1
|
Marachlian E, Huerta R, Locatelli FF. Gain modulation and odor concentration invariance in early olfactory networks. PLoS Comput Biol 2023; 19:e1011176. [PMID: 37343029 DOI: 10.1371/journal.pcbi.1011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramón Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, California, United States of America
| | - Fernando F Locatelli
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Scarano F, Deivarajan Suresh M, Tiraboschi E, Cabirol A, Nouvian M, Nowotny T, Haase A. Geosmin suppresses defensive behaviour and elicits unusual neural responses in honey bees. Sci Rep 2023; 13:3851. [PMID: 36890201 PMCID: PMC9995521 DOI: 10.1038/s41598-023-30796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Geosmin is an odorant produced by bacteria in moist soil. It has been found to be extraordinarily relevant to some insects, but the reasons for this are not yet fully understood. Here we report the first tests of the effect of geosmin on honey bees. A stinging assay showed that the defensive behaviour elicited by the bee's alarm pheromone component isoamyl acetate (IAA) is strongly suppressed by geosmin. Surprisingly, the suppression is, however, only present at very low geosmin concentrations, and disappears at higher concentrations. We investigated the underlying mechanisms at the level of the olfactory receptor neurons by means of electroantennography, finding the responses to mixtures of geosmin and IAA to be lower than to pure IAA, suggesting an interaction of both compounds at the olfactory receptor level. Calcium imaging of the antennal lobe (AL) revealed that neuronal responses to geosmin decreased with increasing concentration, correlating well with the observed behaviour. Computational modelling of odour transduction and coding in the AL suggests that a broader activation of olfactory receptor types by geosmin in combination with lateral inhibition could lead to the observed non-monotonic increasing-decreasing responses to geosmin and thus underlie the specificity of the behavioural response to low geosmin concentrations.
Collapse
Affiliation(s)
- Florencia Scarano
- Department of Physics, University of Trento, 38120, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - Ettore Tiraboschi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | - Amélie Cabirol
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy.,Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, 78464, Konstanz, Germany
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ, UK.
| | - Albrecht Haase
- Department of Physics, University of Trento, 38120, Trento, Italy. .,Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy.
| |
Collapse
|
3
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies. PLoS Comput Biol 2021; 17:e1009583. [PMID: 34898600 PMCID: PMC8668107 DOI: 10.1371/journal.pcbi.1009583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
When flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic ("ephaptic") interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla. We find that NSIs improve mixture ratio detection and plume structure sensing and do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. The best performance is achieved when both mechanisms work in synergy. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.
Collapse
Affiliation(s)
- Mario Pannunzi
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
4
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
5
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies.. [DOI: 10.1101/2020.07.23.217216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractWhen flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic (“ephaptic”) interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla.We found that NSIs improve mixture ratio detection and plume structure sensing and they do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.Author summaryMyelin is important to isolate neurons and avoid disruptive electrical interference between them; it can be found in almost any neural assembly. However, there are a few exceptions to this rule and it remains unclear why. One particularly interesting case is the electrical interaction between olfactory sensory neurons co-housed in the sensilla of insects. Here, we created a computational model of the early stages of the Drosophila olfactory system and observed that the electrical interference between olfactory receptor neurons can be a useful trait that can help flies, and other insects, to navigate the complex plumes of odorants in their natural environment.With the model we were able to shed new light on the trade-off of adopting this mechanism: We found that the non-synaptic interactions (NSIs) improve both the identification of the concentration ratio in mixtures of odorants and the discrimination of odorant mixtures emanating from a single source from odorants emitted from separate sources – both highly advantageous. However, they also decrease the dynamic range of the olfactory sensory neurons – a clear disadvantage.
Collapse
|
6
|
Paoli M, Nishino H, Couzin-Fuchs E, Galizia CG. Coding of odour and space in the hemimetabolous insect Periplaneta americana. J Exp Biol 2020; 223:jeb218032. [PMID: 31932303 DOI: 10.1242/jeb.218032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
The general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae's exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selectively labelling antennal lobe projection neurons with a calcium-sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus specific and concentration dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone B activate a subregion of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.
Collapse
Affiliation(s)
- Marco Paoli
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Einat Couzin-Fuchs
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - C Giovanni Galizia
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Pannunzi M, Nowotny T. Odor Stimuli: Not Just Chemical Identity. Front Physiol 2019; 10:1428. [PMID: 31827441 PMCID: PMC6890726 DOI: 10.3389/fphys.2019.01428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals’ physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
8
|
Olfactory Object Recognition Based on Fine-Scale Stimulus Timing in Drosophila. iScience 2019; 13:113-124. [PMID: 30826726 PMCID: PMC6402261 DOI: 10.1016/j.isci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
Odorants of behaviorally relevant objects (e.g., food sources) intermingle with those from other sources. Therefore to determine whether an odor source is good or bad—without actually visiting it—animals first need to segregate the odorants from different sources. To do so, animals could use temporal stimulus cues, because odorants from one source exhibit correlated fluctuations, whereas odorants from different sources are less correlated. However, the behaviorally relevant timescales of temporal stimulus cues for odor source segregation remain unclear. Using behavioral experiments with free-flying flies, we show that (1) odorant onset asynchrony increases flies' attraction to a mixture of two odorants with opposing innate or learned valence and (2) attraction does not increase when the attractive odorant arrives first. These data suggest that flies can use stimulus onset asynchrony for odor source segregation and imply temporally precise neural mechanisms for encoding odors and for segregating them into distinct objects. Flies can detect whether two mixed odorants arrive synchronously or asynchronously This temporal sensitivity occurs for odorants with innate and learned valences Flies' behavior suggests use of odor onset asynchrony for odor source segregation
Collapse
|
9
|
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals' physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
10
|
Chan HK, Hersperger F, Marachlian E, Smith BH, Locatelli F, Szyszka P, Nowotny T. Odorant mixtures elicit less variable and faster responses than pure odorants. PLoS Comput Biol 2018; 14:e1006536. [PMID: 30532147 PMCID: PMC6287832 DOI: 10.1371/journal.pcbi.1006536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/29/2018] [Indexed: 11/18/2022] Open
Abstract
In natural environments, odors are typically mixtures of several different chemical compounds. However, the implications of mixtures for odor processing have not been fully investigated. We have extended a standard olfactory receptor model to mixtures and found through its mathematical analysis that odorant-evoked activity patterns are more stable across concentrations and first-spike latencies of receptor neurons are shorter for mixtures than for pure odorants. Shorter first-spike latencies arise from the nonlinear dependence of binding rate on odorant concentration, commonly described by the Hill coefficient, while the more stable activity patterns result from the competition between different ligands for receptor sites. These results are consistent with observations from numerical simulations and physiological recordings in the olfactory system of insects. Our results suggest that mixtures allow faster and more reliable olfactory coding, which could be one of the reasons why animals often use mixtures in chemical signaling.
Collapse
Affiliation(s)
- Ho Ka Chan
- Sussex Neuroscience, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Fabian Hersperger
- Department of Neuroscience, University of Konstanz, Konstanz, Germany
| | - Emiliano Marachlian
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Fernando Locatelli
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Paul Szyszka
- Department of Neuroscience, University of Konstanz, Konstanz, Germany
| | - Thomas Nowotny
- Sussex Neuroscience, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
11
|
MaBouDi H, Shimazaki H, Giurfa M, Chittka L. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Comput Biol 2017. [PMID: 28640825 PMCID: PMC5480824 DOI: 10.1371/journal.pcbi.1005551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.
Collapse
Affiliation(s)
- HaDi MaBouDi
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Raiser G, Galizia CG, Szyszka P. A High-Bandwidth Dual-Channel Olfactory Stimulator for Studying Temporal Sensitivity of Olfactory Processing. Chem Senses 2016; 42:141-151. [PMID: 27988494 DOI: 10.1093/chemse/bjw114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Animals encounter fine-scale temporal patterns of odorant mixtures that contain information about the distance and number of odorant sources. To study the role of such temporal cues for odorant detection and source localization, one needs odorant delivery devices that are capable of mimicking the temporal stimulus statistics of natural odor plumes. However, current odorant delivery devices either lack temporal resolution or are limited to a single odorant channel. Here, we present an olfactory stimulator that features precise control of high-bandwidth stimulus dynamics, which allows generating arbitrary fluctuating binary odorant mixtures. We provide a comprehensive characterization of the stimulator's performance and use it to demonstrate that odor background affects the temporal resolution of insect olfactory receptor neurons, and we present a hitherto unknown odor pulse-tracking capability of up to 60 Hz in Kenyon cells, which are higher order olfactory neurons of the insect brain. This stimulator might help investigating whether and how animals use temporal stimulus cues for odor detection and source localization. Because the stimulator is easy to replicate it can facilitate generating the same odor stimulus dynamics at different experimental setups and across different labs.
Collapse
Affiliation(s)
- Georg Raiser
- Department of Neuroscience, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany and.,International Max-Planck Research School for Organismal Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - C Giovanni Galizia
- Department of Neuroscience, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany and
| | - Paul Szyszka
- Department of Neuroscience, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany and
| |
Collapse
|
13
|
Rapid and slow chemical synaptic interactions of cholinergic projection neurons and GABAergic local interneurons in the insect antennal lobe. J Neurosci 2014; 34:13039-46. [PMID: 25253851 DOI: 10.1523/jneurosci.0765-14.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antennal lobe (AL) of insects constitutes the first synaptic relay and processing center of olfactory information, received from olfactory sensory neurons located on the antennae. Complex synaptic connectivity between olfactory neurons of the AL ultimately determines the spatial and temporal tuning profile of (output) projection neurons to odors. Here we used paired whole-cell patch-clamp recordings in the cockroach Periplaneta americana to characterize synaptic interactions between cholinergic uniglomerular projection neurons (uPNs) and GABAergic local interneurons (LNs), both of which are key components of the insect olfactory system. We found rapid, strong excitatory synaptic connections between uPNs and LNs. This rapid excitatory transmission was blocked by the nicotinic acetylcholine receptor blocker mecamylamine. IPSPs, elicited by synaptic input from a presynaptic LN, were recorded in both uPNs and LNs. IPSPs were composed of both slow, sustained components and fast, transient components which were coincident with presynaptic action potentials. The fast IPSPs were blocked by the GABAA receptor chloride channel blocker picrotoxin, whereas the slow sustained IPSPs were blocked by the GABAB receptor blocker CGP-54626. This is the first study to directly show the predicted dual fast- and slow-inhibitory action of LNs, which was predicted to be key in shaping complex odor responses in the AL of insects. We also provide the first direct characterization of rapid postsynaptic potentials coincident with presynaptic spikes between olfactory processing neurons in the AL.
Collapse
|
14
|
High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc Natl Acad Sci U S A 2014; 111:16925-30. [PMID: 25385618 DOI: 10.1073/pnas.1412051111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction.
Collapse
|
15
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|