1
|
Liu QM, Lucas M, Badami F, Wu W, Etkin A, Yuan TF. Cortical plasticity differences in substance use disorders. FUNDAMENTAL RESEARCH 2024; 4:1351-1356. [PMID: 39734552 PMCID: PMC11670691 DOI: 10.1016/j.fmre.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Among substances, opiates and psychostimulants are responsible for the most significant public health problems, yet few studies have characterized their similarities or differences in the cortical plasticity of individuals with these substance related problems. This investigation utilized concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) to examine cortical plasticity characteristics of individuals with heroin and methamphetamine related substance use disorder (SUD) relative to healthy controls. TMS-EEG data were collected from healthy control subjects (N = 35), subjects with heroin (N = 72) and methamphetamine (N = 69) use disorder. The data were analyzed using our fully-automated artifact rejection algorithm (ARTIST). Analyses were performed separately for F3, F4 and P3 stimulation sites. Linear mixed effects models were used to examine Group (heroin, methamphetamine, healthy control) x Time (pre, post single-session rTMS) interactions. To evaluate plasticity differences across groups, we observed the changes in single pulse TMS before and after single-session of rTMS. There was no change in alpha power after stimulation of the F3 or F4 sites across groups. The alpha power of the control group was significantly decreased when stimulating the P3 site, while there was no significant change in alpha power for either drug group during the same time window. The beta power of the healthy control group increased significantly when the F3 site was stimulated. In contrast, there was no significant change in either the methamphetamine or heroin group. Following a single-session of rTMS intervention, there was a significant difference in alpha-band power between the healthy control group and the two drug groups. Taking together, the study findings identified differential plasticity effects in the two types of SUD population, and highlighted the network effects of rTMS. The findings point to an exciting future path for using rTMS to test new plasticity-based interventions for treating drug addiction.
Collapse
Affiliation(s)
- Qing-Ming Liu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China
- School of Psychology, Nanjing Normal University, Nanjing 210024, China
| | - Molly Lucas
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Wu Tsai Neuroscience Institute, Stanford University, CA 94305, United States
| | - Faizan Badami
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Wu Tsai Neuroscience Institute, Stanford University, CA 94305, United States
| | - Wei Wu
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Alto Neuroscience, Inc., Los Altos, CA 94022, United States
| | - Amit Etkin
- Department of Psychiatry and Behavioral Science, Stanford University, CA 94394, United States
- Wu Tsai Neuroscience Institute, Stanford University, CA 94305, United States
- Alto Neuroscience, Inc., Los Altos, CA 94022, United States
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. Brain Stimul 2024; 17:698-712. [PMID: 38821396 PMCID: PMC11313454 DOI: 10.1016/j.brs.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is believed to alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach generally evaluates low-frequency neural activity at the cortical surface. However, TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct assessment of deeper and more localized oscillatory responses across the frequency spectrum. OBJECTIVE/HYPOTHESIS Our study used iEEG to understand the effects of TMS on human neural activity in the spectral domain. We asked (1) which brain regions respond to cortically-targeted TMS, and in what frequency bands, (2) whether deeper brain structures exhibit oscillatory responses, and (3) whether the neural responses to TMS reflect evoked versus induced oscillations. METHODS We recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at either the dorsolateral prefrontal cortex (DLPFC) or parietal cortex. iEEG signals were analyzed using spectral methods to understand the oscillatory responses to TMS. RESULTS Stimulation to DLPFC drove widespread low-frequency increases (3-8 Hz) in frontolimbic cortices and high-frequency decreases (30-110 Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with phase-locked evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. CONCLUSIONS By combining TMS with intracranial EEG recordings, our results suggest that TMS is an effective means to perturb oscillatory neural activity in brain-wide networks, including deeper structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA.
| | - Jeffrey B Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Biophysics Graduate Program, Stanford University Medical Center, Stanford, 94305, CA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Matthew A Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Nicholas T Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Brandt D Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Aaron D Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, 52242, IA, USA
| | - Corey J Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, 94305, CA, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, 94305, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
3
|
Solomon EA, Wang JB, Oya H, Howard MA, Trapp NT, Uitermarkt BD, Boes AD, Keller CJ. TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552524. [PMID: 37645954 PMCID: PMC10461914 DOI: 10.1101/2023.08.09.552524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly deployed in the treatment of neuropsychiatric illness, under the presumption that stimulation of specific cortical targets can alter ongoing neural activity and cause circuit-level changes in brain function. While the electrophysiological effects of TMS have been extensively studied with scalp electroencephalography (EEG), this approach is most useful for evaluating low-frequency neural activity at the cortical surface. As such, little is known about how TMS perturbs rhythmic activity among deeper structures - such as the hippocampus and amygdala - and whether stimulation can alter higher-frequency oscillations. Recent work has established that TMS can be safely used in patients with intracranial electrodes (iEEG), allowing for direct neural recordings at sufficient spatiotemporal resolution to examine localized oscillatory responses across the frequency spectrum. To that end, we recruited 17 neurosurgical patients with indwelling electrodes and recorded neural activity while patients underwent repeated trials of single-pulse TMS at several cortical sites. Stimulation to the dorsolateral prefrontal cortex (DLPFC) drove widespread low-frequency increases (3-8Hz) in frontolimbic cortices, as well as high-frequency decreases (30-110Hz) in frontotemporal areas, including the hippocampus. Stimulation to parietal cortex specifically provoked low-frequency responses in the medial temporal lobe. While most low-frequency activity was consistent with brief evoked responses, anterior frontal regions exhibited induced theta oscillations following DLPFC stimulation. Taken together, we established that non-invasive stimulation can (1) provoke a mixture of low-frequency evoked power and induced theta oscillations and (2) suppress high-frequency activity in deeper brain structures not directly accessed by stimulation itself.
Collapse
Affiliation(s)
- Ethan A. Solomon
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
| | - Jeffrey B. Wang
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Biophysics Graduate Program, Stanford University Medical Center, Stanford, CA 94305
| | - Hiroyuki Oya
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Matthew A. Howard
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Nicholas T. Trapp
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Brandt D. Uitermarkt
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Aaron D. Boes
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Corey J. Keller
- Dept. of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto CA 94305
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94305
| |
Collapse
|
4
|
Schmidgen J, Konrad K, Roessner V, Bender S. The external evocation and movement-related modulation of motor cortex inhibition in children and adolescents with Tourette syndrome - a TMS/EEG study. Front Neurosci 2023; 17:1209801. [PMID: 37928740 PMCID: PMC10620315 DOI: 10.3389/fnins.2023.1209801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Objective This study tested the reactivity of motor cortex inhibition to different intensities of external stimulation by transcranial magnetic stimulation (TMS) and its internal modulation during different motor states in children and adolescents with Tourette syndrome. Methods TMS-evoked N100 served as an indirect measure of GABAB receptor function which is related to cortical inhibition. Combined TMS/EEG was used to analyze the TMS-evoked N100 component evoked by different stimulation intensities as well as during resting condition, movement preparation (contingent negative variation task) and movement execution. The study included 18 early adolescents with Tourette syndrome and 15 typically developing control subjects. Results TMS-evoked N100 showed a less steep increase with increasing TMS intensity in Tourette syndrome together with less modulation (disinhibition) over the primary motor cortex during the motor states movement preparation and movement execution. Children with Tourette syndrome showed equally high N100 amplitudes at 110% resting motor threshold (RMT) intensity during resting condition and a parallel decline of RMT and N100 amplitude with increasing age as control subjects. Conclusion Our study yields preliminary evidence that modulation of motor cortical inhibitory circuits, during external direct stimulation by different TMS intensities and during volitional movement preparation and execution is different in children and adolescents with Tourette syndrome compared to controls. These results suggest that a reduced resting motor cortical inhibitory "reserve" could contribute to the production of unwanted movements. Our findings are compatible with increased regulation of motor cortex excitability by perception-action binding in Tourette syndrome instead of top-down / motor regulation and need to be replicated in further studies.
Collapse
Affiliation(s)
- Julia Schmidgen
- Department of Child and Adolescent Psychiatry, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen, Aachen, Germany
- JARA-BRAIN Institute II, Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Jülich, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Custav Carus, TU, Dresden, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Custav Carus, TU, Dresden, Germany
| |
Collapse
|
5
|
Avnit A, Zibman S, Alyagon U, Zangen A. Abnormal functional asymmetry and its behavioural correlates in adults with ADHD: A TMS-EEG study. PLoS One 2023; 18:e0285086. [PMID: 37228131 DOI: 10.1371/journal.pone.0285086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/15/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Abnormal functional brain asymmetry and deficient response inhibition are two core symptoms of attention deficit hyperactivity disorder (ADHD). We investigated whether these symptoms are inter-related and whether they are underlined by altered frontal excitability and by compromised interhemispheric connectivity. METHODS We studied these issues in 52 ADHD and 43 non-clinical adults by comparing: (1) stop-signal reaction time (SSRT); (2) frontal asymmetry of the N200 event-related potential component, which is evoked during response inhibition and is lateralised to the right hemisphere; (3) TMS-evoked potential (TEP) in the right frontal hemisphere, which is indicative of local cortical excitability; and (4) frontal right-to-left interhemispheric TMS signal propagation (ISP), which is reversely indicative of interhemispheric connectivity. RESULTS Compared to controls, the ADHD group demonstrated elongated SSRT, reduced N200 right-frontal-asymmetry, weaker TEP, and stronger ISP. Moreover, in the ADHD group, N200 right-frontal-asymmetry correlated with SSRT, with TEP, and with symptoms severity. Conversely, no relationship was observed between ISP and N200 right-frontal-asymmetry, and both TEP and ISP were found to be unrelated to SSRT. CONCLUSIONS Our results indicate that abnormal frontal asymmetry is related to a key cognitive symptom in ADHD and suggest that it is underlined by reduced right-frontal excitability.
Collapse
Affiliation(s)
- Amir Avnit
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Samuel Zibman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Uri Alyagon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abraham Zangen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
7
|
Lucia M, Romanella SM, Di Lorenzo G, Demchenko I, Bhat V, Rossi S, Santarnecchi E. Neural correlates of N-back task performance and proposal for corresponding neuromodulation targets in psychiatric and neurodevelopmental disorders. Psychiatry Clin Neurosci 2022; 76:512-524. [PMID: 35773784 PMCID: PMC10603255 DOI: 10.1111/pcn.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
AIM Working memory (WM) deficit represents the most common cognitive impairment in psychiatric and neurodevelopmental disorders, making the identification of its neural substrates a crucial step towards the conceptualization of restorative interventions. We present a meta-analysis focusing on neural activations associated with the most commonly used task to measure WM, the N-back task, in patients with schizophrenia, depressive disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. Showing qualitative similarities and differences in WM processing between patients and healthy controls, we propose possible targets for cognitive enhancement approaches. METHODS Selected studies, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, were analyzed through the activation likelihood estimate statistical framework, with subsequent generation of disorder-specific N-back activation maps. RESULTS Despite similar WM deficits shared across all disorders, results highlighted different brain activation patterns for each disorder compared with healthy controls. In general, results showed brain activity in frontal, parietal, subcortical, and cerebellar regions; however, reduced engagement of specific nodes of the fronto-parietal network emerged in patients compared with healthy controls. In particular, neither bipolar nor depressive disorders showed detectable activations in the dorsolateral prefrontal cortices, while their parietal activation patterns were lateralized to the left and right hemispheres, respectively. On the other hand, patients with attention-deficit/hyperactivity disorder showed a lack of activation in the left parietal lobe, whereas patients with schizophrenia showed lower activity over the left prefrontal cortex. CONCLUSION These results, together with biophysical modeling, were then used to discuss the design of future disorder-specific cognitive enhancement interventions based on noninvasive brain stimulation.
Collapse
Affiliation(s)
- Mencarelli Lucia
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
- Precision Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Sara M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
- Precision Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giorgio Di Lorenzo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilya Demchenko
- Interventional Psychiatry Program, Centre for Depression & Suicide Studies, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Centre for Depression & Suicide Studies, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
- Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
- Precision Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Strafella R, Chen R, Rajji TK, Blumberger DM, Voineskos D. Resting and TMS-EEG markers of treatment response in major depressive disorder: A systematic review. Front Hum Neurosci 2022; 16:940759. [PMID: 35992942 PMCID: PMC9387384 DOI: 10.3389/fnhum.2022.940759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022] Open
Abstract
Electroencephalography (EEG) is a non-invasive method to identify markers of treatment response in major depressive disorder (MDD). In this review, existing literature was assessed to determine how EEG markers change with different modalities of MDD treatments, and to synthesize the breadth of EEG markers used in conjunction with MDD treatments. PubMed and EMBASE were searched from 2000 to 2021 for studies reporting resting EEG (rEEG) and transcranial magnetic stimulation combined with EEG (TMS-EEG) measures in patients undergoing MDD treatments. The search yielded 966 articles, 204 underwent full-text screening, and 51 studies were included for a narrative synthesis of findings along with confidence in the evidence. In rEEG studies, non-linear quantitative algorithms such as theta cordance and theta current density show higher predictive value than traditional linear metrics. Although less abundant, TMS-EEG measures show promise for predictive markers of brain stimulation treatment response. Future focus on TMS-EEG measures may prove fruitful, given its ability to target cortical regions of interest related to MDD.
Collapse
Affiliation(s)
- Rebecca Strafella
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K. Rajji
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Daniel M. Blumberger
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: Daphne Voineskos
| |
Collapse
|
9
|
Rostami M, Zomorrodi R, Rostami R, Hosseinzadeh GA. Impact of methodological variability on EEG responses evoked by transcranial magnetic stimulation: a meta-analysis. Clin Neurophysiol 2022; 142:154-180. [DOI: 10.1016/j.clinph.2022.07.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
10
|
Keser Z, Buchl SC, Seven NA, Markota M, Clark HM, Jones DT, Lanzino G, Brown RD, Worrell GA, Lundstrom BN. Electroencephalogram (EEG) With or Without Transcranial Magnetic Stimulation (TMS) as Biomarkers for Post-stroke Recovery: A Narrative Review. Front Neurol 2022; 13:827866. [PMID: 35273559 PMCID: PMC8902309 DOI: 10.3389/fneur.2022.827866] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 01/20/2023] Open
Abstract
Stroke is one of the leading causes of death and disability. Despite the high prevalence of stroke, characterizing the acute neural recovery patterns that follow stroke and predicting long-term recovery remains challenging. Objective methods to quantify and characterize neural injury are still lacking. Since neuroimaging methods have a poor temporal resolution, EEG has been used as a method for characterizing post-stroke recovery mechanisms for various deficits including motor, language, and cognition as well as predicting treatment response to experimental therapies. In addition, transcranial magnetic stimulation (TMS), a form of non-invasive brain stimulation, has been used in conjunction with EEG (TMS-EEG) to evaluate neurophysiology for a variety of indications. TMS-EEG has significant potential for exploring brain connectivity using focal TMS-evoked potentials and oscillations, which may allow for the system-specific delineation of recovery patterns after stroke. In this review, we summarize the use of EEG alone or in combination with TMS in post-stroke motor, language, cognition, and functional/global recovery. Overall, stroke leads to a reduction in higher frequency activity (≥8 Hz) and intra-hemispheric connectivity in the lesioned hemisphere, which creates an activity imbalance between non-lesioned and lesioned hemispheres. Compensatory activity in the non-lesioned hemisphere leads mostly to unfavorable outcomes and further aggravated interhemispheric imbalance. Balanced interhemispheric activity with increased intrahemispheric coherence in the lesioned networks correlates with improved post-stroke recovery. TMS-EEG studies reveal the clinical importance of cortical reactivity and functional connectivity within the sensorimotor cortex for motor recovery after stroke. Although post-stroke motor studies support the prognostic value of TMS-EEG, more studies are needed to determine its utility as a biomarker for recovery across domains including language, cognition, and hemispatial neglect. As a complement to MRI-based technologies, EEG-based technologies are accessible and valuable non-invasive clinical tools in stroke neurology.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Samuel C. Buchl
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Nathan A. Seven
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Matej Markota
- Department of Psychiatry, Mayo Clinic, Rochester, MN, United States
| | - Heather M. Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Giuseppe Lanzino
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert D. Brown
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
11
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
12
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Goldsworthy MR, Rogasch NC, Ballinger S, Graetz L, Van Dam JM, Harris R, Yu S, Pitcher JB, Baune BT, Ridding MC. Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin Neurophysiol 2020; 131:2181-2191. [DOI: 10.1016/j.clinph.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/09/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
|
14
|
Vittala A, Murphy N, Maheshwari A, Krishnan V. Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Front Neurosci 2020; 14:554. [PMID: 32547362 PMCID: PMC7270174 DOI: 10.3389/fnins.2020.00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
In schizophrenia and related disorders, a deeper mechanistic understanding of neocortical dysfunction will be essential to developing new diagnostic and therapeutic techniques. To this end, combined transcranial magnetic stimulation and electroencephalography (TMS/EEG) provides a non-invasive tool to simultaneously perturb and measure neurophysiological correlates of cortical function, including oscillatory activity, cortical inhibition, connectivity, and synchronization. In this review, we summarize the findings from a variety of studies that apply TMS/EEG to understand the fundamental features of cortical dysfunction in schizophrenia. These results lend to future applications of TMS/EEG in understanding the pathophysiological mechanisms underlying cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Aadith Vittala
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Nicholas Murphy
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Vaishnav Krishnan
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Noda Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin Neurosci 2020; 74:12-34. [PMID: 31587446 DOI: 10.1111/pcn.12936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS-EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS-EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR 'transcranial magnetic stimulation') AND (EEG OR electroencephalog*) NOT (rTMS OR 'repetitive transcranial magnetic stimulation' OR TBS OR 'theta burst stimulation') AND (healthy). The study presents an overview of TMS-EEG methodology and neurophysiological indices and reviews previous findings from TMS-EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS-EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS-EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Multidisciplinary Translational Research Lab, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Hui J, Lioumis P, Blumberger DM, Daskalakis ZJ. Non-invasive Central Neuromodulation with Transcranial Magnetic Stimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Evaluation of algorithms for correction of transcranial magnetic stimulation-induced artifacts in electroencephalograms. Med Biol Eng Comput 2019; 57:2599-2615. [PMID: 31656029 DOI: 10.1007/s11517-019-02053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) is widely used to study the reactivity and connectivity of brain regions for clinical or research purposes. The electromagnetic pulse of the TMS device generates at the instant of administration an artifact of large amplitude and a duration up to tens of milliseconds that overlaps with brain activity. Methods for TMS artifact correction have been developed to remove the artifact and recover the underlying, immediate response of the cerebral cortex to the magnetic stimulus. In this study, four such algorithms are evaluated. Since there is no ground truth for the masked brain activity, pilot data formed from the superposition of the isolated TMS artifact on EEG brain activity are used to evaluate the performance of the algorithms. Different scenarios of TMS-EEG experiments are considered for the evaluation: TMS at resting state, TMS inducing epileptiform discharges, and TMS administered during epileptiform discharges. We show that a proposed gap filling method is able to reproduce qualitative characteristics and, in many cases, closely resemble the hidden EEG signal. Finally, shortcomings of the TMS correction algorithms as well as the pilot data approach are discussed. Graphical abstract The transcranial magnetic stimulation (TMS) artifact on the electroencephalogram (EEG) and its correction.
Collapse
|
18
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
19
|
Perera MPN, Bailey NW, Herring SE, Fitzgerald PB. Electrophysiology of obsessive compulsive disorder: A systematic review of the electroencephalographic literature. J Anxiety Disord 2019; 62:1-14. [PMID: 30469123 DOI: 10.1016/j.janxdis.2018.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/04/2018] [Accepted: 11/03/2018] [Indexed: 01/04/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic disease that causes significant decline in the quality of life of those affected. Due to our limited understanding of the underlying pathophysiology of OCD, successful treatment remains elusive. Although many have studied the pathophysiology of OCD through electroencephalography (EEG), limited attempts have been made to synthesize and interpret their findings. To bridge this gap, we conducted a comprehensive literature review using Medline/PubMed and considered the 65 most relevant studies published before June 2018. The findings are categorised into quantitative EEG, sleep related EEG and event related potentials (ERPs). Increased frontal asymmetry, frontal slowing and an enhancement in the ERP known as error related negativity (ERN) were consistent findings in OCD. However, sleep EEG and other ERP (P3 and N2) findings were inconsistent. Additionally, we analysed the usefulness of ERN as a potential candidate endophenotype. We hypothesize that dysfunctional frontal circuitry and overactive performance monitoring are the major underlying impairments in OCD. Additionally, we conceptualized that defective fronto-striato-thalamic circuitry causing poor cerebral functional connectivity gives rise to the OCD behavioural manifestations. Finally, we have discussed transcranial magnetic stimulation and EEG (TMS-EEG) applications in future research to further our knowledge of the underlying pathophysiology of OCD.
Collapse
Affiliation(s)
- M Prabhavi N Perera
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Level 4, 607, St. Kilda Road, Melbourne, Victoria 3004, Australia.
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Level 4, 607, St. Kilda Road, Melbourne, Victoria 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, 888 Toorak Rd, Camberwell, Victoria 3124, Australia.
| | - Sally E Herring
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, 888 Toorak Rd, Camberwell, Victoria 3124, Australia.
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Level 4, 607, St. Kilda Road, Melbourne, Victoria 3004, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare, 888 Toorak Rd, Camberwell, Victoria 3124, Australia.
| |
Collapse
|
20
|
Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study. Cortex 2018; 108:160-172. [DOI: 10.1016/j.cortex.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/23/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
|
21
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
22
|
Opie GM, Sidhu SK, Rogasch NC, Ridding MC, Semmler JG. Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimul 2018; 11:545-557. [DOI: 10.1016/j.brs.2017.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023] Open
|
23
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
24
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. Neuroimage 2017; 152:142-157. [PMID: 28274831 DOI: 10.1016/j.neuroimage.2017.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/12/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a well-recognised neuromodulatory technology which has been shown to induce short-lasting changes in motor-cortical excitability. The recent and rapid expansion of tDCS into the cognitive domain, however, necessitates deeper mechanistic understanding of its neurophysiological effects over non-motor brain regions. The present study utilised transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to probe the immediate and longer-term effects of both a bipolar (BP-tDCS) and more focal 4×1 High-Definition tDCS (HD-tDCS) montage applied over the left DLPFC on TMS-evoked potentials (TEPs) and oscillations in 19 healthy adult participants. 2-back working memory (WM) performance was also assessed as a marker of cognitive function. Region of interest (ROI) analyses taken from the F1 electrode directly adjacent to the stimulation site revealed increased P60 TEP amplitudes at this location 5min following BP-tDCS and 30min following HD-tDCS. Further global cluster based analyses of all scalp electrodes revealed widespread neuromodulatory changes following HD-tDCS, but not BP-tDCS, both five and 30min after stimulation, with reductions also detected in both beta and gamma oscillatory power over parieto-occipital channels 30min after stimulation. No significant changes in WM performance were observed following either HD-tDCS or BP-tDCS. This study highlights the capacity for single-session prefrontal anodal tDCS montages to modulate neurophysiological processes, as assessed with TMS-EEG.
Collapse
Affiliation(s)
- Aron T Hill
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia.
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| |
Collapse
|
25
|
Radhu N, Dominguez LG, Greenwood TA, Farzan F, Semeralul MO, Richter MA, Kennedy JL, Blumberger DM, Chen R, Fitzgerald PB, Daskalakis ZJ. Investigating Cortical Inhibition in First-Degree Relatives and Probands in Schizophrenia. Sci Rep 2017; 7:43629. [PMID: 28240740 PMCID: PMC5378912 DOI: 10.1038/srep43629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/26/2017] [Indexed: 01/16/2023] Open
Abstract
Deficits in GABAergic inhibitory neurotransmission are a reliable finding in schizophrenia (SCZ) patients. Previous studies have reported that unaffected first-degree relatives of patients with SCZ demonstrate neurophysiological abnormalities that are intermediate between probands and healthy controls. In this study, first-degree relatives of patients with SCZ and their related probands were investigated to assess frontal cortical inhibition. Long-interval cortical inhibition (LICI) was measured from the dorsolateral prefrontal cortex (DLPFC) using combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG). The study presents an extended sample of 129 subjects (66 subjects have been previously reported): 19 patients with SCZ or schizoaffective disorder, 30 unaffected first-degree relatives of these SCZ patients, 13 obsessive-compulsive disorder (OCD) patients, 18 unaffected first-degree relatives of these OCD patients and 49 healthy subjects. In the DLPFC, cortical inhibition was significantly decreased in patients with SCZ compared to healthy subjects. First-degree relatives of patients with SCZ showed significantly more cortical inhibition than their SCZ probands. No differences were demonstrated between first-degree relatives of SCZ patients and healthy subjects. Taken together, these findings show that more studies are needed to establish an objective biological marker for potential diagnostic usage in severe psychiatric disorders.
Collapse
Affiliation(s)
- Natasha Radhu
- Novartis Pharmaceuticals Canada Inc., Dorval, Quebec, Canada
| | - Luis Garcia Dominguez
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Tiffany A Greenwood
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Mawahib O Semeralul
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Margaret A Richter
- Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Victoria, Australia
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Bai Y, Xia X, Kang J, Yang Y, He J, Li X. TDCS modulates cortical excitability in patients with disorders of consciousness. NEUROIMAGE-CLINICAL 2017; 15:702-709. [PMID: 28702347 PMCID: PMC5487253 DOI: 10.1016/j.nicl.2017.01.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Abstract
Transcranial direct current stimulation (tDCS)1 has been reported to be a promising technique for consciousness improvement for patients with disorders of consciousness (DOC).2 However, there has been no direct electrophysiological evidence to demonstrate the efficacy of tDCS on patients with DOC. Therefore, we aim to measure the cortical excitability changes induced by tDCS in patients with DOC, to find electrophysiological evidence supporting the therapeutic efficacy of tDCS on patients with DOC. In this study, we enrolled sixteen patients with DOC, including nine vegetative state (VS)3 and seven minimally conscious state (MCS)4 (six females and ten males). TMS-EEG was applied to assess cortical excitability changes after twenty minutes of anodal tDCS of the left dorsolateral prefrontal cortex. Global cerebral excitability were calculated to quantify cortical excitability in the temporal domain: four time intervals (0–100, 100–200, 200–300, 300-400 ms). Then local cerebral excitability in the significantly altered time windows were investigated (frontal, left/right hemispheres, central, and posterior). Compared to baseline and sham stimulation, we found that global cerebral excitability increased in early time windows (0–100 and 100-200 ms) for patients with MCS; for the patients with VS, global cerebral excitability increased in the 0-100 ms interval but decreased in the 300-400 ms interval. The local cerebral excitability was significantly different between MCS and VS. The results indicated that tDCS can effectively modulate the cortical excitability of patients with DOC; and the changes in excitability in temporal and spatial domains are different between patients with MCS and those with VS. TDCS was used to alter cerebral excitability in patients of DOC. TMS-EEG was used to evaluate cortical excitability changes in patients of DOC. TDCS could induce significant cortical excitability changes in patients of DOC. TDCS induced different temporal-spatial excitability changes between MCS and VS.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiaoyu Xia
- Department of Neurosurgery, PLA Army General Hospital, Beijing 100700, China; Department of Biomedical Engineering, Medical school, Tsinghua University, China
| | - Jiannan Kang
- Institute of Electronic Information Engineering, Hebei University, Baoding 071002, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing 100700, China
| | - Jianghong He
- Department of Neurosurgery, PLA Army General Hospital, Beijing 100700, China.
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
27
|
Atluri S, Frehlich M, Mei Y, Garcia Dominguez L, Rogasch NC, Wong W, Daskalakis ZJ, Farzan F. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation. Front Neural Circuits 2016; 10:78. [PMID: 27774054 PMCID: PMC5054290 DOI: 10.3389/fncir.2016.00078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.
Collapse
Affiliation(s)
- Sravya Atluri
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Matthew Frehlich
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada; Department of Electrical and Computer Engineering, University of TorontoToronto, ON, Canada
| | - Ye Mei
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Luis Garcia Dominguez
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University Melbourne, VIC, Australia
| | - Willy Wong
- Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada; Department of Electrical and Computer Engineering, University of TorontoToronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada; Department of Psychiatry, University of TorontoToronto, ON, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada; Department of Psychiatry, University of TorontoToronto, ON, Canada
| |
Collapse
|
28
|
Farzan F, Vernet M, Shafi MMD, Rotenberg A, Daskalakis ZJ, Pascual-Leone A. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography. Front Neural Circuits 2016; 10:73. [PMID: 27713691 PMCID: PMC5031704 DOI: 10.3389/fncir.2016.00073] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Marine Vernet
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Mouhsin M D Shafi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA; Neuromodulation Program, Department of Neurology, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
29
|
Kirkovski M, Rogasch NC, Saeki T, Fitzgibbon BM, Enticott PG, Fitzgerald PB. Single Pulse Transcranial Magnetic Stimulation-Electroencephalogram Reveals No Electrophysiological Abnormality in Adults with High-Functioning Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2016; 26:606-16. [PMID: 27284688 DOI: 10.1089/cap.2015.0181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Neuroimaging and electrophysiological research have revealed a range of neural abnormalities in autism spectrum disorder (ASD), but a comprehensive understanding remains elusive. We utilized a novel methodology among individuals with ASD and matched controls, combining transcranial magnetic stimulation (TMS) with concurrent electroencephalogram (EEG) recording (TMS-EEG) to explore cortical function and connectivity in three sites implicated in the neuropathophysiology of ASD (dorsolateral prefrontal cortex, primary motor cortex, and temporoparietal junction). As there is evidence for neurobiological gender differences in ASD, we also examined the influence of biological sex. METHODS TMS pulses were applied to each of the three sites (right lateralized) during 20-channel EEG recording. RESULTS We did not identify any differences in the EEG response to TMS between ASD and control groups. This finding remained when data were stratified by sex. Nevertheless, traits and characteristics associated with ASD were correlated with the neurophysiological response to TMS. CONCLUSION While TMS-EEG did not appear to clarify the neuropathophysiology of ASD, the relationships identified between the neurophysiological response to TMS and clinical characteristics warrant further investigation.
Collapse
Affiliation(s)
- Melissa Kirkovski
- 1 Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong, Australia .,2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| | - Nigel C Rogasch
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia .,3 Monash Clinical and Imaging Neuroscience, School of Psychological Sciences and Monash Biomedical Imaging, Monash University , Clayton, Australia
| | - Takashi Saeki
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia .,4 Department of Psychiatry, Yokohama City University School of Medicine , Yokohama, Japan
| | - Bernadette M Fitzgibbon
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| | - Peter G Enticott
- 1 Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong, Australia .,2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| | - Paul B Fitzgerald
- 2 Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University , Clayton, Australia
| |
Collapse
|
30
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions. Neurosci Biobehav Rev 2016; 64:175-84. [DOI: 10.1016/j.neubiorev.2016.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
|
31
|
Hill AT, Fitzgerald PB, Hoy KE. Effects of Anodal Transcranial Direct Current Stimulation on Working Memory: A Systematic Review and Meta-Analysis of Findings From Healthy and Neuropsychiatric Populations. Brain Stimul 2016; 9:197-208. [DOI: 10.1016/j.brs.2015.10.006] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
|
32
|
|
33
|
Introduction to Nonconvulsive Brain Stimulation: Focus on Transcranial Magnetic Stimulation. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
34
|
Sato S, Bergmann TO, Borich MR. Opportunities for concurrent transcranial magnetic stimulation and electroencephalography to characterize cortical activity in stroke. Front Hum Neurosci 2015; 9:250. [PMID: 25999839 PMCID: PMC4419720 DOI: 10.3389/fnhum.2015.00250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/17/2015] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of disability in the United States. Despite the high incidence and mortality of stroke, sensitive and specific brain-based biomarkers predicting persisting disabilities are lacking. Both neuroimaging techniques like electroencephalography (EEG) and non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) have proven useful in predicting prognosis, recovery trajectories and response to rehabilitation in individuals with stroke. We propose, however, that additional synergetic effects can be achieved by simultaneously combining both approaches. Combined TMS-EEG is able to activate discrete cortical regions and directly assess local cortical reactivity and effective connectivity within the network independent of the integrity of descending fiber pathways and also outside the motor system. Studying cortical reactivity and connectivity in patients with stroke TMS-EEG may identify salient neural mechanisms underlying motor disabilities and lead to novel biomarkers of stroke pathophysiology which can then be used to assess, monitor, and refine rehabilitation approaches for individuals with significant disability to improve outcomes and quality of life after stroke.
Collapse
Affiliation(s)
- Sumire Sato
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine Atlanta, GA, USA
| | - Til Ole Bergmann
- Institute of Psychology, Christian-Albrechts University Kiel Kiel, Germany
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
35
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1948] [Impact Index Per Article: 194.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
36
|
Bortoletto M, Veniero D, Thut G, Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev 2014; 49:114-24. [PMID: 25541459 DOI: 10.1016/j.neubiorev.2014.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
Recent developments in neuroscience have emphasised the importance of integrated distributed networks of brain areas for successful cognitive functioning. Our current understanding is that the brain has a modular organisation in which segregated networks supporting specialised processing are linked through a few long-range connections, ensuring processing integration. Although such architecture is structurally stable, it appears to be flexible in its functioning, enabling long-range connections to regulate the information flow and facilitate communication among the relevant modules, depending on the contingent cognitive demands. Here we show how insights brought by the coregistration of transcranial magnetic stimulation and electroencephalography (TMS-EEG) integrate and support recent models of functional brain architecture. Moreover, we will highlight the types of data that can be obtained through TMS-EEG, such as the timing of signal propagation, the excitatory/inhibitory nature of connections and causality. Last, we will discuss recent emerging applications of TMS-EEG in the study of brain disorders.
Collapse
Affiliation(s)
- Marta Bortoletto
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
Radhu N, Garcia Dominguez L, Farzan F, Richter MA, Semeralul MO, Chen R, Fitzgerald PB, Daskalakis ZJ. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia. Brain 2014; 138:483-97. [PMID: 25524710 DOI: 10.1093/brain/awu360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex are specific to patients with schizophrenia and are not a generalized deficit that is shared by disorders of severe psychopathology.
Collapse
Affiliation(s)
- Natasha Radhu
- 1 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Luis Garcia Dominguez
- 1 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Faranak Farzan
- 1 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Margaret A Richter
- 2 Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mawahib O Semeralul
- 1 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- 3 Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paul B Fitzgerald
- 4 Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Victoria, Australia
| | - Zafiris J Daskalakis
- 1 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Rogasch NC, Thomson RH, Farzan F, Fitzgibbon BM, Bailey NW, Hernandez-Pavon JC, Daskalakis ZJ, Fitzgerald PB. Removing artefacts from TMS-EEG recordings using independent component analysis: Importance for assessing prefrontal and motor cortex network properties. Neuroimage 2014; 101:425-39. [DOI: 10.1016/j.neuroimage.2014.07.037] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/19/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
|
39
|
Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics. Proc Natl Acad Sci U S A 2014; 111:13553-8. [PMID: 25187557 DOI: 10.1073/pnas.1405508111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used in clinical interventions and basic neuroscience. Additionally, it has become a powerful tool to drive plastic changes in neuronal networks. However, highly resolved recordings of the immediate TMS effects have remained scarce, because existing recording techniques are limited in spatial or temporal resolution or are interfered with by the strong TMS-induced electric field. To circumvent these constraints, we performed optical imaging with voltage-sensitive dye (VSD) in an animal experimental setting using anaesthetized cats. The dye signals reflect gradual changes in the cells' membrane potential across several square millimeters of cortical tissue, thus enabling direct visualization of TMS-induced neuronal population dynamics. After application of a single TMS pulse across visual cortex, brief focal activation was immediately followed by synchronous suppression of a large pool of neurons. With consecutive magnetic pulses (10 Hz), widespread activity within this "basin of suppression" increased stepwise to suprathreshold levels and spontaneous activity was enhanced. Visual stimulation after repetitive TMS revealed long-term potentiation of evoked activity. Furthermore, loss of the "deceleration-acceleration" notch during the rising phase of the response, as a signature of fast intracortical inhibition detectable with VSD imaging, indicated weakened inhibition as an important driving force of increasing cortical excitability. In summary, our data show that high-frequency TMS changes the balance between excitation and inhibition in favor of an excitatory cortical state. VSD imaging may thus be a promising technique to trace TMS-induced changes in excitability and resulting plastic processes across cortical maps with high spatial and temporal resolutions.
Collapse
|
40
|
Accornero N, Capozza M, Pieroni L, Pro S, Davì L, Mecarelli O. EEG mean frequency changes in healthy subjects during prefrontal transcranial direct current stimulation. J Neurophysiol 2014; 112:1367-75. [PMID: 24920029 DOI: 10.1152/jn.00088.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this pilot study we evaluated electroencephalographic (EEG) mean frequency changes induced by prefrontal transcranial direct current stimulation (tDCS) and investigated whether they depended on tDCS electrode montage. Eight healthy volunteers underwent tDCS for 15 min during EEG recording. They completed six tDCS sessions, 1 wk apart, testing left and right direct current (DC) dipole directions with six different montages: four unipolar montages (one electrode on a prefrontal area, the other on the opposite wrist) and two bipolar montages (both electrodes on prefrontal areas), and a single sham session. EEG power spectra were assessed from four 1-min EEG epochs, before, during, and after tDCS. During tDCS the outcome variable, brain rate (fb), changed significantly, and the changes persisted for minutes after tDCS ended. With the DC dipole directed to the left (anode on the left prefrontal area or wrist), fb increased, and with the DC dipole directed to the right (anode on the right prefrontal area or wrist), fb decreased, suggesting asymmetric prefrontal cortex functional organization in the normal human brain. Anodal and cathodal effects were opposite but equally large. Gender left these effects unchanged.
Collapse
Affiliation(s)
- Neri Accornero
- Department of Neurological Sciences, "Sapienza" University, Rome, Italy; and
| | - Marco Capozza
- Department of Neurological Sciences, "Sapienza" University, Rome, Italy; and
| | - Laura Pieroni
- Department of Psychology, "Sapienza" University, Rome, Italy
| | - Stefano Pro
- Department of Neurological Sciences, "Sapienza" University, Rome, Italy; and
| | - Leonardo Davì
- Department of Neurological Sciences, "Sapienza" University, Rome, Italy; and
| | - Oriano Mecarelli
- Department of Neurological Sciences, "Sapienza" University, Rome, Italy; and
| |
Collapse
|
41
|
Kimiskidis VK, Valentin A, Kälviäinen R. Transcranial magnetic stimulation for the diagnosis and treatment of epilepsy. Curr Opin Neurol 2014; 27:236-41. [DOI: 10.1097/wco.0000000000000071] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Characterizing long interval cortical inhibition over the time-frequency domain. PLoS One 2014; 9:e92354. [PMID: 24642981 PMCID: PMC3958513 DOI: 10.1371/journal.pone.0092354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Long-interval cortical inhibition (LICI) can be recorded from motor and non-motor regions of the cortex through combined transcranial magnetic stimulation (TMS) with electroencephalography (EEG). This study aimed to evaluate additional dimensions of LICI characteristics over an extended time-frequency and spatial domain. This was done by introducing two alternative measures of LICI signal amplitude: the Discrete Fourier Transform (DFT) and the Hilbert transform (HT). Both approaches estimate signal amplitude not taking into account the phase. In both cases LICI was measured as the difference between the unconditioned and conditioned activity evoked by the test pulse. Finally, we evaluated whether the topographical patterns of single and paired responses differed beyond the expected variations in amplitude. MATERIALS AND METHODS LICI was delivered as single and paired pulses to the motor cortex (MC) and dorsolateral prefrontal cortex (DLPFC) in 33 healthy subjects with TMS-EEG. RESULTS Significant differences (p<0.0001) between the unconditioned and conditioned evoked activity were found for both the DLPFC and MC using both methods (i.e., DFT and HT) after correcting for multiple comparisons in the time-frequency domain. The influence of inhibition was found to be significantly larger in space and time than previously considered. Single and paired conditions differ in intensity, but also in their topographic pattern (i.e., the specific spatiotemporal configuration of active sources). CONCLUSION Similar results were found by both DFT and HT. The effect of inhibition across the cortex was also found to be complex and extended. In particular, it was found that LICI may be measured with high sensitivity in areas that were relatively distant from the stimulation site, which may have important practical applications. The analysis presented in this study overcomes some limitations of previous studies and could serve as a key reference for future studies examining TMS-indices of inhibition/excitation in healthy and diseased states.
Collapse
|
43
|
BAUER PRISCAR, KALITZIN STILIYAN, ZIJLMANS MAEIKE, SANDER JOSEMIRW, VISSER GERHARDH. CORTICAL EXCITABILITY AS A POTENTIAL CLINICAL MARKER OF EPILEPSY: A REVIEW OF THE CLINICAL APPLICATION OF TRANSCRANIAL MAGNETIC STIMULATION. Int J Neural Syst 2014; 24:1430001. [DOI: 10.1142/s0129065714300010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used for safe, noninvasive probing of cortical excitability (CE). We review 50 studies that measured CE in people with epilepsy. Most showed cortical hyperexcitability, which can be corrected with anti-epileptic drug treatment. Several studies showed that decrease of CE after epilepsy surgery is predictive of good seizure outcome. CE is a potential biomarker for epilepsy. Clinical application may include outcome prediction of drug treatment and epilepsy surgery.
Collapse
Affiliation(s)
- PRISCA R. BAUER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| | - STILIYAN KALITZIN
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| | - MAEIKE ZIJLMANS
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - JOSEMIR W. SANDER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - GERHARD H. VISSER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| |
Collapse
|
44
|
Cortical hyperexcitability: a new biomarker in generalized epilepsy syndromes. Epilepsy Curr 2013; 13:287-8. [PMID: 24348130 DOI: 10.5698/1535-7597-13.6.287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Zanon M, Battaglini PP, Jarmolowska J, Pizzolato G, Busan P. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study. Front Hum Neurosci 2013; 7:803. [PMID: 24324426 PMCID: PMC3839000 DOI: 10.3389/fnhum.2013.00803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022] Open
Abstract
The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans.
Collapse
Affiliation(s)
- Marco Zanon
- Cognitive Neuroscience Sector, International School for Advanced Studies, SISSA Trieste, Italy
| | | | | | | | | |
Collapse
|
46
|
Dichoptic Viewing Methods for Binocular Rivalry Research: Prospects for Large-Scale Clinical and Genetic Studies. Twin Res Hum Genet 2013; 16:1033-78. [DOI: 10.1017/thg.2013.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binocular rivalry (BR) is an intriguing phenomenon that occurs when two different images are presented, one to each eye, resulting in alternation orrivalrybetween the percepts. The phenomenon has been studied for nearly 200 years, with renewed and intensive investigation over recent decades. Therateof perceptual switching has long been known to vary widely between individuals but to be relatively stable within individuals. A recent twin study demonstrated that individual variation in BR rate is under substantial genetic control, a finding that also represented the first report, using a large study, of genetic contribution for any post-retinal visual processing phenomenon. The twin study had been prompted by earlier work showing BR rate was slow in the heritable psychiatric condition, bipolar disorder (BD). Together, these studies suggested that slow BR may represent an endophenotype for BD, and heralded the advent of modern clinical and genetic studies of rivalry. This new focus has coincided with rapid advances in 3D display technology, but despite such progress, specific development of technology for rivalry research has been lacking. This review therefore compares different display methods for BR research across several factors, including viewing parameters, image quality, equipment cost, compatibility with other investigative methods, subject group, and sample size, with a focus on requirements specific to large-scale clinical and genetic studies. It is intended to be a resource for investigators new to BR research, such as clinicians and geneticists, and to stimulate the development of 3D display technology for advancing interdisciplinary studies of rivalry.
Collapse
|
47
|
Akaishi R, Ueda N, Sakai K. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex. Front Hum Neurosci 2013; 7:365. [PMID: 23874285 PMCID: PMC3710996 DOI: 10.3389/fnhum.2013.00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.
Collapse
Affiliation(s)
- Rei Akaishi
- Department of Cognitive Neuroscience, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Department of Experimental Psychology, University of Oxford Oxford, UK
| | | | | |
Collapse
|
48
|
Fuggetta G, Noh NA. A neurophysiological insight into the potential link between transcranial magnetic stimulation, thalamocortical dysrhythmia and neuropsychiatric disorders. Exp Neurol 2013; 245:87-95. [DOI: 10.1016/j.expneurol.2012.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/06/2012] [Accepted: 10/05/2012] [Indexed: 01/08/2023]
|
49
|
Rogasch NC, Thomson RH, Daskalakis ZJ, Fitzgerald PB. Short-latency artifacts associated with concurrent TMS-EEG. Brain Stimul 2013; 6:868-76. [PMID: 23651674 DOI: 10.1016/j.brs.2013.04.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging method for studying cortical network properties. However, various artifacts affect measurement of TMS-evoked cortical potentials (TEPs), especially within 30 ms of stimulation. OBJECTIVE/HYPOTHESIS The aim of this study was to assess the origin and recovery of short-latency TMS-EEG artifacts (<30 ms) using different stimulators and under different experimental conditions. METHODS EEG was recorded during TMS delivered to a phantom head (melon) and 12 healthy volunteers with different TMS machines, at different scalp positions, at different TMS intensities, and following paired-pulse TMS. Recovery from the TMS artifact and other short-latency artifacts were compared between conditions. RESULTS Following phantom stimulation, the artifact resulting from different TMS machines (Magstim 200, Magventure MagPro R30 and X100) and pulse shapes (monophasic and biphasic) resulted in different artifact profiles. After accounting for differences between machines, TMS artifacts recovered within ∼12 ms. This was replicated in human participants, however a large secondary artifact (peaks at 5 and 10 ms) became prominent following stimulation over lateral scalp positions, which only recovered after ∼25-40 ms. Increasing TMS intensity increased secondary artifact amplitude over both motor and prefrontal cortex. There was no consistent modulation of the secondary artifact following inhibitory paired-pulse TMS (interstimulus interval = 100 ms) over motor cortex. CONCLUSIONS The secondary artifact observed in humans is consistent with activation of scalp muscles following TMS. TEPs can be recorded within a short period of time (10-12 ms) following TMS, however measures must be taken to avoid muscle stimulation.
Collapse
Affiliation(s)
- Nigel C Rogasch
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia.
| | | | | | | |
Collapse
|