1
|
Zhou Y, Lu Y, Wu X, Bai J, Yue X, Liu Y, Cai Y, Xiao X. Plasma extracellular vesicles proteomics in meningioma patients. Transl Oncol 2024; 47:102046. [PMID: 38943923 PMCID: PMC11261147 DOI: 10.1016/j.tranon.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Tumor derived Extracellular vesicles (EVs) in circulating system may contain tumor-specific markers, and EV detection in body fluids could become an important tool for early tumor diagnosis, prognosis assessment. Meningiomas are the most common benign intracranial tumors, few studies have revealed specific protein markers for meningiomas from patients' body fluids. In this study, using proximity labeling technology and non-tumor patient plasma as a control, we detected protein levels of EVs in plasma samples from meningioma patients before and after surgery. Through bioinformatics analysis, we discovered that the levels of EV count and protein count in meningioma patients were significantly higher than those in healthy controls, and were significantly decreased postoperatively. Among EV proteins in meningioma patients, the levels of MUC1, SIGLEC11, E-Cadherin, KIT, and TASCTD2 were found not only significantly elevated than those in healthy controls, but also significantly decreased after tumor resection. Moreover, using publicly available GEO databases, we verified that the mRNA level of MUC1, SIGLEC11, and CDH1 in meningiomas were significantly higher in comparison with normal dura mater tissues. Additionally, by analyzing human meningioma specimens collected in this study, we validated the protein levels of MUC1 and SIGLEC11 were significantly increased in WHO grade 2 meningiomas and were positively correlated with tumor proliferation levels. This study indicates that meningiomas secret EV proteins into circulating system, which may serve as specific markers for diagnosis, malignancy predicting and tumor recurrent assessment.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China
| | - Yanxin Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China
| | - Jie Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China
| | - Xupeng Yue
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yifei Liu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
2
|
Gareev I, Encarnacion Ramirez MDJ, Nurmukhametov R, Ivliev D, Shumadalova A, Ilyasova T, Beilerli A, Wang C. The role and clinical relevance of long non-coding RNAs in glioma. Noncoding RNA Res 2023; 8:562-570. [PMID: 37602320 PMCID: PMC10432901 DOI: 10.1016/j.ncrna.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Glioma represents a complex and heterogeneous disease, posing significant challenges to both clinicians and researchers. Despite notable advancements in glioma treatment, the overall survival rate for most glioma patients remains dishearteningly low. Hence, there is an urgent necessity to discover novel biomarkers and therapeutic targets specifically tailored for glioma. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression and have garnered attention for their involvement in the development and progression of various cancers, including glioma. The dysregulation of lncRNAs plays a critical role in glioma pathogenesis and influences clinical outcomes. Consequently, there is growing interest in exploring the potential of lncRNAs as diagnostic and prognostic biomarkers, as well as therapeutic targets. By understanding the functions and dysregulation of lncRNAs in glioma, researchers aim to unlock new avenues for the development of innovative treatment strategies catered to glioma patients. The identification and thorough characterization of lncRNAs hold the promise of novel therapeutic approaches that could potentially improve patient outcomes and enhance the management of glioma, ultimately striving for better prospects and enhanced quality of life for those affected by this challenging disease. The primary objective of this paper is to comprehensively review the current state of knowledge regarding lncRNA biology and their intricate roles in glioma. It also delves into the potential of lncRNAs as valuable diagnostic and prognostic indicators and explores their feasibility as promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Renat Nurmukhametov
- Division of Spine Surgery, Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
3
|
Younis M, Shaikh S, Shahzad KA. Long non-coding RNA RP5-821D11.7 promotes proliferation, migration, and epithelial-mesenchymal transition in glioma and glioma stem-like cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021:S0079-6107(21)00139-5. [PMID: 34952030 DOI: 10.1016/j.pbiomolbio.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Long noncoding RNA (lncRNA) has been recently revealed as a main regulatory molecule, which implicates many cellular functions. Studies showed that lncRNA abnormally expressed and involved in the progression and tumorigenesis of glioma. Present study identified a novel lncRNA associated with glioma, glioma stem-like cells (GSCs), and then revealed their potential functions. During the screening of lncRNAs, we investigated overexpression of lncRNA RP5-821D11.7 (lncRNA-RP5) in GSCs compared to glioma cells. Lentivirus-mediated shRNA for lncRNA-RP5 was constructed and transfected into glioma cells. Transfected stable glioma cells were transplanted into nude mice and tumor growth was observed. Knockdown of lncRNA-RP5 significantly inhibits proliferation, colony formation, migration and reduces epithelial-mesenchymal transition (EMT) by activating the Wnt/β-catenin pathway. Additionally, the results showed that lncRNA RP5 knockdown enhances cell apoptosis through endoplasmic reticulum stress. Therefore, this study may provide a better understanding about lncRNA-RP5 which revealed that it might be a potential therapeutic target in case of glioma progression and recurrence.
Collapse
Affiliation(s)
- Muhammad Younis
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Sana Shaikh
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| |
Collapse
|
4
|
Zhang J, Fang S, Song W, Zhang B, Fan W, Jin G, Liu F. Biological Characterization and Therapeutics for Subscalp Recurrent in Intracranial Glioblastoma. Onco Targets Ther 2020; 13:9085-9099. [PMID: 32982297 PMCID: PMC7498653 DOI: 10.2147/ott.s265322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Gliomas are common intracranial tumors, of which 70% are malignant gliomas. Glioblastoma multiforme (GBM) is the most aggressive tumor, and patients with GBM have a median survival time of only 9–12 months; extracranial recurrence of GBM is very rare. A therapeutic strategy for this kind of recurrent tumor is lacking. Materials and Methods We present a case of a patient with extracranial recurrence of subscalp GBM. The subscalp tumor was resected and xenotransplanted into BALB/C nude mice. Then, glioma cells were isolated from the xenograft models and passaged in vitro. HE staining, immunohistochemistry, CCK-8 assays, karyotypic analysis, short tandem repeat STR analysis and flow cytometry were used to analyze the biological characteristics and malignant phenotype of these established cells. The cells and xenografts were then used as preclinical models to evaluate the antitumor efficacy of oncolytic herpes simplex virus 1 (oHSV-1). Results The isolated cells, which were named BT-01, were positive for Nestin and GFAP. The main characteristics of BT-01 cells were that they harbored glioblastoma stem-like cells (GSCs) and that they possessed highly aggressive migration capacities compared with the existing cell lines U87-MG and U251-MG. Moreover, BT-01 cells tolerated the chemotherapeutic drug temozolomide. Our study showed that oHSV-1 could replicate in and repress the growth of BT-01 cells and significantly inhibit tumor growth in xenograft models. Conclusion Taken together, our results showed that a new recurrent glioblastoma cell line was established, which can be useful for research on recurrent glioblastoma. We provided a reliable preclinical model to evaluate the antitumor efficacy of oHSV-1 in vivo and a promising therapy for recurrent GBM.
Collapse
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Wenjie Song
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Bo Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Wenhua Fan
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
5
|
Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div 2020; 15:4. [PMID: 32127912 PMCID: PMC7047354 DOI: 10.1186/s13008-020-00061-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Recurrence of Glioblastoma multiforme (GBM) seems to be the rule despite combination therapies. Cell invasion and cell proliferation are major reasons for recurrence of GBM. And insulin-like growth factor binding protein 5 (IGFBP5) is the most conserved of the IGFBPs and is frequently dysregulated in cancers and metastatic tissues. Results By studying the human glioma tissues, we find that IGFBP5 expression associate to the histopathological classification and highly expressed in GBM. Using IGFBP5 mutants we demonstrate that knockdown of IGFBP5 inhibited cell invasion, whereas promoting cell proliferation in GBM cells. Mechanistically, we observed that promoting GBM cell proliferation by inhibiting IGFBP5 was associated with stimulating Akt (Protein kinase B) phosphorylation. However, IGFBP5 promote GBM cell invasion was related to the epithelial-to-mesenchymal transition (EMT). Furthermore, the Chinese Glioma Genome Altas (CGGA) database show that IGFBP5 is significantly increased in recurrent glioma and it predicted worse survival. Conclusions The obtained results indicate that IGFBP5 has two sides in GBM—inhibiting cell proliferation but promoting cell invasion.
Collapse
Affiliation(s)
- Chengyuan Dong
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Junwen Zhang
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Sheng Fang
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| | - Fusheng Liu
- 1Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 People's Republic of China.,2Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070 People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070 People's Republic of China
| |
Collapse
|
6
|
Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, Ran Y, Wan J. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:225. [PMID: 30208924 PMCID: PMC6136228 DOI: 10.1186/s13046-018-0864-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
Abstract
Background Tumor recurrence, the chief reason for poor prognosis of glioma, is largely attributed to glioma stem cells (GSCs) and epithelial-mesenchymal transition (EMT). However, the mechanisms among them remain unknown. Here, we determined whether leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), known as a stem cell marker for colon cancer and gastric cancer, can serve as a novel GSC marker involved in EMT and a therapeutic target in glioma. Methods Stemness properties were examined in FACS-isolated LGR5+/LGR5− cells. Reported stem cell markers, EMT and the Wnt/β-catenin pathway were examined in stable LGR5 knockdown or overexpressed GSCs by Western Blot. The treatment experiment was performed in an intracranial orthotopic xenograft model by knockdown of LGR5 or by using the Wnt/β-catenin pathway inhibitor Wnt-C59. LGR5 expression was determined in 268 glioma specimens by immunohistochemistry. Results LGR5+ cells possessed stronger stemness properties compared to LGR5− cells. The expression of SOX2, Nanog, CD133, CD44, CD24 and EpCAM was modulated by LGR5. Both LGR5 knockdown and Wnt-C59 reduced tumor invasion and migration and blocked EMT by inhibiting the Wnt/β-catenin pathway in vitro and suppressed the intracranial orthotopic xenograft growth and prolonged the survival of xenograft mice in vivo. Moreover, LGR5 was positively correlated with Ki67, N-cadherin and WHO grade and negatively correlated with IDH1. Glioma patients with high expression of LGR5 showed significantly poorer prognosis. Conclusions LGR5 is a new functional GSC marker and prognostic indicator that can promote EMT by activating the Wnt/β-catenin pathway and would thus be a novel therapeutic target for glioma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0864-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China
| | - Hongqing Cai
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China
| | - Lixin Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China
| | - Panpan Zhan
- Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China
| | - Meng Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China
| | - Feng Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China
| | - Yuliang Ran
- Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China.
| | - Jinghai Wan
- Department of Neurosurgery, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Beijing, 100021, China.
| |
Collapse
|
7
|
Zhang Y, Jin G, Zhang J, Mi R, Zhou Y, Fan W, Cheng S, Song W, Zhang B, Ma M, Liu F. Overexpression of STAT1 suppresses angiogenesis under hypoxia by regulating VEGF‑A in human glioma cells. Biomed Pharmacother 2018; 104:566-575. [PMID: 29800921 DOI: 10.1016/j.biopha.2018.05.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/04/2023] Open
Abstract
Hypoxia is common in Glioblastoma (GBM). By regulating the 'hypoxia signaling cascade', hypoxia affects several processes including cell proliferation, invasion, and angiogenesis. Some studies have revealed that signal transducer and activator of transcription (STAT), including STAT1, is abnormal under hypoxia in several cancers. Here, we investigated the role of STAT1 under hypoxia in glioma progression. We found that STAT1 was downregulated under a hypoxic condition in U251 and U373. STAT1 overexpression can not only decrease proliferation, migration and invasion in U251 and U373 but also inhibit tube formation of HBMECs. Moreover, overexpression of STAT1 decreased tumor growth and prolonged the overall survival of xenograft mice. We also showed that STAT1 overexpression inhibited the expression of HIF-1α and VEGF-A. Our work suggests that STAT1 plays a pivotal role as a tumor suppressor in glioma under hypoxia, and it could be a potential new therapeutic target in glioma.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China.
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Ruifang Mi
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Yiqiang Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Wenhua Fan
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Sen Cheng
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Wenjie Song
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Bo Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Mengjiao Ma
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100050, PR China.
| |
Collapse
|
8
|
Cheng S, Mi R, Xu Y, Jin G, Zhang J, Zhou Y, Chen Z, Liu F. Ferritin heavy chain as a molecular imaging reporter gene in glioma xenografts. J Cancer Res Clin Oncol 2017; 143:941-951. [PMID: 28247036 DOI: 10.1007/s00432-017-2356-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE The development of glioma therapy in clinical practice (e.g., gene therapy) calls for efficiently visualizing and tracking glioma cells in vivo. Human ferritin heavy chain is a novel gene reporter in magnetic resonance imaging. This study proposes hFTH as a reporter gene for MR molecular imaging in glioma xenografts. METHODS Rat C6 glioma cells were infected by packaged lentivirus carrying hFTH and EGFP genes and obtained by fluorescence-activated cell sorting. The iron-loaded ability was analyzed by the total iron reagent kit. Glioma nude mouse models were established subcutaneously and intracranially. Then, in vivo tumor bioluminescence was performed via the IVIS spectrum imaging system. The MR imaging analysis was analyzed on a 7T animal MRI scanner. Finally, the expression of hFTH was analyzed by western blotting and histological analysis. RESULTS Stable glioma cells carrying hFTH and EGFP reporter genes were successfully obtained. The intracellular iron concentration was increased without impairing the cell proliferation rate. Glioma cells overexpressing hFTH showed significantly decreased signal intensity on T2-weighted MRI both in vitro and in vivo. EGFP fluorescent imaging could also be detected in the subcutaneous and intracranial glioma xenografts. Moreover, the expression of the transferritin receptor was significantly increased in glioma cells carrying the hFTH reporter gene. CONCLUSION Our study illustrated that hFTH generated cellular MR imaging contrast efficiently in glioma via regulating the expression of transferritin receptor. This might be a useful reporter gene in cell tracking and MR molecular imaging for glioma diagnosis, gene therapy and tumor metastasis.
Collapse
Affiliation(s)
- Sen Cheng
- Brain Tumor Research Center, Beijing Laboratory of Biomedical Materials, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Ruifang Mi
- Brain Tumor Research Center, Beijing Laboratory of Biomedical Materials, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Yu Xu
- Radiology Department, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 5 Hai Yun Cang, Dong Cheng District, Beijing, 100700, People's Republic of China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Laboratory of Biomedical Materials, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Laboratory of Biomedical Materials, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Yiqiang Zhou
- Brain Tumor Research Center, Beijing Laboratory of Biomedical Materials, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Zhengguang Chen
- Radiology Department, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 5 Hai Yun Cang, Dong Cheng District, Beijing, 100700, People's Republic of China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Laboratory of Biomedical Materials, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
9
|
Zhou Y, Jin G, Mi R, Zhang J, Zhang J, Xu H, Cheng S, Zhang Y, Song W, Liu F. Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma. J Cancer Res Clin Oncol 2016; 142:2447-2459. [PMID: 27601165 DOI: 10.1007/s00432-016-2249-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Fatty acids (FAs) are essential for membrane lipids biosynthesis and energy consumption in cancer cells. De novo FAs synthesis is catalyzed by fatty acid synthase (FASN), which is overexpressed and correlates with histological grade in glioma. Herein, we focused on the role of FASN in glioma neovascularization. METHODS The expression levels of FASN, Ki67 and CD34 were determined using immunohistochemistry (IHC). FASN specific-targeted shRNA and C75 were applied to evaluate the influence of FASN on glioma stem cell proliferation, migration and tube formation ability in vitro. An intracranial glioma model was established to study the effects of FASN on tumor growth and neovascularization in vivo. RESULTS IHC staining showed that the expression level of FASN correlated with tumor grade, Ki67 levels and microvessels density (MVD) in human gliomas. Inhibition of FASN using shRNAs or C75 decreased tumor growth, prolonged the overall survival of xenograft mice and decreased MVD in brain tumor sections. Moreover, inhibition of FASN blocked hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGF-A) signaling and upregulated the anti-angiogenic isoform-VEGF165b. CONCLUSION Our results suggest that FASN plays a pivotal role in glioma neovascularization, and inhibition of FASN may be a potential target for anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Ruifang Mi
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Jin Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Hengzhou Xu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Sen Cheng
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Yunsheng Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Wenjie Song
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Tiantan Xili 6, Dongcheng District, Beijing, 100050, People's Republic of China.
| |
Collapse
|
10
|
Gao YF, Wang ZB, Zhu T, Mao CX, Mao XY, Li L, Yin JY, Zhou HH, Liu ZQ. A critical overview of long non-coding RNA in glioma etiology 2016: an update. Tumour Biol 2016; 37:14403-14413. [DOI: 10.1007/s13277-016-5307-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
|
11
|
Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, Liu W, Wang W, Xia QJ, Shang FF, Luo CZ, Zhou X, Liu S, McDonald J, Liu J, Zuo YX, Liu F, Wang TH. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep 2016; 6:27512. [PMID: 27282805 PMCID: PMC4901320 DOI: 10.1038/srep27512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Patients with tumors that metastasize to bone frequently suffer from debilitating pain, and effective therapies for treating bone cancer are lacking. This study employed a novel strategy in which herpes simplex virus (HSV) carrying a small interfering RNA (siRNA) targeting platelet-derived growth factor (PDGF) was used to alleviate bone cancer pain. HSV carrying PDGF siRNA was established and intrathecally injected into the cavum subarachnoidale of animals suffering from bone cancer pain and animals in the negative group. Sensory function was assessed by measuring thermal and mechanical hyperalgesia. The mechanism by which PDGF regulates pain was also investigated by comparing the differential expression of pPDGFRα/β and phosphorylated ERK and AKT. Thermal and mechanical hyperalgesia developed in the rats with bone cancer pain, and these effects were accompanied by bone destruction in the tibia. Intrathecal injection of PDGF siRNA and morphine reversed thermal and mechanical hyperalgesia in rats with bone cancer pain. In addition, we observed attenuated astrocyte hypertrophy, down-regulated pPDGFRα/β levels, reduced levels of the neurochemical SP, a reduction in CGRP fibers and changes in pERK/ERK and pAKT/AKT ratios. These results demonstrate that PDGF siRNA can effectively treat pain induced by bone cancer by blocking the AKT-ERK signaling pathway.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, PR China
| | - Mu He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ran Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - Ping Dai
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wei Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wei Wang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Fei-Fei Shang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao-Zhi Luo
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Liu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - JohnW. McDonald
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - Jin Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yun-Xia Zuo
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, PR China
| |
Collapse
|