1
|
Gouveia F, Pérez MC, Bicker J, Silva A, Santos AE, Pereira CF, Camins A, Falcão A, Cruz T, Ettcheto M, Fortuna A. Protective effects of irbesartan against neurodegeneration in APP/PS1 mice: Unraveling its triple anti-apoptotic, anti-inflammatory and anti-oxidant action. Biomed Pharmacother 2025; 188:118167. [PMID: 40414000 DOI: 10.1016/j.biopha.2025.118167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Alzheimer's disease (AD) involves a complex interplay between amyloid-β plaques, oxidative stress, neuroinflammation and apoptosis, suggesting that multi-target therapies may be more effective than single-target treatments. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) have shown protective effects against AD in hypertensive patients. However, those poor blood-brain barrier (BBB) permeability exhibit limited efficacy in neurodegenerative disorders. This study investigated the neuroprotective potential of three ARBs and one ACEI using a combined in vitro and in vivo approach. In N2a and N2a-APPswe cell lines, irbesartan showed the most robust effects, notably increasing p-AKT and HMOX1 levels. Based on these results, irbesartan was selected for the following in vivo studies and administered intranasally (40 mg/kg) to APP/PS1 male mice for 10 weeks. Treated animals showed significant improvements in memory performance, as measured by the novel object recognition test and the Morris water maze. Additionally, irbesartan enhanced dendritic spine density, restored mitochondrial bioenergetics and BBB integrity, and reduced apoptotic markers. These effects were accompanied by a marked reduction in oxidative stress and neuroinflammation. Overall, these results support the potential of intranasal irbesartan as a promising multi-target therapeutic strategy for AD, capable of modulating key pathological features, including synaptic dysfunction, mitochondrial dysfunction, oxidative stress, apoptosis, and neuroinflammation.
Collapse
Affiliation(s)
- Filipa Gouveia
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Marina Carrasco Pérez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Teresa Cruz
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Shokr MM, Badawi GA, Elshazly SM, Zaki HF, Mohamed AF. Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders. ACS Pharmacol Transl Sci 2025; 8:47-65. [PMID: 39816800 PMCID: PMC11729429 DOI: 10.1021/acsptsci.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions. Nonetheless, relatively little is known about the specific molecular mechanisms underlying S1R activity. Many studies on S1R protein have highlighted the importance of maintaining normal cellular homeostasis through its control of calcium and lipid exchange between the ER and mitochondria, ER-stress response, and many other mechanisms. In this review, we will discuss S1R different cellular localization and explain S1R-associated biological activity, such as its localization in the ER-plasma membrane and Mitochondrion-Associated ER Membrane interfaces. While outlining the cellular mechanisms and important binding partners involved in these processes, we also explained how the dysregulation of these pathways contributes to neurodegenerative disorders.
Collapse
Affiliation(s)
- Mustafa M. Shokr
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University−Arish Branch, Arish, 45511, Egypt
| | - Ghada A. Badawi
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University−Arish Branch, Arish, 45511, Egypt
| | - Shimaa M. Elshazly
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hala F. Zaki
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F. Mohamed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty
of Pharmacy, King Salman International University
(KSIU), South Sinai 46612, Egypt
| |
Collapse
|
3
|
Sillapachaiyaporn C, Wongwan C, Mongkolpobsin K, Nilkhet S, Isidoro C, Chuchawankul S, Tencomnao T. Ergosterol promotes neurite outgrowth, inhibits amyloid-beta synthesis, and extends longevity: In vitro neuroblastoma and in vivo Caenorhabditis elegans evidence. Life Sci 2024; 345:122606. [PMID: 38574884 DOI: 10.1016/j.lfs.2024.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
AIMS Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-β (Aβ) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aβ-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aβ precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aβ production and the potential inhibition of Aβ-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aβ synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of β- and γ-secretases. In Aβ-overexpressing C. elegans, ergosterol decreased Aβ accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aβ synthesis, and enhancing longevity.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chamaiphorn Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ciro Isidoro
- Department of Health Sciences, University of Eastern Piedmont 'Amedeo Avogadro', Novara 28100, Italy
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Rangsinth P, Duangjan C, Sillapachaiyaporn C, Isidoro C, Prasansuklab A, Tencomnao T. Caesalpinia mimosoides Leaf Extract Promotes Neurite Outgrowth and Inhibits BACE1 Activity in Mutant APP-Overexpressing Neuronal Neuro2a Cells. Pharmaceuticals (Basel) 2021; 14:ph14090901. [PMID: 34577601 PMCID: PMC8469274 DOI: 10.3390/ph14090901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is implicated in the imbalance of several proteins, including Amyloid-β (Aβ), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aβ generation. Medicinal herbs with effects on neurite outgrowth stimulation and BACE1 inhibition may benefit AD. This study aimed to investigate the neurite outgrowth stimulatory effect, along with BACE1 inhibition of Caesalpinia mimosoides (CM), using wild-type (Neuro2a) and APP (Swedish mutant)-overexpressing (Neuro2a/APPSwe) neurons. The methanol extract of CM leaves stimulated neurite outgrowth in wild-type and APP-overexpressing cells. After exposure to the extract, the mRNA expression of the neurite outgrowth activation genes growth-associated protein-43 (GAP-43) and teneurin-4 (Ten-4) was increased in both Neuro2a and Neuro2a/APPSwe cells, while the mRNA expression of neurite outgrowth negative regulators Nogo receptor (NgR) and Lingo-1 was reduced. Additionally, the extract suppressed BACE1 activity in the APP-overexpressing neurons. Virtual screening demonstrated that quercetin-3′-glucuronide, quercetin-3-O-glucoside, clausarinol, and theogallin were possible inhibitors of BACE1. ADMET was analyzed to predict drug-likeness properties of CM-constituents. These results suggest that CM extract promotes neurite outgrowth and inhibits BACE1 activity in APP-overexpressing neurons. Thus, CM may serve as a source of drugs for AD treatment. Additional studies for full identification of bioactive constituents and to confirm the neuritogenesis in vivo are needed for translation into clinic of the present findings.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Chatrawee Duangjan
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-2218-8048 (A.P.); +66-2218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-2218-8048 (A.P.); +66-2218-1533 (T.T.)
| |
Collapse
|
6
|
Structural and Functional Alterations in Mitochondria-Associated Membranes (MAMs) and in Mitochondria Activate Stress Response Mechanisms in an In Vitro Model of Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9080881. [PMID: 34440085 PMCID: PMC8389659 DOI: 10.3390/biomedicines9080881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of extracellular plaques composed by amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. AD-related neurodegenerative mechanisms involve early changes of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) and impairment of cellular events modulated by these subcellular domains. In this study, we characterized the structural and functional alterations at MAM, mitochondria, and ER/microsomes in a mouse neuroblastoma cell line (N2A) overexpressing the human amyloid precursor protein (APP) with the familial Swedish mutation (APPswe). Proteins levels were determined by Western blot, ER-mitochondria contacts were quantified by transmission electron microscopy, and Ca2+ homeostasis and mitochondria function were analyzed using fluorescent probes and Seahorse assays. In this in vitro AD model, we found APP accumulated in MAM and mitochondria, and altered levels of proteins implicated in ER-mitochondria tethering, Ca2+ signaling, mitochondrial dynamics, biogenesis and protein import, as well as in the stress response. Moreover, we observed a decreased number of close ER-mitochondria contacts, activation of the ER unfolded protein response, reduced Ca2+ transfer from ER to mitochondria, and impaired mitochondrial function. Together, these results demonstrate that several subcellular alterations occur in AD-like neuronal cells, which supports that the defective ER-mitochondria crosstalk is an important player in AD physiopathology.
Collapse
|
7
|
Resende R, Ferreira-Marques M, Moreira P, Coimbra JRM, Baptista SJ, Isidoro C, Salvador JAR, Dinis TCP, Pereira CF, Santos AE. New BACE1 Chimeric Peptide Inhibitors Selectively Prevent AβPP-β Cleavage Decreasing Amyloid-β Production and Accumulation in Alzheimer's Disease Models. J Alzheimers Dis 2021; 76:1317-1337. [PMID: 32597812 DOI: 10.3233/jad-200381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND A disease-modifying therapy for Alzheimer's disease (AD) is still an unmet clinical need. The formation of amyloid-β (Aβ) requires the initial cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (beta-site AβPP cleaving enzyme 1), which is a prime therapeutic target for AD. OBJECTIVE We aimed to design and develop a selective BACE1 inhibitor suitable to AD treatment. METHODS The new BACE1 inhibitors consist on a chimeric peptide including a sequence related to the human Swedish mutant form of AβPP (AβPPswe) conjugated with the TAT carrier that facilitates cell membrane permeation and the crossing of the blood-brain barrier. Additionally to the chimeric peptide in the L-form, we developed a D-retroinverso chimeric peptide. The latter strategy, never used with BACE1 inhibitors, is considered to favor a significantly higher half-life and lower immunogenicity. RESULTS We found that both chimeric peptides inhibit recombinant BACE1 activity and decrease Aβ40/42 production in Neuro-2a (N2A) cells expressing AβPPswe without inducing cytotoxicity. The intraperitoneal administration of these peptides to 3xTg-AD mice decreased plasma and brain Aβ40/42 levels, as well as brain soluble AβPPβ production. Also, a reduction of insoluble Aβ was observed in the brain after chronic treatment. Noteworthy, the chimeric peptides selectively inhibited the AβPP-β cleavage relatively to the proteolysis of other BACE1 substrates such as close homologue of L1 (CHL1) and seizure-related gene 6 (SEZ6). CONCLUSIONS Overall these new BACE1 chimeric peptideshold promising potential as a selective disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Rosa Resende
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Coimbra, Portugal
| | - Marisa Ferreira-Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology, Coimbra, Portugal
| | - Patrícia Moreira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology, Coimbra, Portugal
| | - Judite R M Coimbra
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
| | - Salete J Baptista
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,Chem4Pharma, Coimbra, Portugal
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Jorge A R Salvador
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
| | - Teresa C P Dinis
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Biochemistry and Biology, Coimbra, Portugal
| | - Cláudia F Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Medicine, Institute of Biochemistry, Coimbra, Portugal
| | - Armanda E Santos
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Biochemistry and Biology, Coimbra, Portugal
| |
Collapse
|
8
|
Silva A, Pereira M, Carrascal MA, Brites G, Neves B, Moreira P, Resende R, Silva MM, Santos AE, Pereira C, Cruz MT. Calcium Modulation, Anti-Oxidant and Anti-Inflammatory Effect of Skin Allergens Targeting the Nrf2 Signaling Pathway in Alzheimer's Disease Cellular Models. Int J Mol Sci 2020; 21:ijms21207791. [PMID: 33096789 PMCID: PMC7594024 DOI: 10.3390/ijms21207791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 01/13/2023] Open
Abstract
Experimental evidence highlights nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a molecular target in Alzheimer's disease (AD). The well-known effect of electrophilic cysteine-reactive skin allergens on Nrf2-activation led to the hypothesis that these compounds could have a therapeutic role in AD. This was further supported by the neuroprotective activity of the skin allergen dimethyl fumarate (DMF), demonstrated in in vivo models of neurodegenerative diseases. We evaluated the effect of the cysteine-reactive allergens 1,4-phenylenediamine (PPD) and methyl heptine carbonate (MHC) on (1) neuronal redox imbalance and calcium dyshomeostasis using N2a wild-type (N2a-wt) and human APP-overexpressing neuronal cells (wild-type, N2a-APPwt) and (2) on neuroinflammation, using microglia BV-2 cells exposed to LPS (lipopolysaccharide). Phthalic anhydride (PA, mainly lysine-reactive), was used as a negative control. DMF, PPD and MHC increased Hmox1 gene and HMOX1 protein levels in N2a-APPwt cells suggesting Nrf2-dependent antioxidant activity. MHC, but also PA, rescued N2a-APPwt mitochondrial membrane potential and calcium levels in a Nrf2-independent pathway. All the chemicals showed anti-inflammatory activity by decreasing iNOS protein in microglia. This work highlights the potential neuroprotective and anti-inflammatory role of the selected skin allergens in in vitro models of AD, and supports further studies envisaging the validation of the results using in vivo AD models.
Collapse
Affiliation(s)
- Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Correspondence: (A.S.); (M.T.C.)
| | - Marta Pereira
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | | | - Gonçalo Brites
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Bruno Neves
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Patrícia Moreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
| | - Rosa Resende
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- University of Coimbra, Institute for Interdisciplinary Research (IIIUC), 3030-789 Coimbra, Portugal
| | - Maria Manuel Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Armanda E. Santos
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Cláudia Pereira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence: (A.S.); (M.T.C.)
| |
Collapse
|
9
|
Baidukova O, Wang Q, Chaiwaree S, Freyer D, Prapan A, Georgieva R, Zhao L, Bäumler H. Antioxidative protection of haemoglobin microparticles (HbMPs) by PolyDopamine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S693-S701. [PMID: 30450978 DOI: 10.1080/21691401.2018.1505748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Clinically applicable haemoglobin-based oxygen carriers (HBOCs) should neither induce immunological nor toxic reactions. Additionally, Hb should be protected against oxidation. In the absence of protective enzymes (superoxide dismutase (SOD) and catalase (CAT)) Hb is oxidized to MetHb and thus losing its function of oxygen delivery. Alternatively, polydopamine (PD), a scavenger of free radicals, could be used for Hb protection against oxidation Therefore, we synthetized HbMPs modified with PD. The content of functional haemoglobin in these PD-HbMPs was twice higher than that in the control HbMPs due to the protective antioxidant effect of PD. In addition, the PD-HbMPs exhibited a high scavenging activity of free radicals including H2O2 and excellent biocompatibility. In contrast to monomeric dopamine, which has been shown to produce toxic effects on neurons due to formation of H2O2, hydroxyl radicals and superoxide during the process of auto-oxidation, PD-HbMPs are not neurotoxic. Consequently, the results presented here suggest a great potential of PD-HbMPs as HBOCs.
Collapse
Affiliation(s)
- Olga Baidukova
- a Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine , Berlin , Germany
| | - Quan Wang
- a Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine , Berlin , Germany.,b Institute of Health Service and Transfusion Medicine , Bejing , PR China
| | - Saranya Chaiwaree
- a Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine , Berlin , Germany.,c Faculty of Pharmacy , Payap University , Chiang Mai , Thailand
| | - Dorette Freyer
- d Department of Experimental Neurology, Clinic of Neurology , Charité-Universitätsmedizin Berlin , Berlin , Germany
| | - Ausanai Prapan
- a Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine , Berlin , Germany.,e Department of Radiological Technology , Naresuan University , Phitsanulok , Thailand
| | - Radostina Georgieva
- a Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine , Berlin , Germany.,f Medical Faculty, Department of Medical Physics, Biophysics, and Radiology , Trakia Unversity , Stara Zagora , Bulgaria
| | - Lian Zhao
- b Institute of Health Service and Transfusion Medicine , Bejing , PR China
| | - Hans Bäumler
- a Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine , Berlin , Germany
| |
Collapse
|
10
|
Kumari S, Mukherjee A, Mukhopadhyay CK. Dopamine promotes cathepsin B-mediated amyloid precursor protein degradation by reactive oxygen species-sensitive mechanism in neuronal cell. Mol Cell Biochem 2018; 454:153-163. [PMID: 30350305 DOI: 10.1007/s11010-018-3460-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/16/2018] [Indexed: 12/01/2022]
Abstract
Recent literature suggested an important function of native amyloid precursor protein (APP) as amine oxidase implicating in protection of brain cells from catecholamine-induced toxicity. However, any role of catecholamines on regulation of native APP has not been explored. Here we report that dopamine (DA), one of the most prominent catecholamine neurotransmitters in brain, down-modulates native APP protein in several neuronal cell types. Using SH-SY5Y cells as model, we detected no alteration of transcript expression and unaffected translation suggested that DA might induce APP degradation. We actually found that DA treatment decreased the stability of APP. Lysosomal blockers inhibited DA-induced APP degradation, but specific proteasomal blocker failed to do so. We detected the role of cathepsin B in DA-induced APP degradation by using pharmacological inhibitor and specific siRNA. We also revealed that DA could increase cathepsin B expression at both transcript and protein levels. Using antioxidant N-acetyl cysteine, we detected increased level of reactive oxygen species generation that was found responsible for induced cathepsin B expression by DA and resultant APP degradation. Our study reveals the existence of reciprocal regulation of a catecholamine and an amine oxidase implicating in brain catecholamine homeostasis.
Collapse
Affiliation(s)
- Sanju Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,National Institute of Malaria Research, New Delhi, India
| | - Abhishek Mukherjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Brimson JM, Safrany ST, Qassam H, Tencomnao T. Dipentylammonium Binds to the Sigma-1 Receptor and Protects Against Glutamate Toxicity, Attenuates Dopamine Toxicity and Potentiates Neurite Outgrowth in Various Cultured Cell Lines. Neurotox Res 2018; 34:263-272. [PMID: 29589276 DOI: 10.1007/s12640-018-9883-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease that affects 44 million people worldwide, costing the world $605 billion to care for those affected not taking into account the physical and psychological costs for those who care for Alzheimer's patients. Dipentylammonium is a simple amine, which is structurally similar to a number of other identified sigma-1 receptor ligands with high affinities such as (2R-trans)-2butyl-5-heptylpyrrolidine, stearylamine and dodecylamine. This study investigates whether dipentylammonium is able to provide neuroprotective effects similar to those of sigma-1 receptor agonists such as PRE-084. Here we identify dipentylammonium as a sigma-1 receptor ligand with nanomolar affinity. We have found that micromolar concentrations of dipentylammonium protect from glutamate toxicity and prevent NFκB activation in HT-22 cells. Micromolar concentrations of dipentylammonium also protect stably expressing amyloid precursor protein Swedish mutant (APP/Swe) Neuro2A cells from toxicity induced by 150 μM dopamine, suggesting that dipentylammonium may be useful for the treatment of Parkinsonian symptoms in Alzheimer's patients which are often associated with a more rapid deterioration of cognitive and physical ability. Finally, we found that low micromolar concentrations of dipentylammonium could out preform known sigma-1 receptor agonist PRE-084 in potentiating neurite outgrowth in Neuro2A cells, further suggesting that dipentylammonium has a potential use in the treatment of neurodegenerative diseases and could be acting through the sigma-1 receptor.
Collapse
Affiliation(s)
- James M Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10230, Thailand
| | - Stephen T Safrany
- Royal College of Surgeons in Ireland, Medical University of Bahrain, P.O. Box 15503, Adliya, Bahrain
| | - Heider Qassam
- Department of Molecular and Cell Biology, University in Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10230, Thailand.
| |
Collapse
|
12
|
Vidoni C, Secomandi E, Castiglioni A, Melone MAB, Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int 2017; 117:174-187. [PMID: 28532681 DOI: 10.1016/j.neuint.2017.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Parkinsonian-like motor deficits in Huntington's Disease (HD) patients are associated with abnormal dopamine neurotransmission in the striatum. Dopamine metabolism leads to the formation of oxidized dopamine quinones that exacerbates mitochondrial dysfunction with production of reactive oxygen species (ROS) that eventually lead to neuronal cell death. We have previously shown that dopamine-induced oxidative stress triggers apoptotic cell death in dopaminergic neuroblastoma SH-SY5Y cells hyper-expressing the mutant polyQ Huntingtin (polyQ-Htt) protein. Dopamine toxicity was paralleled by impaired autophagy clearance of the polyQ-Htt aggregates. In this study, we found that Dopamine affects the stability and function of ATG4, a redox-sensitive cysteine-protein involved in the processing of LC3, a key step in the formation of autophagosomes. Resveratrol, a dietary polyphenol with anti-oxidant and pro-autophagic properties, has shown neuroprotective potential in HD. Yet the molecular mechanism through which Resveratrol can protect HD cells against DA is not known. Here, we show that Resveratrol prevents the generation of ROS, restores the level of ATG4, allows the lipidation of LC3, facilitates the degradation of polyQ-Htt aggregates and protects the cells from Dopamine toxicity. The present findings provide a mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, University of Campania "Luigi Vanvitelli", Via Sergio Pansini, 5- 80131, Naples, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
13
|
Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics. Neurochem Int 2016; 101:132-143. [PMID: 27840125 DOI: 10.1016/j.neuint.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, Second University of Naples, Naples, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| |
Collapse
|
14
|
Vidoni C, Follo C, Savino M, Melone MAB, Isidoro C. The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Med Res Rev 2016; 36:845-70. [DOI: 10.1002/med.21394] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinic and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| |
Collapse
|
15
|
Alquezar C, Esteras N, de la Encarnación A, Moreno F, López de Munain A, Martín-Requero Á. Increasing progranulin levels and blockade of the ERK1/2 pathway: upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia. Eur Neuropsychopharmacol 2015; 25:386-403. [PMID: 25624003 DOI: 10.1016/j.euroneuro.2014.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 09/03/2014] [Accepted: 12/24/2014] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder marked by mild-life onset and progressive changes in behavior, social cognition, and language. Loss-of-function progranulin gene (GRN) mutations are the major cause of FTLD with TDP-43 protein inclusions (FTLD-TDP). Disease-modifying treatments for FTLD-TDP are not available yet. Mounting evidence indicates that cell cycle dysfunction may play a pathogenic role in neurodegenerative disorders including FTLD. Since cell cycle re-entry of posmitotic neurons seems to precede neuronal death, it was hypothesized that strategies aimed at preventing cell cycle progression would have neuroprotective effects. Recent research in our laboratory revealed cell cycle alterations in lymphoblasts from FTLD-TDP patients carrying a null GRN mutation, and in PGRN deficient SH-SY5Y neuroblastoma cells, involving overactivation of the ERK1/2 signaling pathway. In this work, we have investigated the effects of PGRN enhancers drugs and ERK1/2 inhibitors, in these cellular models of PGRN-deficient FTLD. We report here that both restoring the PGRN content, by suberoylanilide hydroxamic acid (SAHA) or chloroquine (CQ), as blocking ERK1/2 activation by selumetinib (AZD6244) or MEK162 (ARRY-162), normalized the CDK6/pRb pathway and the proliferative activity of PGRN deficient cells. Moreover, we found that SAHA and selumetinib prevented the cytosolic TDP-43 accumulation in PGRN-deficient lymphoblasts. Considering that these drugs are able to cross the blood-brain barrier, and assuming that the alterations in cell cycle and signaling observed in lymphoblasts from FTLD patients could be peripheral signs of the disease, our results suggest that these treatments may serve as novel therapeutic drugs for FTLD associated to GRN mutations.
Collapse
Affiliation(s)
- Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ana de la Encarnación
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fermín Moreno
- Neuroscience Area-Institute Biodonostia, San Sebastián, Spain; Department of Neurology, Hospital Donostia, san sebastian, Spain; CIBER de Enfermedades neurodegenerativas (CIBERNED), Madrid, Spain
| | - Adolfo López de Munain
- Neuroscience Area-Institute Biodonostia, San Sebastián, Spain; Department of Neurology, Hospital Donostia, san sebastian, Spain; Department of Neurosciences, University of Basque Country, San Sebastián, Spain; CIBER de Enfermedades neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
16
|
Thongrakard V, Titone R, Follo C, Morani F, Suksamrarn A, Tencomnao T, Isidoro C. Turmeric toxicity in A431 epidermoid cancer cells associates with autophagy degradation of anti-apoptotic and anti-autophagic p53 mutant. Phytother Res 2014; 28:1761-9. [PMID: 25044209 DOI: 10.1002/ptr.5196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/06/2022]
Abstract
The keratinocyte-derived A431 Squamous Cell Carcinoma cells express the p53R273H mutant, which has been reported to inhibit apoptosis and autophagy. Here, we show that the crude extract of turmeric (Curcuma longa), similarly to its bioactive component Curcumin, could induce both apoptosis and autophagy in A431 cells, and these effects were concomitant with degradation of p53. Turmeric and curcumin also stimulated the activity of mTOR, which notoriously promotes cell growth and acts negatively on basal autophagy. Rapamycin-mediated inhibition of mTOR synergized with turmeric and curcumin in causing p53 degradation, increased the production of autophagosomes and exacerbated cell toxicity leading to cell necrosis. Small-interference mediated silencing of the autophagy proteins BECLIN 1 or ATG7 abrogated the induction of autophagy and largely rescued p53 stability in Turmeric-treated or Curcumin-treated cells, indicating that macroautophagy was mainly responsible for mutant p53 degradation. These data uncover a novel mechanism of turmeric and curcumin toxicity in chemoresistant cancer cells bearing mutant p53.
Collapse
Affiliation(s)
- Visa Thongrakard
- Dipartimento di Scienze della Salute, Laboratorio di Patologia Molecolare, Università del Piemonte Orientale, Novara, 28100, Italy; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
17
|
Thongrakard V, Ruangrungsi N, Ekkapongpisit M, Isidoro C, Tencomnao T. Protection from UVB Toxicity in Human Keratinocytes by Thailand Native Herbs Extracts. Photochem Photobiol 2014; 90:214-24. [PMID: 23931284 DOI: 10.1111/php.12153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
Thai traditional medicine employs a wide range of indigenous herbs in the forms of tincture or tea for the cure of skin and systemic inflammatory diseases. The protection by Thai plants extracts against UVB DNA damage and cytotoxicity was investigated in human keratinocytes. Petroleum ether, dichloromethane and ethanol extracts were prepared from 15 Thai herb species, and the total phenolic and flavonoid contents, the antioxidant and UV-absorbing properties were assessed by standard procedures. Cytoprotective effects were evaluated on the basis of cell survival, caspase-3 activity and pyrimidine dimers determination. High total phenolic and flavonoid contents were found in the ethanol and dichloromethane fractions. Dichloromethane extract of turmeric was shown to possess the highest antioxidant activity. The maximum UV absorptions were found in the ethanol extract of turmeric and in the dichloromethane extract of ginger. These extracts stimulated the synthesis of Thioredoxin 1, an antioxidant protein, and could protect human HaCaT keratinocytes from UV-induced DNA damage and cytotoxicity. The present data support the utilization of turmeric and ginger extracts in anti-UV cosmetic pharmaceuticals.
Collapse
Affiliation(s)
- Visa Thongrakard
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Nijsiri Ruangrungsi
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Ekkapongpisit
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare, Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Tewin Tencomnao
- Center for Excellence in Omics-Nano Medical Technology Development Project, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Yang J, Li S, Liu YX. Systematic analysis of diabetes- and glucose metabolism-related proteins and its application to Alzheimer’s disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.66078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|