1
|
Gandla K, Babu AK, Unnisa A, Sharma I, Singh LP, Haque MA, Dashputre NL, Baig S, Siddiqui FA, Khandaker MU, Almujally A, Tamam N, Sulieman A, Khan SL, Emran TB. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci 2023; 13:457. [PMID: 36979267 PMCID: PMC10046158 DOI: 10.3390/brainsci13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hanamakonda 506001, Telangana, India
| | - Ancha Kishore Babu
- School of Pharmacy, KPJ Healthcare University, Persiaran Seriemas, Nilai 71800, Negeri Sembilan, Malaysia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 55476, Saudi Arabia
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram 821305, Bihar, India
| | - Mahammad Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Neelam Laxman Dashputre
- Department of Pharmacology, METs, Institute of Pharmacy Bhujbal Knowledge City, Adgaon, Nashik 422003, Maharashtra, India
| | - Shahajan Baig
- Clinical Research Associate, Clinnex, Ahmedabad 380054, Gujarat, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Abdullah Almujally
- Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
2
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
3
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Keilhoff G, Ludwig C, Pinkernelle J, Lucas B. Effects of Gynostemma pentaphyllum on spinal cord motor neurons and microglial cells in vitro. Acta Histochem 2021; 123:151759. [PMID: 34425524 DOI: 10.1016/j.acthis.2021.151759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022]
Abstract
The regenerative capability of spinal cord neurons is limited to impossible. Thus, experimental approaches supporting reconstruction/regeneration are in process. This study focused on the evaluation of the protective potency of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with anti-oxidative and neuroprotective activities, in vitro on organotypic spinal cord cultures, the motor-neuron-like NSC-34 cell line and the microglial cell line BV-2. Organotypic cultures were mechanically stressed by the slicing procedure and the effect of GP on motor neuron survival and neurite sprouting was tested by immunohistochemistry. NSC-34 cells were neuronal differentiated by using special medium. Afterwards, cell survival (propidium iodide/fluorescein diacetate labeling), proliferation (BrdU-incorporation), and neurite sprouting were evaluated. BV-2 cells were stimulated with LPS/interferon γ and subjected to migration assay and nanoparticle uptake. Cell survival, proliferation and the expression pattern of different microglial activation markers (cFOS, iNOS) as well as transcription factors (PPARγ, YB1) were analyzed. In organotypic cultures, high-dose GP supported survival of motor neurons and especially of the neuronal fiber network. Despite reduced neurodegeneration, however, there was a GP-mediated activation of astro- and microglia. In NSC-34 cells, high-dosed GP had degenerative and anti-proliferative effects, but only in normal medium. Moreover, GP supported the neuro-differentiation ability. In BV-2 cells, high-dosed GP was toxic. In lower dosages, GP affected cell survival and proliferation when combined with LPS/interferon γ. Nanoparticle uptake, migration ability, and the transcription factor PPARγ, however, GP affected directly. The data suggest positive effects of GP on injured spinal motor neurons. Moreover, GP activated microglial cells. The dual role of microglia (protective/detrimental) in neurodegenerative processes required further experiments to enhance the knowledge about GP effects. Therefore, a possible clinical use of GP in spinal cord injuries is still a long way off.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany.
| | - Christina Ludwig
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Benjamin Lucas
- Dept. of Trauma Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
5
|
Ramiro-Diaz JM, Giermakowska W, Weaver JM, Jernigan NL, Gonzalez Bosc LV. Mechanisms of NFATc3 activation by increased superoxide and reduced hydrogen peroxide in pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 2014; 307:C928-38. [PMID: 25163518 PMCID: PMC4233259 DOI: 10.1152/ajpcell.00244.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 01/30/2023]
Abstract
We recently demonstrated increased superoxide (O2(·-)) and decreased H2O2 levels in pulmonary arteries of chronic hypoxia-exposed wild-type and normoxic superoxide dismutase 1 (SOD1) knockout mice. We also showed that this reciprocal change in O2(·-) and H2O2 is associated with elevated activity of nuclear factor of activated T cells isoform c3 (NFATc3) in pulmonary arterial smooth muscle cells (PASMC). This suggests that an imbalance in reactive oxygen species levels is required for NFATc3 activation. However, how such imbalance activates NFATc3 is unknown. This study evaluated the importance of O2(·-) and H2O2 in the regulation of NFATc3 activity. We tested the hypothesis that an increase in O2(·-) enhances actin cytoskeleton dynamics and a decrease in H2O2 enhances intracellular Ca(2+) concentration, contributing to NFATc3 nuclear import and activation in PASMC. We demonstrate that, in PASMC, endothelin-1 increases O2(·-) while decreasing H2O2 production through the decrease in SOD1 activity without affecting SOD protein levels. We further demonstrate that O2(·-) promotes, while H2O2 inhibits, NFATc3 activation in PASMC. Additionally, increased O2(·-)-to-H2O2 ratio activates NFATc3, even in the absence of a Gq protein-coupled receptor agonist. Furthermore, O2(·-)-dependent actin polymerization and low intracellular H2O2 concentration-dependent increases in intracellular Ca(2+) concentration contribute to NFATc3 activation. Together, these studies define important and novel regulatory mechanisms of NFATc3 activation in PASMC by reactive oxygen species.
Collapse
Affiliation(s)
- Juan Manuel Ramiro-Diaz
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - John M Weaver
- Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico;
| |
Collapse
|
6
|
Keilhoff G, Lucas B, Pinkernelle J, Steiner M, Fansa H. Effects of cerebrolysin on motor-neuron-like NSC-34 cells. Exp Cell Res 2014; 327:234-55. [PMID: 24997385 DOI: 10.1016/j.yexcr.2014.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023]
Abstract
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL)--a proteolytic peptide fraction--were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Benjamin Lucas
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael Steiner
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Hisham Fansa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Teutoburger Str. 50, D-33604 Bielefeld, Germany
| |
Collapse
|