1
|
Ranjan R, Kumar D, Singh MR, Singh D. Novel drug delivery systems in cerebral vascular disorders, transient ischaemic attack, and stroke interventions. NOVEL DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CNS DISORDERS 2025:295-311. [DOI: 10.1016/b978-0-443-13474-6.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Belgamwar A, Sharma R, Mali Y, Agrawal YO, Nakhate KT. Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics. Neuroscience 2024; 562:90-105. [PMID: 39433081 DOI: 10.1016/j.neuroscience.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
Collapse
Affiliation(s)
- Aarti Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Rarchita Sharma
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogesh Mali
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India.
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| |
Collapse
|
3
|
Zhu K, Wang L, Xiao Y, Zhang X, You G, Chen Y, Wang Q, Zhao L, Zhou H, Chen G. Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives. J Nanobiotechnology 2024; 22:336. [PMID: 38880905 PMCID: PMC11180412 DOI: 10.1186/s12951-024-02606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Kai Zhu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lijun Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yao Xiao
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyong Zhang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guoxing You
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuzhi Chen
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Quan Wang
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lian Zhao
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Gan Chen
- Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
4
|
Tatezawa R, Abumiya T, Ito Y, Gekka M, Okamoto W, Ishii K, Kohyama N, Komatsu T, Fujimura M. Neuroprotective effects of a hemoglobin-based oxygen carrier (stroma-free hemoglobin nanoparticle) on ischemia reperfusion injury. Brain Res 2023; 1821:148592. [PMID: 37748569 DOI: 10.1016/j.brainres.2023.148592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The application of hemoglobin (Hb)-based oxygen carriers (HBOCs) to the treatment of cerebral ischemia has been investigated. A cluster of 1 Hb and 3 human serum albumins (Hb-HSA3) was found to exert neuroprotective effects on ischemia/reperfusion injury. Stroma-free hemoglobin nanoparticles (SFHbNP), a subsequently developed HBOC consisting of a spherical polymerized stroma-free Hb core with a HSA shell, contains the natural antioxidant enzyme catalase and, thus, is expected to exert additive effects. We herein investigated whether SFHbNP exerted enhanced neuroprotective effects in a rat transient middle cerebral artery occlusion (tMCAO) model. Rats were subjected to 2-hour tMCAO and divided into the following 3 groups with the intravenous administration of the respective reagents: (1) phosphate-buffered saline (PBS), as a vehicle (2) Hb-HSA3, and (3) SFHbNP. After 24-hour reperfusion, infarct and edema volumes decreased in the order of the PBS, Hb-HSA3, and SFHbNP groups, with a significant difference (p < 0.05) between the PBS and SFHbNP groups. Similar reductions were observed in oxidative stress, leukocyte recruitment, and blood-brain barrier disruption in the order of the PBS, Hb-HSA3, and SFHbNP groups. In the early phase of reperfusion within 6 h, microvascular HBOC perfusion and cerebral blood flow were maintained at high levels during the reperfusion period in the Hb-HSA3 and SFHbNP groups. However, a difference was observed in tissue oxygen partial pressure levels, which significantly decreased after 6-hour reperfusion in the Hb-HSA3 group, but remained high in the SFHbNP group. A superior oxygen transport ability appears to be related to the enhanced neuroprotective effects of SFHbNP.
Collapse
Affiliation(s)
- Ryota Tatezawa
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Yasuhiro Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masayuki Gekka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kohta Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Natsumi Kohyama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Ye H, Ma Z, Liu L, Zhang T, Han Q, Xiang Z, Xia Y, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Thrombus Inhibition and Neuroprotection for Ischemic Stroke Treatment through Platelet Regulation and ROS Scavenging. ChemMedChem 2022; 17:e202200317. [PMID: 36220787 DOI: 10.1002/cmdc.202200317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Indexed: 01/14/2023]
Abstract
Ischemic stroke is caused by cerebrovascular stenosis or occlusion. Excessive reactive oxygen species (ROS) are the focus-triggering factor of irreversible injury in ischemic regions, which result in harmful cascading effects to brain tissue, such as inflammation and microthrombus formation. In the present work, we designed nanodelivery systems (NDSs) based on MnO2 loaded with Ginkgolide B (GB) for restoring the intracerebral microenvironment in ischemic stroke, such as ROS scavenging, O2 elevation, thrombus inhibition and damage repair. GB can activate the endogenous antioxidant defense of cells by enhancing the nuclear factor-E2-related factor 2 (Nrf2) signalling pathway, thus protecting brain tissue from oxidative damage. However, the blood-brain barrier (BBB) is also a therapeutic obstacle for the delivery of these agents to ischemic regions. MnO2 nanoparticles have an inherent BBB penetration effect, which enhances the delivery of therapeutic agents within brain tissue. MnO2 , with mimicking enzymatic activity, can catalyze the decomposition of overproduced H2 O2 in the ischemic microenvironment to O2 , meanwhile releasing platelet-antagonizing GB molecules, thus alleviating cerebral hypoxia, oxidative stress damage, and microthrombus generation. This study may provide a promising therapeutic route for regulating the microenvironment of ischemic stroke through a combined function of ROS scavenging, microthrombus inhibition, and BBB penetration.
Collapse
Affiliation(s)
- Hongbo Ye
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Zhifang Ma
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Lei Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tianci Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qiaoyi Han
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zehong Xiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Xia
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yue Ke
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinghua Guan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Qiang Shi
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
6
|
Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022; 20:248. [PMID: 35641956 PMCID: PMC9153106 DOI: 10.1186/s12951-022-01450-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.
Collapse
Affiliation(s)
- Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Yijiao Liu
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Shengnan Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lingyan Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Hongdan Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
7
|
Ito Y, Abumiya T, Komatsu T, Funaki R, Gekka M, Kurisu K, Sugiyama T, Kawabori M, Osanai T, Nakayama N, Kazumata K, Houkin K. Neuroprotective effects of combination therapy of regional cold perfusion and hemoglobin-based oxygen carrier administration on rat transient cerebral ischemia. Brain Res 2020; 1746:147012. [PMID: 32652148 DOI: 10.1016/j.brainres.2020.147012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Regional cold perfusion and hemoglobin-based oxygen carrier administration both exert neuroprotective effects against cerebral ischemia reperfusion injury. We herein investigated whether the combination of these two therapies leads to stronger neuroprotective effects. Combination therapy was performed with the regional perfusion of cold HemoAct, a core-shell structured hemoglobin-albumin cluster, in a rat transient middle cerebral artery occlusion model. The effects of combination therapy, the intra-arterial administration of 10 °C HemoAct (10H) initiated at the onset of reperfusion, were compared with those of monotherapies, the intra-arterial administration of 10 °C saline (10S) and 37 °C HemoAct (37H), and an untreated control under the condition of 2-hour ischemia/24-hour reperfusion. The durability of therapeutic effects and the therapeutic time window of combination therapy were assessed based on comparisons with the 10H and control groups. Significantly better neurological findings and smaller infarct volumes were observed in the three treated (10S, 37H, and 10H) groups than in the control group. Among the 3 treated groups, only the 10H group showed significant improvements over the control group in the other items examined, including cerebral blood flow reduction, brain edema, and protein extravasation. The significant therapeutic effects of combination therapy on neurological disabilities and infarct volumes were confirmed at least until 7 days after reperfusion. Furthermore, combination therapy ameliorated neurological disabilities and hemorrhagic transformation in rats subjected to 4- and 5-hour ischemia/24-hour reperfusion. Since therapeutic effects may be expected until at least 5 h of complete ischemia and reperfusion, this combination therapy is a promising neuroprotective strategy against severe ischemic stroke.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Ryosuke Funaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Masayuki Gekka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kota Kurisu
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Osanai
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Xu M, Wu R, Liang Y, Fu K, Zhou Y, Li X, Wu L, Wang Z. Protective effect and mechanism of Qishiwei Zhenzhu pills on cerebral ischemia-reperfusion injury via blood-brain barrier and metabonomics. Biomed Pharmacother 2020; 131:110723. [PMID: 33152910 DOI: 10.1016/j.biopha.2020.110723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is an acute cerebrovascular disease caused by the sudden rupture of cerebral blood vessels or vascular obstruction from brain tissue damage or dysfunction, thereby preventing blood flow into the brain. Cerebral ischemia-reperfusion injury (CI/RI), a common syndrome of ischemic stroke, is a complex pathological process whose physiological mechanism is still unclear. Qishiwei Zhenzhu pills (QSW), a famous Tibetan medicine preparation, has the effect of tranquilizing by heavy settling, dredging channels and activating collaterals, harmonizing Qi and blood, restoring consciousness, and inducing resuscitation. Here, we investigated the protective effect of QSW on CI/RI in rats and its potential mechanism. First, the volatile and liposoluble components in QSW were determined using gas chromatography-mass spectrometry (GCMS). After 24 h of CI/RI, the neuroprotective effect was determined by evaluating the neurological function, cerebral infarction, histopathology, and blood-brain barrier (BBB) function. Immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blot (WB) were used to detect the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and occludin. Finally, GCMS metabonomics was used to identify different metabolites and analyze metabolic pathways. The results showed that 88 volatile components and 63 liposoluble components were detected in QSW. Following the experimental stroke operation, it was observed that rats administered QSW pretreatment had improved neurological function, reduced infarct volume (P < 0.01), increased Nissl bodies (P < 0.05), improved histopathology, and reduced BBB disruption. Immunofluorescence, RT-qPCR, and WB results showed that MMP-9 level in the brain tissue of the QSW pretreatment group had a decreasing trend and the expression of claudin-5 and occludin had a tendency to increase. Eleven metabolites related to lipid metabolism, fatty acid metabolism, and energy metabolism, were identified via GC-MS metabonomics. Our study shows that QSW preconditioning has a neuroprotective effect on CI/RI; however, its mechanism requires further study.
Collapse
Affiliation(s)
- Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Yuan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China.
| |
Collapse
|
9
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang Z, Higashikawa K, Yasui H, Kuge Y, Ohno Y, Kihara A, Midori YA, Houkin K, Kawabori M. FTY720 Protects Against Ischemia-Reperfusion Injury by Preventing the Redistribution of Tight Junction Proteins and Decreases Inflammation in the Subacute Phase in an Experimental Stroke Model. Transl Stroke Res 2020; 11:1103-1116. [PMID: 32103462 PMCID: PMC7496052 DOI: 10.1007/s12975-020-00789-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Injury due to brain ischemia followed by reperfusion (I/R) may be an important therapeutic target in the era of thrombectomy. FTY720, a widely known sphingosine-1-phosphate receptor agonist, exerts various neuroprotective effects. The aim of this study was to examine the protective effect of FTY720 with respect to I/R injury, especially focusing on blood-brain barrier (BBB) protection and anti-inflammatory effects. Male rats were subjected to transient ischemia and administered vehicle or 0.5 or 1.5 mg/kg of FTY720 immediately before reperfusion. Positron emission tomography (PET) with [18F]DPA-714 was performed 2 and 9 days after the insult to serially monitor neuroinflammation. Bovine and rat brain microvascular endothelial cells (MVECs) were also subjected to oxygen-glucose deprivation (OGD) and reperfusion, and administered FTY720, phosphorylated-FTY720 (FTY720-P), or their inhibitor. FTY720 dose-dependently reduced cell death, the infarct size, cell death including apoptosis, and inflammation. It also ameliorated BBB disruption and neurological deficits compared to in the vehicle group. PET indicated that FTY720 significantly inhibited the worsening of inflammation in later stages. FTY720-P significantly prevented the intracellular redistribution of tight junction proteins but did not increase their mRNA expression. These results suggest that FTY720 can ameliorate I/R injury by protecting the BBB and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kei Higashikawa
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hironobu Yasui
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yenari A Midori
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
11
|
Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int J Nanomedicine 2020; 15:445-464. [PMID: 32021190 PMCID: PMC6982459 DOI: 10.2147/ijn.s231853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The technology of drug delivery systems (DDS) has expanded into many applications, such as for treating neurological disorders. Nanoparticle DDS offer a unique strategy for targeted transport and improved outcomes of therapeutics. Stroke is likely to benefit from the emergence of this technology though clinical breakthroughs are yet to manifest. This review explores the recent advances in this field and provides insight on the trends, prospects and challenges of translating this technology to clinical application. Carriers of diverse material compositions are presented, with special focus on the surface properties and emphasis on the similarities and inconsistencies among in vivo experimental paradigms. Research attention is scattered among various nanoparticle DDS and various routes of drug administration, which expresses the lack of consistency among studies. Analysis of current literature reveals lipid- and polymer-based DDS as forerunners of DDS for stroke; however, cell membrane-derived vesicles (CMVs) possess the competitive edge due to their innate biocompatibility and superior efficacy. Conversely, inorganic and carbon-based DDS offer different functionalities as well as varied capacity for loading but suffer mainly from poor safety and general lack of investigation in this area. This review supports the existing literature by systematizing presently available data and accounting for the differences in drugs of choice, carrier types, animal models, intervention strategies and outcome parameters.
Collapse
Affiliation(s)
- Syed Abdullah Alkaff
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Krishna Radhakrishnan
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute 308433, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University 639798, Singapore
| |
Collapse
|
12
|
Bruch GE, Fernandes LF, Bassi BL, Alves MTR, Pereira IO, Frézard F, Massensini AR. Liposomes for drug delivery in stroke. Brain Res Bull 2019; 152:246-256. [DOI: 10.1016/j.brainresbull.2019.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022]
|
13
|
Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats. J Stroke Cerebrovasc Dis 2019; 28:1832-1840. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
|
14
|
Bonnard T, Gauberti M, Martinez de Lizarrondo S, Campos F, Vivien D. Recent Advances in Nanomedicine for Ischemic and Hemorrhagic Stroke. Stroke 2019; 50:1318-1324. [DOI: 10.1161/strokeaha.118.022744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Bonnard
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
| | - Maxime Gauberti
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
| | - Sara Martinez de Lizarrondo
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology, Clinical University Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain (F.C.)
| | - Denis Vivien
- From the Normandie University, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders PhIND, Caen, France (T.B., M.G., S.M.d.L., D.V.)
- CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France (D.V.)
| |
Collapse
|
15
|
Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond) 2018; 13:2341-2371. [PMID: 30088440 DOI: 10.2217/nnm-2018-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease, Parkinson's disease and stroke are the most common CNS diseases, all characterized by progressive cellular dysfunction and death in specific areas of the nervous system. Therapeutic development for these diseases has lagged behind other disease areas due to difficulties in early diagnosis, long disease courses and drug delivery challenges, not least due to the blood-brain barrier. Over recent decades, nanotechnology has been explored as a potential tool for the diagnosis, treatment and monitoring of CNS diseases. In this review, we describe the application of nanotechnology to common CNS diseases, highlighting disease pathogenesis and the underlying mechanisms and promising functional outcomes that make nanomaterials ideal candidates for early diagnosis and therapy. Moreover, we discuss the limitations of nanotechnology, and possible solutions.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China
| | - Wenyue Wang
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - David X Yu
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhicheng Xiao
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China.,Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| |
Collapse
|
16
|
Gekka M, Abumiya T, Komatsu T, Funaki R, Kurisu K, Shimbo D, Kawabori M, Osanai T, Nakayama N, Kazumata K, Houkin K. Novel Hemoglobin-Based Oxygen Carrier Bound With Albumin Shows Neuroprotection With Possible Antioxidant Effects. Stroke 2018; 49:1960-1968. [DOI: 10.1161/strokeaha.118.021467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Masayuki Gekka
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Takeo Abumiya
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan (R.F., T.K.)
| | - Ryosuke Funaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan (R.F., T.K.)
| | - Kota Kurisu
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Daisuke Shimbo
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Masato Kawabori
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Toshiya Osanai
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Naoki Nakayama
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Ken Kazumata
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Kiyohiro Houkin
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| |
Collapse
|
17
|
Abstract
Stroke still represents one of the most common causes of death and disability worldwide. Acute ischemic stroke (AIS), caused by brain arterial occlusion resulting from a thrombus or embolus, is the most common form of stroke. However, current therapies in AIS are inadequate, and the only US FDA approved treatment is the thrombolytic drug Alteplase. Therefore, establishing effective therapeutic strategies for AIS is urgently needed. Using nanoparticle-based technologies to deliver neuroprotective agents to the ischemic area has attracted increasing attention of late. In this review, the important molecular pathological mechanisms in cerebral ischemia are briefly summarized, the potential of nanoparticulate drug-delivery systems for AIS intervention and recovery are introduced and problems in the medical application of nanoparticles will also be discussed.
Collapse
|
18
|
Shimbo D, Abumiya T, Kurisu K, Osanai T, Shichinohe H, Nakayama N, Kazumata K, Nakamura H, Shimuzu H, Houkin K. Superior Microvascular Perfusion of Infused Liposome-Encapsulated Hemoglobin Prior to Reductions in Infarctions after Transient Focal Cerebral Ischemia. J Stroke Cerebrovasc Dis 2017; 26:2994-3003. [PMID: 28843805 DOI: 10.1016/j.jstrokecerebrovasdis.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The development of cerebral infarction after transient ischemia is attributed to postischemic delayed hypoperfusion in the microvascular region. In the present study, we assessed the microvascular perfusion capacity of infused liposome-encapsulated hemoglobin (LEH) in a therapeutic approach for transient middle cerebral artery occlusion (tMCAO). METHODS Two-hour middle cerebral artery occlusion rats were immediately subjected to intra-arterial infusion of LEH (LEH group) or saline (vehicle group) or no treatment (control group), and then to recanalization. Neurological findings, infarct and edema progression, microvascular endothelial dysfunction, and inflammatory reactions were compared between the 3 groups after 24 hours of reperfusion. Microvascular perfusion in the early phase of reperfusion was evaluated by hemoglobin immunohistochemistry and transmission electron microscopy. RESULTS The LEH group achieved significantly better results in all items evaluated than the other groups. Hemoglobin immunohistochemistry revealed that the number of hemoglobin-positive microvessels was significantly greater in the LEH group than in the other groups (P < .01), with microvascular perfusion being more likely in narrow microvessels (≤5 µm in diameter). An electron microscopic examination revealed that microvessels in the control group were compressed and narrowed by swollen astrocyte end-feet, whereas those in the LEH group had a less deformed appearance and contained LEH particles and erythrocytes. CONCLUSION The results of the present study demonstrated that the infusion of LEH reduced infarctions after tMCAO with more hemoglobin-positive and less deformed microvessels at the early phase of reperfusion, suggesting that the superiority of the microvascular perfusion of LEH mediates its neuroprotective effects.
Collapse
Affiliation(s)
- Daisuke Shimbo
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Kota Kurisu
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Osanai
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimuzu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11:5381-5414. [PMID: 27799765 PMCID: PMC5077137 DOI: 10.2147/ijn.s117210] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
Collapse
Affiliation(s)
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Kurisu K, Abumiya T, Ito M, Gekka M, Osanai T, Shichinohe H, Nakayama N, Kazumata K, Houkin K. Transarterial regional hypothermia provides robust neuroprotection in a rat model of permanent middle cerebral artery occlusion with transient collateral hypoperfusion. Brain Res 2016; 1651:95-103. [PMID: 27663968 DOI: 10.1016/j.brainres.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022]
Abstract
The robust neuroprotective effects of transarterial regional hypothermia have been demonstrated in the typical transient middle cerebral artery occlusion (tMCAO) model, but have not yet been tested in other ischemic stroke models, even though clinical ischemic conditions are diverse. In order to clarify these effects in a different ischemic stroke model, we employed a rat model of permanent MCAO (pMCAO) with transient collateral hypoperfusion (tCHP), which was achieved by direct MCA ligation through craniotomy and 1-h bilateral common carotid artery occlusion at the beginning of pMCAO. The infusion of 20ml/kg of 4°C cold saline (CS) or 37°C warm saline (WS) into the ipsilateral internal carotid artery (ICA) was performed for 15min in intra- or post-tCHP. Neurological scores, infarct/edema volumes, and neuronal apoptosis and reactive gliosis were compared between the CS and WS groups and a non-infusion control group after 48h of reperfusion. Although brain temperatures were only reduced by 2-3°C for 15min, the CS group had significantly better neurological scores, smaller infarct/edema volumes, and less penumbral neuronal apoptosis and reactive gliosis than the control and WS groups. The post-tCHP CS group exhibited prominent neuroprotective effects, even though infarct volumes and neuronal apoptosis were reduced less than those in the intra-tCHP CS group. In conclusion, we demonstrated the neuroprotective effects of transarterial regional hypothermia in an ischemic model of pMCAO with tCHP. Even though MCAO is persistent, cold infusion via the ICA is neuroprotective for the penumbra, suggesting the wider therapeutic application of this therapy.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Masayuki Gekka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Toshiya Osanai
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
21
|
Tian X, Peng J, Zhong J, Yang M, Pang J, Lou J, Li M, An R, Zhang Q, Xu L, Dong Z. β-Caryophyllene protects in vitro neurovascular unit against oxygen-glucose deprivation and re-oxygenation-induced injury. J Neurochem 2016; 139:757-768. [PMID: 27565895 DOI: 10.1111/jnc.13833] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 01/21/2023]
Abstract
β-Caryophyllene (BCP) mediates neuroprotection in cerebral ischemic animals. The neurovascular unit (NVU) acts as an intricate network to maintain the neuronal homeostatic microenvironment. However, the effects exerted by BCP on NVU remain unclear. Therefore, we established an in vitro NVU model to investigate the effects of BCP on oxygen-glucose deprivation and re-oxygenation (OGD/R)-induced injury. This model involved the co-culture of brain microvascular endothelial cells, neurons, and astrocytes. BCP (10 μmol/L) was applied for 24 h prior to OGD/R and maintained throughout OGD/R. Blood-brain barrier (BBB) integrity and neuronal apoptosis were analyzed. BCP pre-treatment prior to the initiation of OGD/R significantly (i) decreased BBB permeability and neuronal apoptosis, (ii) mitigated oxidative stress damage and the release of inflammatory cytokines, (iii) down-regulated Bax expression, metalloproteinase-9 activity and expression, and (iv) up-regulated claudin-5, occludin, ZO-1, growth-associated protein-43 and Bcl-2 expression. Thus, BCP pre-treatment exerted multiple protective effects on NVU in the context of OGD/R-induced injury. These protective effects potentially occur via reductions in oxidative stress damage and inflammatory cytokines that induce BBB breakdown, subsequently resulting in reduced neuronal apoptosis. The NVU serves as putative therapeutic targets for cerebral ischemia, and the results of this study provide new insights for the application of BCP as a neuroprotective agent.
Collapse
Affiliation(s)
- Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Lou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Minghang Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Ruidi An
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qian Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Lu Xu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Yuzhong District, Chongqing, China
| |
Collapse
|
22
|
Kurisu K, Abumiya T, Nakamura H, Shimbo D, Shichinohe H, Nakayama N, Kazumata K, Shimizu H, Houkin K. Transarterial Regional Brain Hypothermia Inhibits Acute Aquaporin-4 Surge and Sequential Microvascular Events in Ischemia/Reperfusion Injury. Neurosurgery 2016; 79:125-34. [DOI: 10.1227/neu.0000000000001088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Cardoso A, Guedes J, Cardoso A, Morais C, Cunha P, Viegas A, Costa R, Jurado A, Pedroso de Lima M. Recent Trends in Nanotechnology Toward CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:1-40. [DOI: 10.1016/bs.irn.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Xie Z, Liu L, Zhu W, Liu H, Wang L, Zhang J, Chen C, Zhu H. The protective effect of polymerized porcine hemoglobin (pPolyHb) on transient focal cerebral ischemia/reperfusion injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 43:180-5. [PMID: 25939745 DOI: 10.3109/21691401.2015.1037886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glutaraldehyde-polymerized porcine hemoglobin (pPolyHb) is a hemoglobin-based oxygen carrier currently being developed as a potential red blood cell substitute. We assessed the protective effect of pPolyHb on transient focal cerebral ischemia/reperfusion (I/R) injury. Several outcomes were tested, including infarct size, neurological score, production of inflammatory factors, and markers of oxidative status. Our results show that pPolyHb can not only significantly reduce infarct volume and improve neurological score, but can also inhibit the expression of TNF-α and IL-1β. Furthermore, the generation of MDA and MPO was reduced by pPolyHb. We conclude that pPolyHb has a positive effect on transient focal cerebral I/R injury.
Collapse
Affiliation(s)
- Zhilan Xie
- College of Life Science, Northwest University , Xi'an , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats. PLoS One 2015; 10:e0122744. [PMID: 25844636 PMCID: PMC4386818 DOI: 10.1371/journal.pone.0122744] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/12/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase-9 (MMP-9) over-expression disrupts the blood-brain barrier (BBB) in the ischemic brain. The retinoid X receptor agonist bexarotene suppresses MMP-9 expression in endothelial cells and displays neuroprotective effects. Therefore, we hypothesized that bexarotene may have a beneficial effect on I/R-induced BBB dysfunction. METHODS A total of 180 rats were randomized into three groups (n = 60 each): (i) a sham-operation group, (ii) a cerebral ischemia-reperfusion (I/R) group, and (iii) an I/R+bexarotene group. Brain water content was measured by the dry wet weight method. BBB permeability was analyzed by Evans Blue staining and the magnetic resonance imaging contrast agent Omniscan. MMP-9 mRNA expression, protein expression, and activity were assessed by reverse transcription polymerase chain reaction, Western blotting, and gelatin zymography, respectively. Apolipoprotein E (apoE), claudin-5, and occludin expression were analyzed by Western blotting. RESULTS After 24 h, 48 h, and 72 h post-I/R, several effects were observed with bexarotene administration: (i) brain water content and BBB permeability were significantly reduced; (ii) MMP-9 mRNA and protein expression as well as activity were significantly decreased; (iii) claudin-5 and occludin expression were significantly increased; and (iv) apoE expression was significantly increased. CONCLUSIONS Bexarotene decreases BBB permeability in rats with cerebral I/R injury. This effect may be due in part to bexarotene's upregulation of apoE expression, which has been previously shown to reduce BBB permeability through suppressing MMP-9-mediated degradation of the tight junction proteins claudin-5 and occludin. This work offers insight to aid future development of therapeutic agents for cerebral I/R injury in human patients.
Collapse
|
26
|
Kaneda S, Ishizuka T, Sekiguchi A, Morimoto K, Kasukawa H. Efficacy of Liposome-Encapsulated Hemoglobin in a Rat Model of Cerebral Ischemia. Artif Organs 2014; 38:650-5. [DOI: 10.1111/aor.12358] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ferenz KB, Waack IN, Laudien J, Mayer C, Broecker-Preuss M, Groot HD, Kirsch M. Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats. RESULTS IN PHARMA SCIENCES 2014; 4:8-18. [PMID: 25756002 PMCID: PMC4050377 DOI: 10.1016/j.rinphs.2014.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/05/2023]
Abstract
The host response against foreign materials designates the biocompatibility of intravenously administered microcapsules and thus, widely affects their potential for subsequent clinical use as artificial oxygen/drug carriers. Therefore, body distribution and systemic parameters, as well as markers of inflammation and indicators of organ damage were carefully evaluated after administration of short-chained poly (vinyl alcohol, (PVA)) solution or poly (ethylene glycol (PEG))-shielded perfluorodecalin-filled poly (d,l-lactide-co-glycolide, PFD-filled PLGA) microcapsules into Wistar rats. Whereas PVA infusion was well tolerated, all animals survived the selected dose of 1247 mg microcapsules/kg body weight but showed marked toxicity (increased enzyme activities, rising pro-inflammatory cytokines and complement factors) and developed a mild metabolic acidosis. The observed hypotension emerging immediately after start of capsule infusion was transient and mean arterial blood pressure restored to baseline within 70 min. Microcapsules accumulated in spleen and liver (but not in other organs) and partly occluded hepatic microcirculation reducing sinusoidal perfusion rate by about 20%. Intravenous infusion of high amounts of PFD-filled PLGA microcapsules was tolerated temporarily but associated with severe side effects such as hypotension and organ damage. Short-chained PVA displays excellent biocompatibility and thus, can be utilized as emulsifier for the preparation of drug carriers designed for intravenous use.
Collapse
Key Words
- ALAT, alanine aminotransferase
- ANOVA, one-way analysis of variance
- ASAT, aspartate aminotransferase
- Artificial oxygen carriers
- BE, base excess
- Biocompatibility
- Biodegradable microcapsules
- C3, complement factor 3
- C4a, complement factor 4a
- CARPA, complement activation-related pseudoallergy
- CK, creatine kinase
- DAPI, 4',6-diamidin-2-phenylindol
- FITC-dextran, fluorescein isothiocyanate-dextran 150,000
- IFN-?, interferon-gamma
- IL, interleukin
- IVM, intravital microscopy
- LDH, lactate dehydrogenase
- MAP, mean arterial blood pressure
- PEG, poly (ethylene glycol)
- PFD, perfluorodecalin
- PLA)
- PLGA, poly (d,l-lactide-co-glycolide)
- PVA, poly (vinyl alcohol)
- Perfluorocarbon
- Poly (lactic/glycolic) acid (PLGA
- Poly (vinyl alcohol)
- TNF-a, tumor necrosis factor alpha
- pO2, pCO2, oxygen and carbon dioxide partial pressures
Collapse
Affiliation(s)
- Katja B Ferenz
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Indra N Waack
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Julia Laudien
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Christian Mayer
- University of Duisburg-Essen, Institute for Physical Chemistry, CeNIDE, Universitaetsstr. 5, Essen 45141, Germany
| | - Martina Broecker-Preuss
- Department of Endocrinology and Metabolism Illnesses, Division of Laboratory Research, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Herbert de Groot
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| | - Michael Kirsch
- University of Duisburg-Essen, Institute for Physiological Chemistry, University Hospital Essen, Hufelandstr. 55, Essen 45122, Germany
| |
Collapse
|