1
|
Chuikova ZV, Filatov AA, Faber AY, Arsalidou M. Mapping common and distinct brain correlates among cognitive flexibility tasks: concordant evidence from meta-analyses. Brain Imaging Behav 2025; 19:50-71. [PMID: 39467932 PMCID: PMC11846771 DOI: 10.1007/s11682-024-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/30/2024]
Abstract
Cognitive flexibility allows individuals to switch between different tasks, strategies, or ideas; an ability that is important for everyday life. The Wisconsin card sorting test (WCST) and task switching paradigm (TSP) are popular measures of cognitive flexibility. Although both tasks require switching, the TSP requires participants to memorize switching rules and retrieve them when they view a cue (rule-retrieval), whereas the classic WCST requires participants to discover the switching rule via trial-and-error (rule-discovery). Many functional magnetic resonance imaging studies have examined brain responses to these tasks. Extant meta-analyses show concordance in activation in a widespread set of areas including frontal, parietal, and cingulate cortices. Critically, past meta-analyses have not specifically examined brain correlates associated with rule derivation (i.e., rule-discovery vs. rule-retrieval) in cognitive flexibility tasks. We examine for the first time common and distinct concordance in brain responses to rule-discovery (i.e., WCST) and rule-retrieval (i.e., TSP), as well as TSP subtypes using quantitative meta-analyses. We analyzed data from 69 eligible articles with a total of 1617 young-adult participants. Conjunction results show concordance in common fronto-parietal areas predominantly in the left hemisphere. Contrast analyses show that rule-discovery required increased involvement in multiple cortical and subcortical regions such as frontopolar (Brodmann Area 10), parietal, insular cortex, thalamus and caudate nucleus predominantly in the right hemisphere. No significant differences in concordance were observed among the three, task switching paradigm sub-types. We propose a neuroanatomical model of cognitive flexibility and discuss theoretical and practical applications.
Collapse
Affiliation(s)
- Zhanna V Chuikova
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation.
- Department of Pedagogy and Medical Psychology, Sechenov University, Moscow, Russian Federation.
| | - Andrei A Filatov
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russian Federation
| | - Andrei Y Faber
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russian Federation
| | - Marie Arsalidou
- York University, Toronto, Canada.
- NeuroPsyLab.com, Toronto, Canada.
| |
Collapse
|
2
|
Kurtin DL, Araña‐Oiarbide G, Lorenz R, Violante IR, Hampshire A. Planning ahead: Predictable switching recruits task-active and resting-state networks. Hum Brain Mapp 2023; 44:5030-5046. [PMID: 37471699 PMCID: PMC10502652 DOI: 10.1002/hbm.26430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Switching is a difficult cognitive process characterised by costs in task performance; specifically, slowed responses and reduced accuracy. It is associated with the recruitment of a large coalition of task-positive regions including those referred to as the multiple demand cortex (MDC). The neural correlates of switching not only include the MDC, but occasionally the default mode network (DMN), a characteristically task-negative network. To unpick the role of the DMN during switching we collected fMRI data from 24 participants playing a switching paradigm that perturbed predictability (i.e., cognitive load) across three switch dimensions-sequential, perceptual, and spatial predictability. We computed the activity maps unique to switch vs. stay trials and all switch dimensions, then evaluated functional connectivity under these switch conditions by computing the pairwise mutual information functional connectivity (miFC) between regional timeseries. Switch trials exhibited an expected cost in reaction time while sequential predictability produced a significant benefit to task accuracy. Our results showed that switch trials recruited a broader activity map than stay trials, including regions of the DMN, the MDC, and task-positive networks such as visual, somatomotor, dorsal, salience/ventral attention networks. More sequentially predictable trials recruited increased activity in the somatomotor and salience/ventral attention networks. Notably, changes in sequential and perceptual predictability, but not spatial predictability, had significant effects on miFC. Increases in perceptual predictability related to decreased miFC between control, visual, somatomotor, and DMN regions, whereas increases in sequential predictability increased miFC between regions in the same networks, as well as regions within ventral attention/ salience, dorsal attention, limbic, and temporal parietal networks. These results provide novel clues as to how DMN may contribute to executive task performance. Specifically, the improved task performance, unique activity, and increased miFC associated with increased sequential predictability suggest that the DMN may coordinate more strongly with the MDC to generate a temporal schema of upcoming task events, which may attenuate switching costs.
Collapse
Affiliation(s)
- Danielle L. Kurtin
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| | | | - Romy Lorenz
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- The Poldrack LabStanford UniversityStanfordCaliforniaUSA
- Department of NeurophysicsMax‐Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ines R. Violante
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
3
|
Wu T, Chen C, Spagna A, Wu X, Mackie M, Russell‐Giller S, Xu P, Luo Y, Liu X, Hof PR, Fan J. The functional anatomy of cognitive control: A domain‐general brain network for uncertainty processing. J Comp Neurol 2020; 528:1265-1292. [DOI: 10.1002/cne.24804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Caiqi Chen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of PsychologySouth China Normal University Guangzhou China
| | - Alfredo Spagna
- Department of PsychologyColumbia University in the City of New York New York New York
| | - Xia Wu
- Faculty of PsychologyTianjin Normal University Tianjin China
| | - Melissa‐Ann Mackie
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shira Russell‐Giller
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Yue‐jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Jin Fan
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| |
Collapse
|
4
|
Sun X, Li L, Mo C, Mo L, Wang R, Ding G. Dissociating the neural substrates for inhibition and shifting in domain-general cognitive control. Eur J Neurosci 2019; 50:1920-1931. [PMID: 30706976 DOI: 10.1111/ejn.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/30/2022]
Abstract
Inhibition and shifting are two key components of domain-general cognitive control. Numerous studies have investigated the neural substrates of both components, but it is still unclear whether the relevant brain regions are specifically involved in one specific component or commonly engaged in both components. Here, we addressed this question by using functional magnetic resonance imaging and a modified saccade paradigm that was effective to disentangle inhibition and shifting in one experiment. The results showed that both the middle frontal gyrus and left parietal lobe were involved in both components but the middle frontal gyrus was more active for the inhibition while the inferior parietal lobe was more active for the shifting processing. The outcome suggests that, although both regions are engaged in inhibition and shifting, each plays a dominant role in one component. These findings provide a further insight into the neural dissociation in inhibition and shifting, as well as a better explanation on the framework of unity and diversity from a neuropsychological viewpoint.
Collapse
Affiliation(s)
- Xun Sun
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Le Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ce Mo
- Peking University - Tsinghua University Joint Center for Life Sciences, Peking University, Beijing, China
| | - Lei Mo
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Ruiming Wang
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Slama H, Chylinski DO, Deliens G, Leproult R, Schmitz R, Peigneux P. Sleep Deprivation Triggers Cognitive Control Impairments in Task-Goal Switching. Sleep 2017; 41:4737239. [PMID: 29244170 DOI: 10.1093/sleep/zsx200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 09/17/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES This study investigates the impact of sleep deprivation (SD) on task-goal switching, a key component of cognitive flexibility. METHODS Task-goal switching performance was tested after one night of regular sleep (n = 17 participants) or of total SD (n = 18). To understand the relationships between task-switching performance and other cognitive processes following SD, participants were tested for other key attentional (alertness and vigilance) and executive (inhibition and working memory) functions. Spontaneous eye blink rate (EBR) was also measured as an indirect marker of striatal dopaminergic function. RESULTS SD negatively affects task-goal switching as well as attentional and inhibition measures, but not working memory. Changes in task-goal switching performance were not significantly correlated with changes in objective and subjective markers of fatigue and sleepiness, response inhibition, or spontaneous EBR. CONCLUSIONS Altogether, our results show differentiated effects of SD on key executive functions such as working memory, inhibition, and task-goal switching.
Collapse
Affiliation(s)
- Hichem Slama
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,UNESCOG - Research Unit in Cognitive Neurosciences at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Daphne Olivia Chylinski
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Gaétane Deliens
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,ACTE - Autism in Context: Theory and Experience/Langage & Esprit, Université libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Rachel Leproult
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Rémy Schmitz
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Work Performed: Université Libre de Bruxelles (ULB)
| |
Collapse
|
6
|
Wang Y, Chen J, Yue Z. Positive Emotion Facilitates Cognitive Flexibility: An fMRI Study. Front Psychol 2017; 8:1832. [PMID: 29163255 PMCID: PMC5671657 DOI: 10.3389/fpsyg.2017.01832] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
Cognitive flexibility is the ability to switch rapidly between multiple goals. By using a task-switching paradigm, the present study investigated how positive emotion affected cognitive flexibility and the underlying neural mechanisms. After viewing pictures of different emotional valence (positive, negative, or neutral), participants discriminated whether a target digit in a specific color was odd or even. After a series of trials, the color of target stimuli was changed, i.e., the switch condition. Switch costs were measured by the increase of reaction times (RTs) in the switch trials compared to those in the repeat trials. Behavior results indicated that switch costs significantly decreased in the positive emotional condition, and increased in the negative emotional condition, compared with those in the neutral condition. Imaging data revealed enhanced activation in the dorsal anterior cingulate cortex (dACC) in switch trials than those in repeat trials. Moreover, the interaction between emotion (positive, negative, neutral) and trial type (repeat vs. switch) was significant. For switch trials, the activation of dACC decreased significantly in the positive condition, while increased significantly in the negative condition compared to neutral condition. By contrast, for repeat trials, no significant difference was observed for the activation of dACC among three emotional conditions. Our results showed that positive emotions could increase the cognitive flexibility and reduce the conflict by decreasing the activation of dACC.
Collapse
Affiliation(s)
- Yanmei Wang
- Faculty of Education, East China Normal University, Shanghai, China.,The School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Department of Psychology, Capital Normal University, Beijing, China
| | - Jie Chen
- The School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zhenzhu Yue
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Fuentes-Claramonte P, Ávila C, Rodríguez-Pujadas A, Ventura-Campos N, Bustamante JC, Costumero V, Rosell-Negre P, Barrós-Loscertales A. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching. PLoS One 2015; 10:e0123073. [PMID: 25875640 PMCID: PMC4395363 DOI: 10.1371/journal.pone.0123073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
| | - César Ávila
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aina Rodríguez-Pujadas
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
| | - Noelia Ventura-Campos
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
| | - Juan C. Bustamante
- Departamento de Psicología y Sociología, Facultad de Educación, Universidad de Zaragoza, Zaragoza, Spain
| | - Víctor Costumero
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
| | - Patricia Rosell-Negre
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
| | - Alfonso Barrós-Loscertales
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Castelló de la Plana, Spain
- * E-mail:
| |
Collapse
|
8
|
Reaction time variability and related brain activity in methamphetamine psychosis. Biol Psychiatry 2015; 77:465-74. [PMID: 25444164 PMCID: PMC4315764 DOI: 10.1016/j.biopsych.2014.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND This study investigated the dynamics of cognitive control instability in methamphetamine (MA) abuse, as well its relationship to substance-induced psychiatric symptoms and drug use patterns. METHODS We used an ex-Gaussian reaction time (RT) distribution to examine intraindividual variability (IIV) and excessively long RTs (tau) in an individual's RT on a Stroop task in 30 currently drug-abstinent (3 months to 2 years) MA abusers compared with 27 nonsubstance-abusing control subjects. All subjects underwent functional magnetic resonance imaging while performing the Stroop task, which allowed us to measure the relationship between IIV and tau to functional brain activity. RESULTS Elevated IIV in the MA compared with the control group did not reach significance; however, when the MA group was divided into those subjects who had experienced MA-induced psychosis (MAP+) (n = 19) and those who had not (n = 11), the MAP+ group had higher average IIV compared with the other groups (p < .03). In addition, although control subjects displayed a relationship between IIV and conflict-related brain activity in bilateral prefrontal cortex such that increased IIV was associated with increased activity, the MAP+ group displayed this relationship in right prefrontal cortex only, perhaps reflecting elevated vigilance in the MAP+ group. Greater IIV did not correlate with severity of use or months MA abstinent. No group differences emerged in tau values. CONCLUSIONS These results suggest increased cognitive instability in those MA-dependent subjects who had experienced MA-induced psychosis.
Collapse
|
9
|
Richter FR, Yeung N. Corresponding influences of top-down control on task switching and long-term memory. Q J Exp Psychol (Hove) 2014; 68:1124-47. [PMID: 25337969 DOI: 10.1080/17470218.2014.976579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Three experiments investigated the impact of cognitive control on current performance and later memory in task switching. Participants first switched between object and word classification tasks, performed on picture-word stimuli that each appeared only once, then were tested for their recognition memory of these items. Each experiment replicated the recent finding that task switching results in reduced selectivity in later memory for task-relevant over task-irrelevant items. Top-down control was manipulated through varying the time available for advance task preparation (Experiment 1), the freedom of choice over which task to perform (Experiment 2), and the availability of reward incentives (Experiment 3). For each manipulation, more effective top-down control during task switching was associated with increased selectivity in memory for task-relevant information. These findings shed new light on the role of cognitive control in long-term memory encoding, in particular supporting an interactive model in which long-term memory reflects the enduring traces of perceptual and cognitive processes that operate under the selective influence of top-down control.
Collapse
|
10
|
Hsieh S, Wu M, Lin F. Neural correlates of response-effector switching using event-related potentials. Biol Psychol 2014; 103:332-48. [PMID: 25448134 DOI: 10.1016/j.biopsycho.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/20/2022]
Abstract
The primary aim of the present study was to explore whether response-effector shifts can be considered as a cognitive component in models of task switching. The secondary aim was to provide some information regarding the issue of whether the two types of task shifts, stimulus-dimension shift and response-effector shift, share common and/or distinct switch-related ERP modulations. The tertiary aim was to illuminate the organization of task-set components by comparing the performance of a concurrent shift of both stimulus dimensions and response effectors to that of a single shift. Two experiments with two different types of judgment tasks (Experiment 1: a same-match-to-sample task; Experiment 2: a categorical-judgment task) were conducted. Intermittently cued task switching was employed. Each trial was composed of a series of stimulus displays following a transition-cue display, which indicated whether the current trial was identical to (repeat) or different from the previous trial (switch). There were stimulus-dimension (color and shape) and response-effector (hand and foot) variables that could be repeated or switched independently with an equal probability from the previous trial. Regarding the primary issue, the results of the two experiments reported in this study consistently showed significant RT switch costs as well as switch-related ERP modulations for a shift of response effectors. Yet, one of the switch-related ERPs, i.e., the cue-locked P3b, observed in this study was found to be reduced rather than increased in amplitudes. As to the secondary issue, the two experiments consistently showed that the two single shifts share some common switch-related ERPs. Finally, this study also provides ERP evidence for the integrated model of task-set organization.
Collapse
Affiliation(s)
- Shulan Hsieh
- Cognitive Electrophysiology Laboratory, Department of Psychology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Mengyao Wu
- Cognitive Electrophysiology Laboratory, Department of Psychology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| | - Fan Lin
- Cognitive Electrophysiology Laboratory, Department of Psychology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| |
Collapse
|
11
|
Muhle-Karbe PS, De Baene W, Brass M. Do tasks matter in task switching? Dissociating domain-general from context-specific brain activity. Neuroimage 2014; 99:332-41. [DOI: 10.1016/j.neuroimage.2014.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/10/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022] Open
|
12
|
Hill H, Windmann S. Examining Event-Related Potential (ERP) correlates of decision bias in recognition memory judgments. PLoS One 2014; 9:e106411. [PMID: 25264982 PMCID: PMC4180069 DOI: 10.1371/journal.pone.0106411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022] Open
Abstract
Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.
Collapse
Affiliation(s)
- Holger Hill
- Goethe University Frankfurt, Institute for Psychology, Cognitive Psychology II, Frankfurt, Germany
- Karlsruhe Institute for Technology (KIT), Institute of Sports and Sports Sciences, Department of Applied Psychology, Karlsruhe, Germany
- * E-mail:
| | - Sabine Windmann
- Goethe University Frankfurt, Institute for Psychology, Cognitive Psychology II, Frankfurt, Germany
| |
Collapse
|
13
|
Rangelov D, Töllner T, Müller HJ, Zehetleitner M. What are task-sets: a single, integrated representation or a collection of multiple control representations? Front Hum Neurosci 2013; 7:524. [PMID: 24027513 PMCID: PMC3759751 DOI: 10.3389/fnhum.2013.00524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
Performing two randomly alternating tasks typically results in higher reaction times (RTs) following a task switch, relative to a task repetition. These task switch costs (TSC) reflect processes of switching between control settings for different tasks. The present study investigated whether task sets operate as a single, integrated representation or as an agglomeration of relatively independent components. In a cued task switch paradigm, target detection (present/absent) and discrimination (blue/green/right-/left-tilted) tasks alternated randomly across trials. The target was either a color or an orientation singleton among homogeneous distractors. Across two trials, the task and target-defining dimension repeated or changed randomly. For task switch trials, agglomerated task sets predict a difference between dimension changes and repetitions: joint task and dimension switches require full task set reconfiguration, while dimension repetitions permit re-using some control settings from the previous trial. By contrast, integrated task sets always require full switches, predicting dimension repetition effects (DREs) to be absent across task switches. RT analyses showed significant DREs across task switches as well as repetitions supporting the notion of agglomerated task sets. Additionally, two event-related potentials (ERP) were analyzed: the Posterior-Contralateral-Negativity (PCN) indexing spatial selection dynamics, and the Sustained-Posterior-Contralateral-Negativity (SPCN) indexing post-selective perceptual/semantic analysis. Significant DREs across task switches were observed for both the PCN and SPCN components. Together, DREs across task switches for RTs and two functionally distinct ERP components suggest that re-using control settings across different tasks is possible. The results thus support the “agglomerated-task-set” hypothesis, and are inconsistent with “integrated task sets.”
Collapse
Affiliation(s)
- Dragan Rangelov
- Department Psychologie, Allgemeine und Experimentelle Psychologie I, Ludwig-Maximilians-Universität München München, Germany
| | | | | | | |
Collapse
|
14
|
Laguë-Beauvais M, Brunet J, Gagnon L, Lesage F, Bherer L. A fNIRS investigation of switching and inhibition during the modified Stroop task in younger and older adults. Neuroimage 2012; 64:485-95. [PMID: 23000257 DOI: 10.1016/j.neuroimage.2012.09.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022] Open
Abstract
Brain imaging studies have reported age-related differences in brain activation for attentional control functions, such as inhibition and task-switching. However, age-related differences in brain activation patterns in more than one attentional control task have rarely been studied in the same group of participants. In this study, younger and older adults completed a modified Stroop task with interference and switching conditions, using functional near infra-red spectroscopy. While interference did not reveal any significant activation of the prefrontal cortex in younger adults, switching produced an increased activation bilaterally in both the anterior dorsolateral prefrontal cortex (DLPFC) and the anterior ventrolateral prefrontal cortex (VLPFC). In older adults, an isolated right and left anterior DLPFC activation was observed even in the non-executive conditions of the Stroop task (color denomination) and the interference condition revealed activation mostly in the posterior left DLPFC and bilateral VLPFC with a small right anterior DLPFC component. Specific to older adults, switching induced an increased activation spread out bilaterally over the prefrontal cortex in the bilateral anterior DLPFC, the posterior left DLPFC and bilateral VLPFC. These results suggest that for both older and younger adults, inhibition and switching are associated with distinct patterns of prefrontal activation and that age-related differences exist in these patterns such that prefrontal activation seems to be more spread out at different sites in older adults.
Collapse
Affiliation(s)
- Maude Laguë-Beauvais
- Université du Québec à Montréal, Département de Psychologie, CP 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | |
Collapse
|