1
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
2
|
Egunlusi AO, Malan SF, Omoruyi SI, Ekpo OE, Joubert J. 4-Oxatricyclo[5.2.1.0 2,6]dec-8-ene-3,5-dione Derivatives as NMDA Receptor- and VGCC Blockers with Neuroprotective Potential. Molecules 2020; 25:E4552. [PMID: 33027964 PMCID: PMC7582567 DOI: 10.3390/molecules25194552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
The impact of excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptor overactivation and voltage gated calcium channel (VGCC) depolarization is prominent among the postulated processes involved in the development of neurodegenerative disorders. NGP1-01, a polycyclic amine, has been shown to be neuroprotective through modulation of the NMDA receptor and VGCC, and attenuation of MPP+-induced neurotoxicity. Recently, we reported on the calcium modulating effects of tricycloundecene derivatives, structurally similar to NGP1-01, on the NMDA receptor and VGCC of synaptoneurosomes. In the present study, we investigated novel 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives for their cytotoxicity, neuroprotective effects via attenuation of MPP+-induced neurotoxicity and calcium influx inhibition abilities through the NMDA receptor and VGCC using neuroblastoma SH-SY5Y cells. All compounds, in general, showed low or no toxicity against neuroblastoma cells at 10-50 µM concentrations. At 10 µM, all compounds significantly attenuated MPP+-induced neurotoxicity as evident by the enhancement in cell viability between 23.05 ± 3.45% to 53.56 ± 9.29%. In comparison to known active compounds, the derivatives demonstrated mono or dual calcium modulating effect on the NMDA receptor and/or VGCC. Molecular docking studies using the NMDA receptor protein structure indicated that the compounds are able to bind in a comparable manner to the crystallographic pose of MK-801 inside the NMDA ion channel. The biological characteristics, together with results from in silico studies, suggest that these compounds could act as neuroprotective agents for the purpose of halting or slowing down the degenerative processes in neuronal cells.
Collapse
Affiliation(s)
- Ayodeji O. Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.O.E.); (S.F.M.)
| | - Sarel F. Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.O.E.); (S.F.M.)
| | - Sylvester I. Omoruyi
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (S.I.O.); (O.E.E.)
| | - Okobi E. Ekpo
- Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (S.I.O.); (O.E.E.)
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (A.O.E.); (S.F.M.)
| |
Collapse
|
3
|
Shi Y, Liu X, Han Y, Yan P, Bie F, Cao H. Synthesis of bi-halogenated spiropolycyclic cage compounds. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Shi Y, Liu X, Han Y, Yan P, Bie F, Cao H. Diels–Alder reactions between cyclopentadiene analogs and benzoquinone in water and their application in the synthesis of polycyclic cage compounds. RSC Adv 2020; 10:739-745. [PMID: 35494451 PMCID: PMC9048223 DOI: 10.1039/c9ra09745g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
Diels–Alder reactions between cyclopentadiene analogs and p-benzoquinone were explored in water and yielded 83–97% product, higher than the results reported in water with a catalyst or cetrimonium bromide (CTAB) micelles. The novel adduct 10 was synthesized and further used to synthesize the bi-cage hydrocarbon 4,4′-spirobi[pentacyclo[5.4.0.02,6.03,10.05,9]undecane], which has a high density (1.2663 g cm−3) and a high volumetric heat of combustion (53.353 MJ L−1). Four novel bi-cage hydrocarbon compounds were synthesized in water using this method starting from 2,2′-bi(p-benzoquinone) and cyclopentadiene analogs. Diels–Alder reactions between cyclopentadiene analogs and p-benzoquinone were explored in water and yielded 83–97% product, higher than the results reported in water with a catalyst or cetrimonium bromide (CTAB) micelles.![]()
Collapse
Affiliation(s)
- Yijun Shi
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
- College of Chemistry, Chemical Engineering and Materials Science
| | - Xuejing Liu
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Ying Han
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Peng Yan
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Fusheng Bie
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| | - Han Cao
- Engineering and Technology Research Institute of Lunan Coal Chemical
- Zaozhuang University
- Zaozhuang 277160
- China
| |
Collapse
|
5
|
Shi Y, Jiang J, Ma L, Wang J, Li W. Synthesis of 4,4′-bipentacyclo[5.4.0.0 2,6 .0 3,10 .0 5,9 ]undecane. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
7
|
Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion Channels in Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:97-136. [DOI: 10.1016/bs.apcsb.2015.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
|
9
|
Van der Schyf CJ. Rational drug discovery design approaches for treating Parkinson’s disease. Expert Opin Drug Discov 2015; 10:713-41. [DOI: 10.1517/17460441.2015.1041495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Jogiraju H, Zhou X, Gobburi ALP, Pedada KK, Geldenhuys WJ, Van der Schyf CJ, Crish SD, Anderson DJ. Development and validation of an LC-MS/MS method for determination of the L-type voltage-gated calcium channel/NMDA receptor antagonist NGP1-01 in mouse serum. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:83-9. [PMID: 24950096 PMCID: PMC4744373 DOI: 10.1016/j.jchromb.2014.05.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/13/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Abstract
NGP1-01 (8-benzylamino-8,11-oxapentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecane) is a heterocyclic cage compound with multifunctional calcium channel blocking activity that has been demonstrated to be neuroprotective in several neurodegenerative models. A sensitive internal standard LC-MS/MS method was developed and validated to quantify NGP1-01 in mouse serum. The internal standard (IS) was 8-(2-phenylethylamino)-8,11-oxapentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecane. Sample preparation involved a protein precipitation procedure by addition of acetonitrile. Chromatographic separation was carried out on a Phenomenex Kinetex phenyl-hexyl column (100 mm×2.1mm, 2.6 μm) employing a gradient (45% isocratic 3 min, 45-95% linear gradient 6 min, 95% isocratic 3 min) of an elution mobile phase of 5mM ammonium acetate in 100% acetonitrile mixing with an application mobile phase of 5mM ammonium acetate in 2% acetonitrile. Detection was achieved by a QTrap 5500 mass spectrometer (AB Sciex) employing electrospray ionization in the positive mode with multiple-reaction-monitoring (MRM) for NGP1-01 (m/z 266→91) and IS (m/z 280→105). The method validation was carried out in accordance with Food and Drug Administration (FDA) guidelines. The method had a linear range of at least 0.5-50 ng/mL with a correlation coefficient 0.999. The intra-assay and inter-assay precisions (%CV) were equal to or within the range of 1.0-4.3% and the accuracies (% relative error) equal to or within -2.5% to 3.4%. The analyte was stable for at least 2 months at -20°C, for at least 8h at room temperature and for at least three freeze-thaw cycles. The extraction recovery was 94.9 to 105.0%, with a %CV ≤ 9.5%. The technique was found to be free of any matrix effects as determined by experiments involving five different lots of mouse serum. Cross-talk interferences were not present. Two different gradient slope chromatography runs were done on dosed mouse serum samples to assess a possible positive error in peak area determination from in-source fragmentation of metabolites generating the same MRM transitions as the parent drug or IS. No such interference was found in the NGP1-01 peak, while a minor interference was identified in the IS peak. The optimized method was applied to the measurement of NGP1-01 in serum of dosed mice.
Collapse
Affiliation(s)
- Harini Jogiraju
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 USA
| | - Xiang Zhou
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 USA
| | | | - Kiran K. Pedada
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 USA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272 USA
| | - Cornelis J. Van der Schyf
- Graduate School and Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209-8075
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, Ohio 44272 USA
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 USA
| |
Collapse
|
11
|
Zheng M, Ahuja M, Bhattacharya D, Clement TP, Hayworth JS, Dhanasekaran M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci 2013; 95:108-17. [PMID: 24361361 DOI: 10.1016/j.lfs.2013.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
AIMS The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dwipayan Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - T Prabhakar Clement
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Joel S Hayworth
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
12
|
Banister SD, Manoli M, Barron ML, Werry EL, Kassiou M. N-substituted 8-aminopentacyclo[5.4.0.02,6.03,10.05,9]undecanes as σ receptor ligands with potential neuroprotective effects. Bioorg Med Chem 2013; 21:6038-52. [DOI: 10.1016/j.bmc.2013.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 11/28/2022]
|