1
|
Narayanaswami V, Tong J, Fiorino F, Severino B, Sparaco R, Magli E, Giordano F, Bloomfield PM, Prabhakaran J, Mann JJ, Vasdev N, Dahl K, Kumar JSD. Synthesis, in vitro and in vivo evaluation of 11C-O-methylated arylpiperazines as potential serotonin 1A (5-HT 1A) receptor antagonist radiotracers. EJNMMI Radiopharm Chem 2020; 5:13. [PMID: 32430632 PMCID: PMC7237647 DOI: 10.1186/s41181-020-00096-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 01/23/2023] Open
Abstract
Background Serotonin 1A (5-HT1A) receptors are implicated in the pathogenesis of several psychiatric and neurodegenerative disorders motivating the development of suitable radiotracers for in vivo positron emission tomography (PET) neuroimaging. The gold standard PET imaging agent for this target is [carbonyl-11C]WAY-100635, labeled via a technically challenging multi-step reaction that has limited its widespread use. While several antagonist and agonist-based PET radiotracers for 5-HT 1A receptors have been developed, their clinical translation has been hindered by methodological challenges and/or and non-specific binding. As a result, there is continued interest in the development of new and more selective 5-HT1A PET tracers having a relatively easier and reliable radiosynthesis process for routine production and with favorable metabolism to facilitate tracer-kinetic modeling. The purpose of the current study was to develop and characterize a radioligand with suitable characteristics for imaging 5-HT1A receptors in the brain. The current study reports the in vitro characterization and radiosyntheses of three candidate 5-HT1A receptor antagonists, DF-100 (1), DF-300 (2) and DF-400 (3), to explore their suitability as potential PET radiotracers. Results Syntheses of 1–3 and corresponding precursors for radiolabeling were achieved from isonicotinic, picolinic acid or picolino nitrile. In vitro binding studies demonstrated nanomolar affinity of the compounds for 5-HT1A receptors. Binding of 1–3 for other biogenic amines, neurotransmitter receptors, and transporters was negligible with the exception of moderate affinities for α1-adrenergic receptors (4–6-fold less potent than that for 5-HT1A receptor). Radioligands [11C]1–3 were efficiently prepared by 11C-O-methylation of the corresponding phenolic precursor in non-decay corrected radiochemical yields of 7–11% with > 99% chemical and radiochemical purities. Dynamic PET studies in rats demonstrated negligible brain uptake of [11C]1 and [11C]2. In contrast, significant brain uptake of [11C]3 was observed with an early peak SUV of 4–5. However, [11C]3 displayed significant off-target binding attributed to α1-adrenergic receptors based on regional distribution (thalamus>hippocampus) and blocking studies. Conclusion Despite efficient radiolabeling, results from PET imaging experiments limit the application of [11C]3 for in vivo quantification of 5-HT1A receptors. Nevertheless, derivatives of compound 3 may provide a scaffold for alternative PET radiotracers with improved selectivity for 5-HT 1A receptors or α1-adrenergic receptors.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada
| | - Ferdinando Fiorino
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Flavia Giordano
- Department of Pharmacy, University of Naples, Via D. Montesano, 49, 8013, Naples, Italy
| | - Peter M Bloomfield
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.,Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T-1R8, Canada
| | - Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre & Preclinical Imaging, Centre for Addiction and Mental Health, Toronto, Ontario, M5T-1R8, Canada.
| | - J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.
| |
Collapse
|
2
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
3
|
Girgis RR, Forbes A, Abi-Dargham A, Slifstein M. A positron emission tomography occupancy study of brexpiprazole at dopamine D 2 and D 3 and serotonin 5-HT 1A and 5-HT 2A receptors, and serotonin reuptake transporters in subjects with schizophrenia. Neuropsychopharmacology 2020; 45:786-792. [PMID: 31847007 PMCID: PMC7075883 DOI: 10.1038/s41386-019-0590-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The objective of this study (NCT01854944) was to assess D2/D3, 5-HT1A, 5-HT2A and serotonin transporter (SERT) occupancies of brexpiprazole in adult subjects with schizophrenia in order to identify the in vivo pharmacologic profile that may be relevant to the antipsychotic, antidepressant, and side effect profiles of the drug. Subjects were grouped into three independent cohorts of four subjects each. All subjects underwent positron emission tomography (PET) scans with two different radiotracers at baseline prior to brexpiprazole administration, and again on Day 10 after daily doses of either 4 mg (Cohorts 1 and 2), or 1 mg (Cohort 3). Cohort 1 received scans with [11C]-(+)-PHNO to measure D2 and D3 receptor occupancy and [11C]CUMI101 to measure 5-HT1A occupancy; Cohort 2 received [11C]MDL100907 for 5-HT2A occupancy and [11C]DASB for SERT occupancy; Cohort 3 underwent scanning with [11C]-(+)-PHNO and [11C]MDL100907. Five female and seven male subjects, aged 42 ± 8 years (range, 28-55 years), participated in this study. Dose dependency was observed at D2 receptors, with occupancies reaching 64 ± 8% (mean +/- SD) following 1 mg/day and 80 ± 12% following 4 mg/day. D3 receptor availability increased following 1 mg brexpiprazole treatment and did not change with 4 mg. Robust and dose-related occupancy was also observed at 5-HT2A receptors. Negligible occupancy (<5%) was observed at 5-HT1A and SERT at 4 mg/day. In summary, brexpiprazole demonstrated in vivo binding to D2 receptors and 5-HT2A receptors at steady state after 10 days of daily administration in a dose dependent manner, while binding to D3, 5-HT1A receptors and SERT was not detectable with the radiotracers used for these targets. This pharmacologic profile is consistent with the observed antipsychotic and antidepressant effects.
Collapse
Affiliation(s)
- Ragy R Girgis
- New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA.
| | - Andy Forbes
- Otsuka Pharmaceutical Development & Commercialization Inc., Princeton, NJ, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
18F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT 1A receptor agonist for PET neuroimaging. Brain Struct Funct 2018; 223:2973-2988. [PMID: 29730825 DOI: 10.1007/s00429-018-1672-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
Serotonin 1A receptors are known to play an important role in many psychiatric and neurodegenerative disorders. Currently, all available 5-HT1A receptor PET radiopharmaceuticals that are radiolabeled with fluorine-18 are antagonists. As agonists bind preferentially to the high-affinity state of receptors, it would be of great interest to develop agonist radioligands which could provide a measure of the functional 5-HT1A receptors in pathophysiological processes. The 5-HT1A receptor agonist candidates we recently proposed had promising in vitro properties but were not optimal in terms of PET imaging. F13640, a.k.a befiradol or NLX-112, is a 5-HT1A receptor agonist with a high affinity (Ki = 1 nM) and a high selectivity that would be suitable for a potential PET radiopharmaceutical. With propose here the first preclinical evaluation of 18F-F13640. 18F-F13640's nitro-precursor was synthesized and radiolabeled via a fluoro-nucleophilic substitution. Its radiopharmacological characterization included autoradiographic studies, metabolic studies, and in vivo PET scans in rat, cat and non-human primate. Some of the results were compared with the radiotracer 18F-MPPF, a 5-HT1A receptor antagonist. The radiochemical purity of 18F-F13640 was > 98%. In vitro binding pattern was consistent with the 5-HT1A receptor distribution. Metabolic studies revealed that the radiotracer rapidly entered the brain and led to few brain radiometabolites. Although 18F-F13640 in vivo binding was blocked by the 5-HT1A antagonist WAY-100635 and the 5-HT1A agonist 8-OH-DPAT, the distribution pattern was markedly different from antagonist radiotracers in the three species, suggesting it provides novel information on 5-HT1A receptors. Preliminary studies also suggest a high sensitivity of 18F-F13640 to endogenous serotonin release. 18F-F13640 has suitable characteristics for probing in vitro and in vivo the 5-HT1A receptors in high-affinity state. Quantification analyses with kinetic modeling are in progress to prepare the first-in-man study of 18F-F13640.
Collapse
|
5
|
Selvaraj S, Walker C, Arnone D, Cao B, Faulkner P, Cowen PJ, Roiser JP, Howes O. Effect of Citalopram on Emotion Processing in Humans: A Combined 5-HT 1A [ 11C]CUMI-101 PET and Functional MRI Study. Neuropsychopharmacology 2018; 43:655-664. [PMID: 28776580 PMCID: PMC5693328 DOI: 10.1038/npp.2017.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially experience increased anxiety, which can lead to early discontinuation before therapeutic effects are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe neuron (DRN) 5-HT1A receptors are known to have a critical role in affect processing. Thus we investigated the effect of acute citalopram on emotional processing and the relationship between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 years) healthy male subjects received either a saline or citalopram infusion intravenously (10 mg over 30 min) on separate occasions in a single-blind, random order, crossover design. On each occasion, participants underwent a block design face-emotion processing task during fMRI known to activate the amygdala. Ten subjects also completed a positron emission tomography (PET) scan to quantify DRN 5-HT1A availability using [11C]CUMI-101. Citalopram infusion when compared with saline resulted in a significantly increased bilateral amygdala responses to fearful vs neutral faces (left p=0.025; right p=0.038 FWE-corrected). DRN [11C]CUMI-101 availability significantly positively correlated with the effect of citalopram on the left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli and that this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in mediating emotional processing.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Biomedical and Behavioral Sciences Building (BBSB), 1941 East Road, Suite 3208 Houston, TX 77054, USA, Tel: +1 713 486 2500, Fax: +1 713 486 2553, E-mail:
| | - Chris Walker
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Danilo Arnone
- Institute of Psychiatry, King’s College London, Centre for Affective Disorders, London, UK,IoPPN, King’s College London, Institute of Psychiatry, Psychosis Studies, London, UK
| | - Bo Cao
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul Faulkner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Oliver Howes
- Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK,IoPPN, King’s College London, Institute of Psychiatry, Psychosis Studies, London, UK,Institute of Clinical Sciences, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
6
|
Shrestha SS, Liow JS, Jenko K, Ikawa M, Zoghbi SS, Innis RB. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region. J Nucl Med 2016; 57:1945-1948. [PMID: 27587705 DOI: 10.2967/jnumed.116.174151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022] Open
Abstract
Prazosin, a potent and selective α1-adrenoceptor antagonist, displaces 25% of 11C-CUMI-101 ([O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11C-CUMI-101 binding to α1-adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α1-adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. METHODS Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3H-prazosin and the inhibition constant of CUMI-101. RESULTS α1-adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. CONCLUSION Reasoning by analogy, 25% of 11C-CUMI-101 uptake in human cerebellum reflects binding to α1-adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies.
Collapse
Affiliation(s)
- Stal S Shrestha
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Kimberly Jenko
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Masamichi Ikawa
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| |
Collapse
|
7
|
Kumar JSD, Underwood MD, Simpson NR, Kassir SA, Prabhakaran J, Majo VJ, Bakalian MJ, Parsey RV, Mann JJ, Arango V. Autoradiographic Evaluation of [(18)F]FECUMI-101, a High Affinity 5-HT1AR Ligand in Human Brain. ACS Med Chem Lett 2016; 7:482-6. [PMID: 27190597 DOI: 10.1021/acsmedchemlett.5b00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 12/29/2022] Open
Abstract
[(18)F]FECUMI-101 ([(18)F]1) is a 5HT1AR ligand demonstrating specific binding in brain regions corresponding to the distribution of 5-HT1AR in baboons. However, we detected moderate uptake of [(18)F]1 in baboon thalamus, a brain region lacking 5-HT1AR. We sought to investigate the relative binding of [(18)F]1 to 5-HT1AR, α1R, and 5-HT7R in vitro. Using autoradiography in human brain sections, specific binding of [(18)F]1 to 5-HT1AR was confirmed. However, [(18)F]1 also showed 26% binding to α1R in PFC. The hippocampal formation exhibited 51% and 92% binding of [(18)F]1 to α1R and 5-HT1AR, respectively. Thalamus and cerebellum showed very little binding. There is no measurable specific binding of [(18)F]1 to 5-HT7R and no effect of temperature on [(18)F]1 specific binding to 5-HT1AR or α1R. These results indicate that, while [(18)F]FECUMI-101 is not a completely selective 5-HT1AR ligand for receptor quantification, it may be useful for occupancy measurements of drugs acting at 5-HT1AR in vivo.
Collapse
Affiliation(s)
- J. S. Dileep Kumar
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
- Department
of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York 11794, United States
| | - Mark D. Underwood
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
- Department
of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
| | - Norman R. Simpson
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Suham A. Kassir
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Jaya Prabhakaran
- Department
of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
| | - Vattoly J. Majo
- Department
of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
| | - Mihran J. Bakalian
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Ramin V. Parsey
- Department
of Psychiatry, Stony Brook University School of Medicine, Stony Brook, New York 11794, United States
| | - J. John Mann
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
- Department
of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
| | - Victoria Arango
- Division
of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York 10032, United States
- Department
of Psychiatry, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
8
|
Kumar JSD, Mann JJ. PET tracers for serotonin receptors and their applications. Cent Nerv Syst Agents Med Chem 2015; 14:96-112. [PMID: 25360773 DOI: 10.2174/1871524914666141030124316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022]
Abstract
Serotonin receptors (5-HTRs) are implicated in the pathophysiology of a variety of neuropsychiatric and neurodegenerative disorders and are also targets for drug therapy. In the CNS, most of these receptors are expressed in high abundance in specific brain regions reflecting their role in brain functions. Quantifying binding to 5-HTRs in vivo may permit assessment of physiologic and pathologic conditions, and monitoring disease progression, evaluating treatment response, and for investigating new treatment modalities. Positron emission tomography (PET) molecular imaging has the sensitivity to quantify binding of 5-HTRs in CNS disorders and to measure drug occupancy as part of a process of new drug development. Although research on PET imaging of 5-HTRs have been performed more than two decades, the successful radiotracers so far developed for human studies are limited to 5-HT₁AR, 5-HT₁BR, 5-HT₂AR, 5-HT₄R and 5-HT₆R. Herein we review the development and application of radioligands for PET imaging of 5-HTRs in living brain.
Collapse
Affiliation(s)
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric institute, 1051 Riverside Drive, Box: 42, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015; 95:81-97. [DOI: 10.1016/j.bcp.2015.03.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
|
10
|
Tiwari AK, Yui J, Pooja P, Aggarwal S, Yamasaki T, Xie L, Chadha N, Zhang Y, Fujinaga M, Shimoda Y, Kumata K, Mishra AK, Ogawa M, Zhang MR. Design, synthesis and biological evaluation of small molecule-based PET radioligands for the 5-hydroxytryptamine 7 receptor. RSC Adv 2015. [DOI: 10.1039/c4ra15833d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new prospective approach for PET imaging of 5-HT7 by a small molecule ligand.
Collapse
|
11
|
Kumar JSD, Majo VJ, Prabhakaran J, Mann JJ. Synthesis and evaluation of arylpiperazines derivatives of 3,5-dioxo-(2H,4H)-1,2,4-triazine as 5-HT1AR ligands. Bioorg Med Chem Lett 2014; 24:4759-4762. [PMID: 25182564 DOI: 10.1016/j.bmcl.2014.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/23/2022]
Abstract
5-HT1AR agonist or partial agonists are established drug candidates for psychiatric and neurological disorders. We have reported the synthesis and evaluation of a series of high affinity 5-HT1AR partial agonist PET imaging agents with greater selectivity over α-1AR. The characteristic of these molecules are 3,5-dioxo-(2H,4H)-1,2,4-triazine skeleton tethered to an arylpiperazine unit through an alkyl side chain. The most potent 5-HT1AR agonistic properties were found to be associated with the molecules bearing C-4 alkyl group as the linker. Therefore development of 3,5-dioxo-(2H,4H)-1,2,4-triazine bearing arylpiperazine derivatives may provide high affinity selective 5-HT1AR ligands. Herein we describe the synthesis and evaluation of the binding properties of a series of arylpiperazine analogues of 3,5-dioxo-(2H,4H)-1,2,4-triazine.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA; Department of Psychiatry and Behavior Science, Stony Brook University, New York, USA.
| | - Vattoly J Majo
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA
| | - Jaya Prabhakaran
- Columbia University College of Physicians and Surgeons, New York, USA
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA; Columbia University College of Physicians and Surgeons, New York, USA
| |
Collapse
|
12
|
Shrestha SS, Liow JS, Lu S, Jenko K, Gladding RL, Svenningsson P, Morse CL, Zoghbi SS, Pike VW, Innis RB. (11)C-CUMI-101, a PET radioligand, behaves as a serotonin 1A receptor antagonist and also binds to α(1) adrenoceptors in brain. J Nucl Med 2014; 55:141-6. [PMID: 24385311 DOI: 10.2967/jnumed.113.125831] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The PET radioligand (11)C-CUMI-101 was previously suggested as a putative agonist radioligand for the serotonin 1A (5-hydroxytryptamine 1A [5-HT1A]) receptor in recombinant cells expressing human 5-HT1A receptor. However, a recent study showed that CUMI-101 behaved as a potent 5-HT1A receptor antagonist in rat brain. CUMI-101 also has moderate affinity (Ki = 6.75 nM) for α1 adrenoceptors measured in vitro. The current study examined the functional properties and selectivity of CUMI-101, both in vitro and in vivo. METHODS The functional assay was performed using (35)S-GTPγS (GTP is guanosine triphosphate) in primate brains. The cross-reactivity of CUMI-101 with α1 adrenoceptors was performed using in vitro radioligand binding studies in rat, monkey, and human brains as well as in vivo PET imaging in mouse, rat, and monkey brains. RESULTS CUMI-101 did not stimulate (35)S-GTPγS binding in primate brain, in contrast to 8-OH-DPAT, a potent 5-HT1A receptor agonist. Instead, CUMI-101 behaved as a potent 5-HT1A receptor antagonist by dose-dependently inhibiting 8-OH-DPAT-stimulated (35)S-GTPγS binding. Both in vitro and in vivo studies showed that CUMI-101 had significant α1 adrenoceptor cross-reactivity. On average, across all 3 species examined, cross-reactivity was highest in the thalamus (>45%) and lowest in the neocortex and cerebellum (<10%). PET imaging further confirmed that only preblocking with WAY-100635 plus prazosin decreased (11)C-CUMI-101 brain uptake to that of self-block. CONCLUSION CUMI-101 behaves as a 5-HT1A receptor antagonist in primate brain, with significant, regional-dependent α1 adrenoceptor cross-reactivity, limiting its potential use as a PET radioligand in humans.
Collapse
Affiliation(s)
- Stal Saurav Shrestha
- National Institute of Mental Health Intramural Research Program, Bethesda, Maryland; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|