1
|
Seemiller LR, Logue SF, Gould TJ. Inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes from adolescence to adulthood. Pharmacol Biochem Behav 2022; 218:173429. [PMID: 35820468 PMCID: PMC11524176 DOI: 10.1016/j.pbb.2022.173429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Understanding the genetic basis of a predisposition for nicotine and alcohol use across the lifespan is important for public health efforts because genetic contributions may change with age. However, parsing apart subtle genetic contributions to complex human behaviors is a challenge. Animal models provide the opportunity to study the effects of genetic background and age on drug-related phenotypes, while controlling important experimental variables such as amount and timing of drug exposure. Addiction research in inbred, or isogenic, mouse lines has demonstrated genetic contributions to nicotine and alcohol abuse- and addiction-related behaviors. This review summarizes inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes including voluntary consumption/self-administration, initial sensitivity to the drug as measured by sedative, hypothermic, and ataxic effects, locomotor effects, conditioned place preference or place aversion, drug metabolism, and severity of withdrawal symptoms. This review also discusses how these alcohol and nicotine addiction-related phenotypes change from adolescence to adulthood.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Sheree F Logue
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
2
|
De Luca SN, Brassington K, Chan SMH, Dobric A, Mou K, Seow HJ, Vlahos R. Ebselen prevents cigarette smoke-induced cognitive dysfunction in mice by preserving hippocampal synaptophysin expression. J Neuroinflammation 2022; 19:72. [PMID: 35351173 PMCID: PMC8966248 DOI: 10.1186/s12974-022-02432-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The “spill-over” of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. Methods Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. Results CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. Conclusion We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.
Collapse
|
3
|
Partial and full deletion of nicotinic acetylcholine receptor α4 and β2 subunits reduces sensitivity to acute nicotine administration and development of tolerance following chronic nicotine administration. Behav Pharmacol 2021; 31:688-701. [PMID: 32568759 DOI: 10.1097/fbp.0000000000000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diversity of nicotinic cholinergic receptor (nAChR) subunits underlies the complex responses to nicotine. Mice differing in the expression of α4 and β2 subunits, which are most widely expressed in brain, were evaluated for the responses to acute nicotine administration on Y-maze crossings and rears, open-field locomotion and body temperature following chronic treatment with nicotine (0, 0.25, 1.0 and 4.0 mg/kg/h). Deletion or partial deletion of the α4, β2 or both nAChR subunits reduced the sensitivity of mice to acute nicotine administration. This reduced sensitivity was gene dose-dependent. Modification of α4 subunit expression elicited a greater reduction in sensitivity than the modification of β2 subunit expression. No measurable tolerance was observed for mice of any genotype following chronic treatment with 0.25 mg/kg/h nicotine. Modest tolerance was noted following treatment with 1.0 mg/kg/h. Greater tolerance was observed following treatment with 4.0 mg/kg/h. The extent of tolerance differed among the mice depending on genotype: wild-type (α4 and β2) developed measurable tolerance for all four tests. Heterozygotes (α4, β2 and α4/β2) developed tolerance for only Y-maze crossings and body temperature. Null mutants (α4 and β2) did not become tolerant. However, following chronic treatment with 4.0 mg/kg/h nicotine, wild type, α4 and α4 mice displayed increased Y-maze crossings following acute administration of 0.5 mg/kg nicotine that may reflect the activity of α6β2*-nAChR. These results confirm the importance of the α4 and β2 nAChR subunits in mediating acute and chronic effects of nicotine on locomotion and body temperature in the mouse.
Collapse
|
4
|
Sherafat Y, Bautista M, Fowler CD. Multidimensional Intersection of Nicotine, Gene Expression, and Behavior. Front Behav Neurosci 2021; 15:649129. [PMID: 33828466 PMCID: PMC8019722 DOI: 10.3389/fnbeh.2021.649129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, Unites States
| |
Collapse
|
5
|
Mooney-Leber SM, Zeid D, Garcia-Trevizo P, Seemiller LR, Bogue MA, Grubb SC, Peltz G, Gould TJ. Genetic Differences in Dorsal Hippocampus Acetylcholinesterase Activity Predict Contextual Fear Learning Across Inbred Mouse Strains. Front Psychiatry 2021; 12:737897. [PMID: 34733190 PMCID: PMC8558262 DOI: 10.3389/fpsyt.2021.737897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Learning is a critical behavioral process that is influenced by many neurobiological systems. We and others have reported that acetylcholinergic signaling plays a vital role in learning capabilities, and it is especially important for contextual fear learning. Since cholinergic signaling is affected by genetic background, we examined the genetic relationship between activity levels of acetylcholinesterase (AChE), the primary enzyme involved in the acetylcholine metabolism, and learning using a panel of 20 inbred mouse strains. We measured conditioned fear behavior and AChE activity in the dorsal hippocampus, ventral hippocampus, and cerebellum. Acetylcholinesterase activity varied among inbred mouse strains in all three brain regions, and there were significant inter-strain differences in contextual and cued fear conditioning. There was an inverse correlation between fear conditioning outcomes and AChE levels in the dorsal hippocampus. In contrast, the ventral hippocampus and cerebellum AChE levels were not correlated with fear conditioning outcomes. These findings strengthen the link between acetylcholine activity in the dorsal hippocampus and learning, and they also support the premise that the dorsal hippocampus and ventral hippocampus are functionally discrete.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Psychology, University of Wisconsin-Stevens Point, Stevens Point, WI, United States
| | - Dana Zeid
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Prescilla Garcia-Trevizo
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Laurel R Seemiller
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Gary Peltz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
6
|
Effects of 3-Month Exposure to E-Cigarette Aerosols on Glutamatergic Receptors and Transporters in Mesolimbic Brain Regions of Female C57BL/6 Mice. TOXICS 2020; 8:toxics8040095. [PMID: 33137879 PMCID: PMC7712012 DOI: 10.3390/toxics8040095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Electronic cigarettes (e-cigs) use has been dramatically increased recently, especially among youths. Previous studies from our laboratory showed that chronic exposure to e-cigs, containing 24 mg/mL nicotine, was associated with dysregulation of glutamate transporters and neurotransmitter levels in the brain of a mouse model. In this study, we evaluated the effect of three months’ continuous exposure to e-cig vapor (JUUL pods), containing a high nicotine concentration, on the expression of glutamate receptors and transporters in drug reward brain regions such as the nucleus accumbens (NAc) core (NAc-core), NAc shell (NAc-shell) and hippocampus (HIP) in female C57BL/6 mice. Three months’ exposure to mint- or mango-flavored JUUL (containing 5% nicotine, 59 mg/mL) induced upregulation of metabotropic glutamate receptor 1 (mGluR1) and postsynaptic density protein 95 (phosphorylated and total PSD95) expression, and downregulation of mGluR5 and glutamate transporter 1 (GLT-1) in the NAc-shell. In addition, three months’ exposure to JUUL was associated with upregulation of mGluR5 and GLT-1 expression in the HIP. These findings demonstrated that three-month exposure to e-cig vapor containing high nicotine concentrations induced differential effects on the glutamatergic system in the NAc and HIP, suggesting dysregulation of glutamatergic system activity in mesolimbic brain regions.
Collapse
|
7
|
Kumar M, Adeluyi A, Anderson EL, Turner JR. Glial cells as therapeutic targets for smoking cessation. Neuropharmacology 2020; 175:108157. [PMID: 32461156 PMCID: PMC7791555 DOI: 10.1016/j.neuropharm.2020.108157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Smoking remains the leading cause of morbidity and mortality in the United States, with less than 5% of smokers attempting to quit succeeding. This low smoking cessation success rate is thought to be due to the long-term adaptations and alterations in synaptic plasticity that occur following chronic nicotine exposure and withdrawal. Glial cells have recently emerged as active players in the development of dependence phenotypes due to their roles in modulating neuronal functions and synaptic plasticity. Fundamental studies have demonstrated that microglia and astrocytes are crucial for synapse formation and elimination in the developing brain, likely contributing to why glial dysfunction is implicated in numerous neurological and psychiatric disorders. Recently, there is increasing evidence for the involvement of glial cells in drug dependence and its associated behavioral manifestations. This review summarizes the newly evaluated role of microglia and astrocytes as molecular drivers of nicotine dependence and withdrawal phenotypes. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| | - Adewale Adeluyi
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Erin L Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, USA.
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA.
| |
Collapse
|
8
|
Holliday ED, Logue SF, Oliver C, Bangasser DA, Gould TJ. Stress and nicotine during adolescence disrupts adult hippocampal-dependent learning and alters stress reactivity. Addict Biol 2020; 25:e12769. [PMID: 31099135 DOI: 10.1111/adb.12769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 11/30/2022]
Abstract
Adolescence represents increased susceptibility to stress that increases risk for nicotine dependence. The present study examined the interactive effects of brief exposure to stress (shipping/transportation or experimentally induced) and chronic nicotine during adolescence on cognitive function and stress reactivity in adulthood. Adolescent (P31), but not young adult (P47), C57BL/6J mice had higher levels of corticosterone after shipping vs mice bred onsite. Shipped preadolescent (P23) and adolescent (P38) mice, but not those bred onsite, exposed to nicotine showed deficits in contextual fear learning when tested in adulthood. Adult learning deficits were replicated in adolescent mice bred onsite, exposed to experimentally induced stress, and administered chronic nicotine. Stress and nicotine during adolescence resulted in higher expression of hippocampal glucocorticoid receptors and corticotropin-releasing factor receptors and blunted restraint induced CORT release in adulthood. Importantly, studies examining adolescent behavior in mice should consider stress influences outcomes.
Collapse
Affiliation(s)
- Erica D. Holliday
- Department of Psychology, Neuroscience Program, Weiss HallTemple University Philadelphia PA USA
| | - Sheree F. Logue
- College of Health and Human Development, Biobehavioral HealthPenn State University Park PA USA
| | - Chicora Oliver
- Department of Psychology, Neuroscience Program, Weiss HallTemple University Philadelphia PA USA
| | - Debra A. Bangasser
- Department of Psychology, Neuroscience Program, Weiss HallTemple University Philadelphia PA USA
| | - Thomas J. Gould
- College of Health and Human Development, Biobehavioral HealthPenn State University Park PA USA
| |
Collapse
|
9
|
Cole RD, Zimmerman M, Matchanova A, Kutlu MG, Gould TJ, Parikh V. Cognitive rigidity and BDNF-mediated frontostriatal glutamate neuroadaptations during spontaneous nicotine withdrawal. Neuropsychopharmacology 2020; 45:866-876. [PMID: 31752015 PMCID: PMC7075915 DOI: 10.1038/s41386-019-0574-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/13/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
Cognitive flexibility is the ability to switch strategic responses adaptively in changing environments. Cognitive rigidity imposed by neural circuit adaptations during nicotine abstinence may foster maladaptive nicotine taking in addicts. We systematically examined the effects of spontaneous withdrawal in mice exposed to either nicotine (6.3 or 18 mg/kg/day) or saline for 14 days on cognitive flexibility using an operant strategy set-shifting task. Because frontostriatal circuits are critical for cognitive flexibility and brain-derived neurotrophic factor (BDNF) modulates glutamate plasticity in these circuits, we also explored the effects of nicotine withdrawal on these neurochemical substrates. Mice undergoing nicotine withdrawal required more trials to attain strategy-switching criterion. Error analysis show that animals withdrawn from both nicotine doses committed higher perseverative errors, which correlated with measures of anxiety. However, animals treated with the higher nicotine dose also displayed more strategy maintenance errors that remained independent of negative affect. BDNF mRNA expression increased in the medial prefrontal cortex (mPFC) following nicotine withdrawal. Surprisingly, BDNF protein declined in mPFC but was elevated in dorsal striatum (DS). DS BDNF protein positively correlated with perseverative and maintenance errors, suggesting mPFC-DS overflow of BDNF during withdrawal. BDNF-evoked glutamate release and synapsin phosphorylation was attenuated within DS synapses, but enhanced in the nucleus accumbens, suggesting a dichotomous role of BDNF signaling in striatal regions. Taken together, these data suggest that spontaneous nicotine withdrawal impairs distinct components of cognitive set-shifting and these deficits may be linked to BDNF-mediated alterations in glutamate signaling dynamics in discrete frontostriatal circuits.
Collapse
Affiliation(s)
- Robert D. Cole
- 0000 0001 2248 3398grid.264727.2Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Matty Zimmerman
- 0000 0001 2248 3398grid.264727.2Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Anastasia Matchanova
- 0000 0001 2248 3398grid.264727.2Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Munir Gunes Kutlu
- 0000 0001 2097 4281grid.29857.31Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802 USA
| | - Thomas J. Gould
- 0000 0001 2097 4281grid.29857.31Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802 USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
10
|
Borkar CD, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Neuropeptide CART prevents memory loss attributed to withdrawal of nicotine following chronic treatment in mice. Addict Biol 2019; 24:51-64. [PMID: 29193459 DOI: 10.1111/adb.12579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/24/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023]
Abstract
Although chronic nicotine administration does not affect memory, its withdrawal causes massive cognitive deficits. The underlying mechanisms, however, have not been understood. We test the role of cocaine- and amphetamine-regulated transcript peptide (CART), a neuropeptide known for its procognitive properties, in this process. The mice on chronic nicotine treatment/withdrawal were subjected to novel object recognition task. The capability of the animal to discriminate between the novel and familiar objects was tested and represented as discrimination index (DI); reduction in the index suggested amnesia. Nicotine for 49 days had no effect on DI, but 8-hour withdrawal caused a significant reduction, followed by full recovery at 24-hour withdrawal timepoint. Bilateral CART infusion in dorsal hippocampus rescued deficits in DI at 8-hours, whereas CART-antibody infusion into the dorsal hippocampus attenuated the recovery at 24-hours. Commensurate changes were observed in the CART as well as CART mRNA profiles in the hippocampus. CART mRNA expression and the peptide immunoreactivity did not change significantly following chronic nicotine treatment. However, there was a significant reduction at 8-hour withdrawal, followed by a drastic increase in CART immunoreactivity as well as CART mRNA at 24-hour withdrawal, compared with 8-hour withdrawal. Distinct α7-nicotinic receptor immunoreactivity was detected on the hippocampal CART neurons, suggesting cholinergic inputs. An increase in the synaptophysin immunoreactive elements around CART cells in the dentate gyrus, cornu ammonis 3 and subiculum at 24-hour post-withdrawal timepoint suggested neuronal plasticity. CART circuit dynamics in the hippocampus seems to modulate short-term memory associated with nicotine withdrawal.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology; Savitribai Phule Pune University; India
| | - Amul J. Sakharkar
- Department of Biotechnology; Savitribai Phule Pune University; India
| | | | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| |
Collapse
|
11
|
Cole RD, Wolsh C, Zimmerman M, Harrington E, Gould TJ, Parikh V. Adolescent and adult nicotine exposure differentially impacts oral nicotine and oral saccharin self-administration in mice. Behav Brain Res 2018; 359:836-844. [PMID: 30053462 DOI: 10.1016/j.bbr.2018.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Smokers that begin during adolescence are more likely to develop nicotine dependence than those who begin as adults. However, the factors that contribute to this remain largely unknown. Here we utilized a novel operant oral nicotine self-administration procedure in mice to assess the consequences of adolescent nicotine exposure on nicotine and saccharin (non-drug) reinforcement in adults. Animals were given non-contingent exposure to either saline or nicotine using the osmotic minipumps during both adolescence and adulthood for 2 weeks. Reinforcing efficacy for oral nicotine and saccharin was assessed using the progressive ratio schedule 2-weeks following the washout period in adults. Non-contingent nicotine exposure in adolescence drastically increased operant responding for oral nicotine but reduced responding for oral saccharin in the group re-exposed to nicotine in adulthood. Interestingly, adolescent nicotine-exposed mice that received saline exposure as adults exhibited higher preference for oral saccharin. However, breakpoints for oral nicotine in these mice remained comparable to control animals. Surprisingly, both adolescent and adult nicotine exposure increased inactive lever responding during self-administration presumably reflecting impulsive responding. Our data suggest that adolescent nicotine exposure produces an increase in reinforcement sensitivity in adulthood as reflected by increased saccharin self-administration but this sensitivity becomes biased towards nicotine self-administration when re-exposed to nicotine in adulthood. Moreover, nicotine/saccharin reinforcement could be impacted by changes in cognitive control, such as increased impulsivity. These distinct behavioral mechanisms may act in concert to facilitate maladaptive nicotine taking in smokers that initiate nicotine use during adolescence.
Collapse
Affiliation(s)
- Robert D Cole
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Cassandra Wolsh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Matty Zimmerman
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Evelynn Harrington
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
12
|
Connor DA, Kutlu MG, Gould TJ. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. J Psychopharmacol 2017; 31:934-944. [PMID: 28675115 PMCID: PMC5755391 DOI: 10.1177/0269881117695861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Munir G Kutlu
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence. Neuropharmacology 2017; 118:38-45. [PMID: 28279662 DOI: 10.1016/j.neuropharm.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
Abstract
Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.
Collapse
|
14
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
15
|
Holliday ED, Gould TJ. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning. Nicotine Tob Res 2016; 19:87-93. [PMID: 27613891 DOI: 10.1093/ntr/ntw176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/29/2016] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. METHODS C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. RESULTS It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. CONCLUSIONS These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. IMPLICATIONS Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function.
Collapse
Affiliation(s)
- Erica D Holliday
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA
| |
Collapse
|
16
|
Kutlu MG, Oliver C, Huang P, Liu-Chen LY, Gould TJ. Impairment of contextual fear extinction by chronic nicotine and withdrawal from chronic nicotine is associated with hippocampal nAChR upregulation. Neuropharmacology 2016; 109:341-348. [PMID: 27378334 DOI: 10.1016/j.neuropharm.2016.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/22/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022]
Abstract
Chronic nicotine and withdrawal from chronic nicotine have been shown to be major modulators of fear learning behavior. Moreover, recent studies from our laboratory have shown that acute nicotine impaired fear extinction and safety learning in mice. However, the effects of chronic nicotine and withdrawal on fear extinction are unknown. Therefore, the current experiments were conducted to investigate the effects of chronic nicotine as well as withdrawal from chronic nicotine on contextual fear extinction in mice. C57BL6/J mice were given contextual fear conditioning training and retention testing during chronic nicotine administration. Mice then received contextual fear extinction either during chronic nicotine or during withdrawal from chronic nicotine. Our results showed that contextual fear extinction was impaired both during chronic nicotine administration and subsequent withdrawal. However, it was also observed that the effects of prior chronic nicotine disappeared after 72 h in withdrawal, a timeline that closely matches with the timing of the chronic nicotine-induced upregulation of hippocampal nicotinic acetylcholine receptor (nAChR) density. Additional experiments found that 4 days, but not 1 day, of continuous nicotine administration upregulated hippocampal nAChRs and impaired contextual fear extinction. These effects disappeared following 72 h withdrawal. Overall, these experiments provide a potential link between nicotine-induced upregulation of hippocampal nAChRs and fear extinction deficits observed in patients with anxiety disorders, which may lead to advancements in the pharmacological treatment methods for this disorder.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, PA, USA.
| | - Chicora Oliver
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, PA, USA
| | - Peng Huang
- Department of Pharmacology, Temple University Medical School, Philadelphia, PA, USA
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Temple University Medical School, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neurosci Biobehav Rev 2016; 65:173-84. [PMID: 27068856 DOI: 10.1016/j.neubiorev.2016.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
In order to continue the decline of smoking prevalence, it is imperative to identify factors that contribute to the development of nicotine and tobacco addiction, such as adolescent initiation of nicotine use, adolescent stress, and their interaction. This review highlights the biological differences between adolescent and adults in nicotine use and resulting effects, and examines the enduring consequences of adolescent nicotine administration. A review of both clinical and preclinical literature indicates that adolescent, but not adult, nicotine administration leads to increased susceptibility for development of long-lasting impairments in learning and affect. Finally, the role stress plays in normal adolescent development, the deleterious effects stress has on learning and memory, and the negative consequences resulting from the interaction of stress and nicotine during adolescence is reviewed. The review concludes with ways in which future policies could benefit by addressing adolescent stress as a means of reducing adolescent nicotine abuse.
Collapse
|
18
|
Parikh V, Cole RD, Patel PJ, Poole RL, Gould TJ. Cognitive control deficits during mecamylamine-precipitated withdrawal in mice: Possible links to frontostriatal BDNF imbalance. Neurobiol Learn Mem 2016; 128:110-6. [PMID: 26775017 DOI: 10.1016/j.nlm.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023]
Abstract
Nicotine is a major psychoactive and addictive component of tobacco. Although cessation of tobacco use produces various somatic and affective symptoms, withdrawal-related cognitive deficits are considered to be a critical symptom that predict relapse. Therefore, delineating the cognitive mechanisms of nicotine withdrawal may likely provide gainful insights into the neurobiology of nicotine addiction. The present study was designed to examine the effects of nicotine withdrawal induced by mecamylamine, a non-specific nicotinic receptor (nAChR) antagonist, on cognitive control processes in mice using an operant strategy switching task. Brain-derived neurotrophic factor (BDNF) modulates synaptic transmission in frontostriatal circuits, and these circuits are critical for executive functions. Thus, we examined the effects of mecamylamine-precipitated nicotine withdrawal on prefrontal and striatal BDNF protein expression. Mice undergoing precipitated nicotine withdrawal required more trials to attain strategy switching criterion as compared to the controls. Error analysis indicated that impaired performance in these animals was mostly related to their inability to execute the new strategy. The striatal/prefrontal BDNF ratios robustly increased following precipitated nicotine withdrawal. Moreover, higher BDNF ratios were associated with longer task acquisition. Collectively, our findings illustrate that mecamylamine-induced nicotine withdrawal disrupts cognitive control processes and that these changes are possibly linked to perturbations in frontostriatal BDNF signaling.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Robert D Cole
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Purav J Patel
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Rachel L Poole
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
19
|
A Two-Day Continuous Nicotine Infusion Is Sufficient to Demonstrate Nicotine Withdrawal in Rats as Measured Using Intracranial Self-Stimulation. PLoS One 2015; 10:e0144553. [PMID: 26658557 PMCID: PMC4684239 DOI: 10.1371/journal.pone.0144553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 01/23/2023] Open
Abstract
Avoidance of the negative affective (emotional) symptoms of nicotine withdrawal (e.g., anhedonia, anxiety) contributes to tobacco addiction. Establishing the minimal nicotine exposure conditions required to demonstrate negative affective withdrawal signs in animals, as well as understanding moderators of these conditions, could inform tobacco addiction-related research, treatment, and policy. The goal of this study was to determine the minimal duration of continuous nicotine infusion required to demonstrate nicotine withdrawal in rats as measured by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Administration of the nicotinic acetylcholine receptor antagonist mecamylamine (3.0 mg/kg, s.c.) on alternate test days throughout the course of a 2-week continuous nicotine infusion (3.2 mg/kg/day via osmotic minipump) elicited elevations in ICSS thresholds beginning on the second day of infusion. Magnitude of antagonist-precipitated withdrawal did not change with further nicotine exposure and mecamylamine injections, and was similar to that observed in a positive control group receiving mecamylamine following a 14-day nicotine infusion. Expression of a significant withdrawal effect was delayed in nicotine-infused rats receiving mecamylamine on all test days rather than on alternate test days. In a separate study, rats exhibited a transient increase in ICSS thresholds following cessation of a 2-day continuous nicotine infusion (3.2 mg/kg/day). Magnitude of this spontaneous withdrawal effect was similar to that observed in rats receiving a 9-day nicotine infusion. Our findings demonstrate that rats exhibit antagonist-precipitated and spontaneous nicotine withdrawal following a 2-day continuous nicotine infusion, at least under the experimental conditions studied here. Magnitude of these effects were similar to those observed in traditional models involving more prolonged nicotine exposure. Further development of these models, including evaluation of more clinically relevant nicotine dosing regimens and other measures of nicotine withdrawal (e.g., anxiety-like behavior, somatic signs), may be useful for understanding the development of the nicotine withdrawal syndrome.
Collapse
|
20
|
ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice. Behav Pharmacol 2015; 26:241-8. [PMID: 25426579 DOI: 10.1097/fbp.0000000000000111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotine withdrawal produces cognitive deficits that can predict relapse. Amelioration of these cognitive deficits emerges as a target in current smoking cessation therapies. In rodents, withdrawal from chronic nicotine disrupts contextual fear conditioning (CFC), whereas acute nicotine enhances this hippocampus-specific learning and memory. These modifications are mediated by β2-subunit-containing (β2*) nicotinic acetylcholine receptors in the hippocampus. We aimed to test ABT-089, a partial agonist of α4β2*, and ABT-107, an α7 nicotinic acetylcholine receptor agonist, for amelioration of cognitive deficits induced by withdrawal from chronic nicotine in mice. Mice underwent chronic nicotine administration (12.6 mg/kg/day or saline for 12 days), followed by 24 h of withdrawal. At the end of withdrawal, mice received 0.3 or 0.6 mg/kg ABT-089 or 0.3 mg/kg ABT-107 (doses were determined through initial dose-response experiments and prior studies) and were trained and tested for CFC. Nicotine withdrawal produced deficits in CFC that were reversed by acute ABT-089, but not ABT-107. Cued conditioning was not affected. Taken together, our results suggest that modulation of hippocampal learning and memory using ABT-089 may be an effective component of novel therapeutic strategies for nicotine addiction.
Collapse
|
21
|
Kutlu MG, Parikh V, Gould TJ. Nicotine Addiction and Psychiatric Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:171-208. [PMID: 26472530 DOI: 10.1016/bs.irn.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though smoking rates have long been on the decline, nicotine addiction still affects 20% of the US population today. Moreover, nicotine dependence shows high comorbidity with many mental illnesses including, but are not limited to, attention deficit hyperactivity disorder, anxiety disorders, and depression. The reason for the high rates of smoking in patients with mental illnesses may relate to attempts to self-medicate with nicotine. While nicotine may alleviate the symptoms of mental disorders, nicotine abstinence has been shown to worsen the symptoms of these disorders. In this chapter, we review the studies from animal and human research examining the bidirectional relationship between nicotine and attention deficit hyperactivity disorder, anxiety disorders, and depression as well as studies examining the roles of specific subunits of nicotinic acetylcholine receptors (nAChRs) in the interaction between nicotine and these mental illnesses. The results of these studies suggest that activation, desensitization, and upregulation of nAChRs modulate the effects of nicotine on mental illnesses.
Collapse
Affiliation(s)
| | - Vinay Parikh
- Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
22
|
Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015; 97:498-511. [PMID: 26231942 DOI: 10.1016/j.bcp.2015.07.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders.
Collapse
Affiliation(s)
| | - Thomas J Gould
- Temple University, Weiss Hall, Philadelphia, PA 19122, USA.
| |
Collapse
|
23
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Temple University, 1701 N. 13th St, Weiss Hall, Philadelphia, PA, 19122, USA
| | | |
Collapse
|
24
|
Leach PT, Holliday E, Kutlu MG, Gould TJ. Withdrawal From Chronic Nicotine Reduces Thyroid Hormone Levels and Levothyroxine Treatment Ameliorates Nicotine Withdrawal-Induced Deficits in Hippocampus-Dependent Learning in C57BL/6J Mice. Nicotine Tob Res 2014; 17:690-6. [PMID: 25358661 DOI: 10.1093/ntr/ntu229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/20/2014] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Cigarette smoking alters a variety of endocrine systems including thyroid hormones. Altered thyroid hormone signaling may lead to a subclinical or overt hypothyroid condition that could contribute to nicotine withdrawal-related symptoms, such as cognitive deficits. Thus, normalizing thyroid hormone levels may represent a novel therapeutic target for ameliorating nicotine withdrawal-associated cognitive deficits. METHODS The current studies conducted an analysis of serum thyroid hormone levels after chronic and withdrawal from chronic nicotine treatment in C57BL/6J mice using an enzyme-linked immunosorbent assay. The present studies also evaluated the effect of synthetic thyroid hormone (levothyroxine) on contextual and cued memory. RESULTS The current studies found that nicotine withdrawal reduces secreted thyroid hormone levels by 9% in C57BL/6J mice. Further, supplemental thyroid hormone not only enhanced memory in naïve animals, but also ameliorated deficits in hippocampus-dependent learning associated with nicotine withdrawal. CONCLUSIONS These results suggest that smokers attempting to quit should be monitored closely for changes in thyroid function. If successfully treated, normalization of thyroid hormone levels may ameliorate some deficits associated with nicotine withdrawal and this may lead to higher rates of successful abstinence.
Collapse
Affiliation(s)
- Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA
| | - Erica Holliday
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA
| | - Munir G Kutlu
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA
| | - Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA
| |
Collapse
|