA-binding-deficient FUS strongly localized to the nucleus of Drosophila motor neurons and mammalian neuronal cells, whereas FUS carrying ALS-linked mutations was distributed to the nucleus and cytoplasm. Importantly, we determined that incorporation of mutant FUS into the SG compartment is dependent on the RNA-binding ability of FUS. In summary, we demonstrate that the RNA-binding ability of FUS is essential for the neurodegenerative phenotype in vivo of mutant FUS (either through direct contact with RNA or through interactions with other RBPs).
Collapse
Affiliation(s)
- J Gavin Daigle
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Verbeeck C, Deng Q, Dejesus-Hernandez M, Taylor G, Ceballos-Diaz C, Kocerha J, Golde T, Das P, Rademakers R, Dickson DW, Kukar T. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener 2012; 7:53. [PMID: 23046583 PMCID: PMC3519790 DOI: 10.1186/1750-1326-7-53] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding the RNA-binding protein fused in sarcoma (FUS) can cause familial and sporadic amyotrophic lateral sclerosis (ALS) and rarely frontotemproal dementia (FTD). FUS accumulates in neuronal cytoplasmic inclusions (NCIs) in ALS patients with FUS mutations. FUS is also a major pathologic marker for a group of less common forms of frontotemporal lobar degeneration (FTLD), which includes atypical FTLD with ubiquitinated inclusions (aFTLD-U), neuronal intermediate filament inclusion disease (NIFID) and basophilic inclusion body disease (BIBD). These diseases are now called FUS proteinopathies, because they share this disease marker. It is unknown how FUS mutations cause disease and the role of FUS in FTD-FUS cases, which do not have FUS mutations. In this paper we report the development of somatic brain transgenic (SBT) mice using recombinant adeno-associated virus (rAAV) to investigate how FUS mutations lead to neurodegeneration. RESULTS We compared SBT mice expressing wild-type human FUS (FUSWT), and two ALS-linked mutations: FUSR521C and FUSΔ14, which lacks the nuclear localization signal. Both FUS mutants accumulated in the cytoplasm relative to FUSWT. The degree of this shift correlated with the severity of the FUS mutation as reflected by disease onset in humans. Mice expressing the most aggressive mutation, FUSΔ14, recapitulated many aspects of FUS proteinopathies, including insoluble FUS, basophilic and eosiniphilic NCIs, and other pathologic markers, including ubiquitin, p62/SQSTM1, α-internexin, and the poly-adenylate(A)-binding protein 1 (PABP-1). However, TDP-43 did not localize to inclusions. CONCLUSIONS Our data supports the hypothesis that ALS or FTD-linked FUS mutations cause neurodegeneration by increasing cyotplasmic FUS. Accumulation of FUS in the cytoplasm may retain RNA targets and recruit additional RNA-binding proteins, such as PABP-1, into stress-granule like aggregates that coalesce into permanent inclusions that could negatively affect RNA metabolism. Identification of mutations in other genes that cause ALS/FTD, such as C9ORF72, sentaxin, and angiogenin, lends support to the idea that defective RNA metabolism is a critical pathogenic pathway. The SBT FUS mice described here will provide a valuable platform for dissecting the pathogenic mechanism of FUS mutations, define the relationship between FTD and ALS-FUS, and help identify therapeutic targets that are desperately needed for these devastating neurodegenerative disorders.
Collapse
|
46
|
Halliday G, Bigio EH, Cairns NJ, Neumann M, Mackenzie IRA, Mann DMA. Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathol 2012; 124:373-82. [PMID: 22878865 PMCID: PMC3445027 DOI: 10.1007/s00401-012-1030-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is clinically, pathologically and genetically heterogeneous. Three major proteins are implicated in its pathogenesis. About half of cases are characterized by depositions of the microtubule associated protein, tau (FTLD-tau). In most of the remaining cases, deposits of the transactive response (TAR) DNA-binding protein with Mw of 43 kDa, known as TDP-43 (FTLD-TDP), are seen. Lastly, about 5-10 % of cases are characterized by abnormal accumulations of a third protein, fused in sarcoma (FTLD-FUS). Depending on the protein concerned, the signature accumulations can take the form of inclusion bodies (neuronal cytoplasmic inclusions and neuronal intranuclear inclusions) or dystrophic neurites, in the cerebral cortex, hippocampus and subcortex. In some instances, glial cells are also affected by inclusion body formation. In motor neurone disease (MND), TDP-43 or FUS inclusions can present within motor neurons of the brain stem and spinal cord. This present paper attempts to critically examine the role of such proteins in the pathogenesis of FTLD and MND as to whether they might exert a direct pathogenetic effect (gain of function), or simply act as relatively innocent witnesses to a more fundamental loss of function effect. We conclude that although there is strong evidence for both gain and loss of function effects in respect of each of the proteins concerned, in reality, it is likely that each is a single face of either side of the coin, and that both will play separate, though complementary, roles in driving the damage which ultimately leads to the downfall of neurons and clinical expression of disease.
Collapse
Affiliation(s)
- Glenda Halliday
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Eileen H. Bigio
- Alzheimer Disease Center, Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Manuela Neumann
- Department of Neuropathology, German Center for Neurodegenerative Diseases Tuebingen, University of Tuebingen, Tuebingen, Germany
| | | | - David M. A. Mann
- Institute of Brain, Behaviour and Mental Health, School of Community Based Medicine, University of Manchester, Manchester, UK
- Salford Royal Hospital, University of Manchester, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
47
|
Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc Natl Acad Sci U S A 2012; 109:12017-21. [PMID: 22778397 DOI: 10.1073/pnas.1207247109] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the proline/tyrosine-nuclear localization signal (PY-NLS) of the Fused in Sarcoma protein (FUS) cause amyotrophic lateral sclerosis (ALS). Here we report the crystal structure of the FUS PY-NLS bound to its nuclear import receptor Karyopherinβ2 (Kapβ2; also known as Transportin). The FUS PY-NLS occupies the structurally invariant C-terminal arch of Kapβ2, tracing a path similar to that of other characterized PY-NLSs. Unlike other PY-NLSs, which generally bind Kapβ2 in fully extended conformations, the FUS peptide is atypical as its central portion forms a 2.5-turn α-helix. The Kapβ2-binding epitopes of the FUS PY-NLS consist of an N-terminal PGKM hydrophobic motif, a central arginine-rich α-helix, and a C-terminal PY motif. ALS mutations are found almost exclusively within these epitopes. Each ALS mutation site makes multiple contacts with Kapβ2 and mutations of these residues decrease binding affinities for Kapβ2 (K(D) for wild-type FUS PY-NLS is 9.5 nM) up to ninefold. Thermodynamic analyses of ALS mutations in the FUS PY-NLS show that the weakening of FUS-Kapβ2 binding affinity, the degree of cytoplasmic mislocalization, and ALS disease severity are correlated.
Collapse
|
48
|
Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 2012; 8:423-34. [PMID: 22732773 DOI: 10.1038/nrneurol.2012.117] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. Until recently, the underlying cause was known in only a minority of cases that were associated with abnormalities of the tau protein or gene. In 2006, however, mutations in the progranulin gene were discovered as another important cause of familial FTD. That same year, TAR DNA-binding protein 43 (TDP-43) was identified as the pathological protein in the most common subtypes of FTD and amyotrophic lateral sclerosis (ALS). Since then, substantial efforts have been made to understand the functions and regulation of progranulin and TDP-43, as well as their roles in neurodegeneration. More recently, other DNA/RNA binding proteins (FET family proteins) have been identified as the pathological proteins in most of the remaining cases of FTD. In 2011, abnormal expansion of a hexanucleotide repeat in the gene C9orf72 was found to be the most common genetic cause of both FTD and ALS. All common FTD-causing genes have seemingly now been discovered and the main pathological proteins identified. In this Review, we highlight recent advances in understanding the molecular aspects of FTD, which will provide the basis for improved patient care through the development of more-targeted diagnostic tests and therapies.
Collapse
Affiliation(s)
- Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|