1
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
2
|
Kim CH, Jin SH, Kim JS, Kim Y, Yi SW, Chung CK. Dissociation of Connectivity for Syntactic Irregularity and Perceptual Ambiguity in Musical Chord Stimuli. Front Neurosci 2021; 15:693629. [PMID: 34526877 PMCID: PMC8435864 DOI: 10.3389/fnins.2021.693629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Musical syntax has been studied mainly in terms of “syntactic irregularity” in harmonic/melodic sequences. However, “perceptual ambiguity” referring to the uncertainty of judgment/classification of presented stimuli can in addition be involved in our musical stimuli using three different chord sequences. The present study addresses how “syntactic irregularity” and “perceptual ambiguity” on musical syntax are dissociated, in terms of effective connectivity between the bilateral inferior frontal gyrus (IFGs) and superior temporal gyrus (STGs) by linearized time-delayed mutual information (LTDMI). Three conditions were of five-chord sequences with endings of dominant to tonic, dominant to submediant, and dominant to supertonic. The dominant to supertonic is most irregular, compared with the regular dominant to tonic. The dominant to submediant of the less irregular condition is the most ambiguous condition. In the LTDMI results, connectivity from the right to the left IFG (IFG-LTDMI) was enhanced for the most irregular condition, whereas that from the right to the left STG (STG-LTDMI) was enhanced for the most ambiguous condition (p = 0.024 in IFG-LTDMI, p < 0.001 in STG-LTDMI, false discovery rate (FDR) corrected). Correct rate was negatively correlated with STG-LTDMI, further reflecting perceptual ambiguity (p = 0.026). We found for the first time that syntactic irregularity and perceptual ambiguity coexist in chord stimulus testing musical syntax and that the two processes are dissociated in interhemispheric connectivities in the IFG and STG, respectively.
Collapse
Affiliation(s)
- Chan Hee Kim
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, MEG Center, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Hyun Jin
- Department of Neurosurgery, MEG Center, Seoul National University Hospital, Seoul, South Korea
| | - June Sic Kim
- Department of Neurosurgery, MEG Center, Seoul National University Hospital, Seoul, South Korea.,Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Youn Kim
- Department of Music, School of Humanities, The University of Hong Kong, Hong Kong, Hong Kong SAR China
| | - Suk Won Yi
- College of Music, Seoul National University, Seoul, South Korea.,Western Music Research Institute, Seoul National University, Seoul, South Korea
| | - Chun Kee Chung
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, MEG Center, Seoul National University Hospital, Seoul, South Korea.,Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Kim CH, Kim JS, Choi Y, Kyong JS, Kim Y, Yi SW, Chung CK. Change in left inferior frontal connectivity with less unexpected harmonic cadence by musical expertise. PLoS One 2019; 14:e0223283. [PMID: 31714920 PMCID: PMC6850538 DOI: 10.1371/journal.pone.0223283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
In terms of harmonic expectancy, compared to an expected dominant-to-tonic and an unexpected dominant-to-supertonic, a dominant-to-submediant is a less unexpected cadence, the perception of which may depend on the subject’s musical expertise. The present study investigated how aforementioned 3 different cadences are processed in the networks of bilateral inferior frontal gyri (IFGs) and superior temporal gyri (STGs) with magnetoencephalography. We compared the correct rate and brain connectivity in 9 music-majors (mean age, 23.5 ± 3.4 years; musical training period, 18.7 ± 4.0 years) and 10 non-music-majors (mean age, 25.2 ± 2.6 years; musical training period, 4.2 ± 1.5 years). For the brain connectivity, we computed the summation of partial directed coherence (PDC) values for inflows/outflows to/from each area (sPDCi/sPDCo) in bilateral IFGs and STGs. In the behavioral responses, music-majors were better than non-music-majors for all 3 cadences (p < 0.05). However, sPDCi/sPDCo was prominent only for the dominant-to-submediant in the left IFG. The sPDCi was more strongly enhanced in music-majors than in non-music-majors (p = 0.002, Bonferroni corrected), while the sPDCo was vice versa (p = 0.005, Bonferroni corrected). Our data show that music-majors, with higher musical expertise, are better in identifying a less unexpected cadence than non-music-majors, with connectivity changes centered on the left IFG.
Collapse
Affiliation(s)
- Chan Hee Kim
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Science, Seoul, Korea
| | - June Sic Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Yunhee Choi
- Medical Research Collaborating Center, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jeong-Sug Kyong
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
- Audiology Institute, Hallym University of Graduate Studies, Seoul, Korea
| | - Youn Kim
- Department of Music, School of Humanities, The University of Hong Kong, Hong Kong, China
| | - Suk Won Yi
- College of Music, Seoul National University, Seoul, Korea
- Western Music Research Institute, Seoul National University, Seoul, Korea
| | - Chun Kee Chung
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Science, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
4
|
Predictive Processes and the Peculiar Case of Music. Trends Cogn Sci 2019; 23:63-77. [DOI: 10.1016/j.tics.2018.10.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
|
5
|
Sturm I, Blankertz B, Potes C, Schalk G, Curio G. ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song. Front Hum Neurosci 2014; 8:798. [PMID: 25352799 PMCID: PMC4195312 DOI: 10.3389/fnhum.2014.00798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/19/2014] [Indexed: 11/13/2022] Open
Abstract
Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli.
Collapse
Affiliation(s)
- Irene Sturm
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany ; Neurotechnology Group, Department of Electrical Engineering and Computer Science, Berlin Institute of Technology Berlin, Germany ; Neurophysics Group, Department of Neurology and Clinical Neurophysiology, Charité - University Medicine Berlin Berlin, Germany
| | - Benjamin Blankertz
- Neurotechnology Group, Department of Electrical Engineering and Computer Science, Berlin Institute of Technology Berlin, Germany ; Bernstein Focus: Neurotechnology Berlin, Germany
| | - Cristhian Potes
- National Resource Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health Albany, NY, USA ; Department of Electrical and Computer Engineering, University of Texas at El Paso El Paso, TX, USA
| | - Gerwin Schalk
- National Resource Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health Albany, NY, USA ; Department of Electrical and Computer Engineering, University of Texas at El Paso El Paso, TX, USA ; Department of Neurosurgery, Washington University in St. Louis St. Louis, MO, USA ; Department of Biomedical Engineering, Rensselaer Polytechnic Institute Troy, NY, USA ; Department of Neurology, Albany Medical College Albany, NY, USA ; Department of Neurosurgery, Washington University in St. Louis St. Louis, MO, USA
| | - Gabriel Curio
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany ; Neurophysics Group, Department of Neurology and Clinical Neurophysiology, Charité - University Medicine Berlin Berlin, Germany ; Bernstein Focus: Neurotechnology Berlin, Germany
| |
Collapse
|