1
|
Tang Y, Zhang X, An L, Yu Z, Liu JK. Diverse role of NMDA receptors for dendritic integration of neural dynamics. PLoS Comput Biol 2023; 19:e1011019. [PMID: 37036844 PMCID: PMC10085026 DOI: 10.1371/journal.pcbi.1011019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Neurons, represented as a tree structure of morphology, have various distinguished branches of dendrites. Different types of synaptic receptors distributed over dendrites are responsible for receiving inputs from other neurons. NMDA receptors (NMDARs) are expressed as excitatory units, and play a key physiological role in synaptic function. Although NMDARs are widely expressed in most types of neurons, they play a different role in the cerebellar Purkinje cells (PCs). Utilizing a computational PC model with detailed dendritic morphology, we explored the role of NMDARs at different parts of dendritic branches and regions. We found somatic responses can switch from silent, to simple spikes and complex spikes, depending on specific dendritic branches. Detailed examination of the dendrites regarding their diameters and distance to soma revealed diverse response patterns, yet explain two firing modes, simple and complex spike. Taken together, these results suggest that NMDARs play an important role in controlling excitability sensitivity while taking into account the factor of dendritic properties. Given the complexity of neural morphology varying in cell types, our work suggests that the functional role of NMDARs is not stereotyped but highly interwoven with local properties of neuronal structure.
Collapse
Affiliation(s)
- Yuanhong Tang
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Xingyu Zhang
- Guangzhou Institute of Technology, Xidian University, Guangzhou, China
| | - Lingling An
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Zhaofei Yu
- Institute for Artificial Intelligence, Department of Computer Science and Technology, Peking University, Beijing, China
| | - Jian K Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Dong GH, Xu YH, Liu LY, Lu D, Chu CP, Cui SB, Qiu DL. Chronic ethanol exposure during adolescence impairs simple spike activity of cerebellar Purkinje cells in vivo in mice. Neurosci Lett 2021; 771:136396. [PMID: 34919990 DOI: 10.1016/j.neulet.2021.136396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Cerebellar Purkinje cells (PCs) play critical roles in motor coordination and motor learning through their simple spike (SS) activity. Previous studies have shown that chronic ethanol exposure (CEE) in adolescents impairs learning, attention, and behavior, at least in part by impairing the activity of cerebellar PCs. In this study, we investigated the effect of CEE on the SS activity in urethane-anesthetized adolescent mice by in vivo electrophysiological recordings and pharmacological methods. Our results showed that the cerebellar PCs in CEE adolescent mice expressed a significant decrease in the frequency and an increase in the coefficient of variation (CV) of SS than control group. Blockade of ɤ-aminobutyric acid A (GABAA) receptor did not change the frequency and CV of SS firing in control group but produced a significant increase in the frequency and a decrease in the CV of SS firing in CEE mice. The CEE-induced decrease in SS firing rate and increase in CV were abolished by application of an N-methyl-D-aspartate (NMDA) receptor blocker, D-APV, but not by anα-amino-3-hydroxy-5-methyl -4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX. Notably, the spontaneous spike rate of molecular layer interneurons (MLIs) in CEE mice was significantly higher than control group, which was also abolished by application of D-APV. These results indicate that adolescent CEE enhances the spontaneous spike firing rate of MLIs through activation of NMDA receptor, resulting in a depression in the SS activity of cerebellar PCs in vivo in mice.
Collapse
Affiliation(s)
- Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yin-Hua Xu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liang-Yan Liu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Di Lu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China; Institute of Brain Science, Jilin Medical University, Jilin, China
| | - Song-Biao Cui
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China.
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China; Institute of Brain Science, Jilin Medical University, Jilin, China.
| |
Collapse
|
3
|
Wu WY, Liu Y, Wu MC, Wang HW, Chu CP, Jin H, Li YZ, Qiu DL. Corticotrophin-Releasing Factor Modulates the Facial Stimulation-Evoked Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission in vivo in Mice. Front Cell Neurosci 2020; 14:563428. [PMID: 33324165 PMCID: PMC7726213 DOI: 10.3389/fncel.2020.563428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is an important neuromodulator in central nervous system that modulates neuronal activity via its receptors during stress responses. In cerebellar cortex, CRF modulates the simple spike (SS) firing activity of Purkinje cells (PCs) has been previously demonstrated, whereas the effect of CRF on the molecular layer interneuron (MLI)–PC synaptic transmission is still unknown. In this study, we examined the effect of CRF on the facial stimulation–evoked cerebellar cortical MLI-PC synaptic transmission in urethane-anesthetized mice by in vivo cell-attached recording, neurobiotin juxtacellular labeling, immunohistochemistry techniques, and pharmacological method. Cell-attached recordings from cerebellar PCs showed that air-puff stimulation of ipsilateral whisker pad evoked a sequence of tiny parallel fiber volley (N1) followed by MLI-PC synaptic transmission (P1). Microapplication of CRF in cerebellar cortical molecular layer induced increases in amplitude of P1 and pause of SS firing. The CRF decreases in amplitude of P1 waveform were in a dose-dependent manner with the EC50 of 241 nM. The effects of CRF on amplitude of P1 and pause of SS firing were abolished by either a non-selective CRF receptor antagonist, α-helical CRF-(9-14), or a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM), but were not prevented by a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Notably, application CRF not only induced a significant increase in spontaneous spike firing rate, but also produced a significant increase in the number of the facial stimulation–evoked action potential in MLIs. The effect of CRF on the activity of MLIs was blocked by the selective CRF-R1 antagonist, and the MLIs expressed the CRF-R1 imunoreactivity. These results indicate that CRF increases excitability of MLIs via CRF-R1, resulting in an enhancement of the facial stimulation–evoked MLI-PC synaptic transmission in vivo in mice.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China.,Department of Urology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| | - Mao-Cheng Wu
- Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hong-Wei Wang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| | - Hua Jin
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Nephrology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yu-Zi Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| |
Collapse
|
4
|
Zamudio PA, Smothers TC, Homanics GE, Woodward JJ. Knock-in Mice Expressing an Ethanol-Resistant GluN2A NMDA Receptor Subunit Show Altered Responses to Ethanol. Alcohol Clin Exp Res 2020; 44:479-491. [PMID: 31872888 PMCID: PMC7018579 DOI: 10.1111/acer.14273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are glutamate-activated, heterotetrameric ligand-gated ion channels critically important in virtually all aspects of glutamatergic signaling. Ethanol (EtOH) inhibition of NMDARs is thought to mediate specific actions of EtOH during acute and chronic exposure. Studies from our laboratory, and others, identified EtOH-sensitive sites within specific transmembrane (TM) domains involved in channel gating as well as those in subdomains of extracellular and intracellular regions of GluN1 and GluN2 subunits that affect channel function. In this study, we characterize for the first time the physiological and behavioral effects of EtOH on knock-in mice expressing a GluN2A subunit that shows reduced sensitivity to EtOH. METHODS A battery of tests evaluating locomotion, anxiety, sedation, motor coordination, and voluntary alcohol intake were performed in wild-type mice and those expressing the GluN2A A825W knock-in mutation. Whole-cell patch-clamp electrophysiological recordings were used to confirm reduced EtOH sensitivity of NMDAR-mediated currents in 2 separate brain regions (mPFC and the cerebellum) where the GluN2A subunit is known to contribute to NMDAR-mediated responses. RESULTS Male and female mice homozygous for the GluN2A(A825W) knock-in mutation showed reduced EtOH inhibition of NMDAR-mediated synaptic currents in mPFC and cerebellar neurons as compared to their wild-type counterparts. GluN2A(A825W) male but not female mice were less sensitive to the sedative and motor-incoordinating effects of EtOH and showed a rightward shift in locomotor-stimulating effects of EtOH. There was no effect of the mutation on EtOH-induced anxiolysis or voluntary EtOH consumption in either male or female mice. CONCLUSIONS These findings show that expression of EtOH-resistant GluN2A NMDARs results in selective and sex-specific changes in the behavioral sensitivity to EtOH.
Collapse
Affiliation(s)
- Paula A Zamudio
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Thetford C Smothers
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Karelina TV, Stepanenko YD, Sibarov DA, Abushik PA, Antonov SM. Inhibition of GABAergic Transmission as a Model of Hyperactivation of Purkinje Cells in the Rat Cerebellum. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s000635092001008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Ma J, Zhang LQ, He ZX, He XX, Wang YJ, Jian YL, Wang X, Zhang BB, Su C, Lu J, Huang BQ, Zhang Y, Wang GY, Guo WX, Qiu DL, Mei L, Xiong WC, Zheng YW, Zhu XJ. Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biol 2019; 17:e3000461. [PMID: 31600191 PMCID: PMC6786517 DOI: 10.1371/journal.pbio.3000461] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
Dendritic spine development is crucial for the establishment of excitatory synaptic connectivity and functional neural circuits. Alterations in spine morphology and density have been associated with multiple neurological disorders. Autism candidate gene disconnected-interacting protein homolog 2 A (DIP2A) is known to be involved in acetylated coenzyme A (Ac-CoA) synthesis and is primarily expressed in the brain regions with abundant pyramidal neurons. However, the role of DIP2A in the brain remains largely unknown. In this study, we found that deletion of Dip2a in mice induced defects in spine morphogenesis along with thin postsynaptic density (PSD), and reduced synaptic transmission of pyramidal neurons. We further identified that DIP2A interacted with cortactin, an activity-dependent spine remodeling protein. The binding activity of DIP2A-PXXP motifs (P, proline; X, any residue) with the cortactin-Src homology 3 (SH3) domain was critical for maintaining the level of acetylated cortactin. Furthermore, Dip2a knockout (KO) mice exhibited autism-like behaviors, including excessive repetitive behaviors and defects in social novelty. Importantly, acetylation mimetic cortactin restored the impaired synaptic transmission and ameliorated repetitive behaviors in these mice. Altogether, our findings establish an initial link between DIP2A gene variations in autism spectrum disorder (ASD) and highlight the contribution of synaptic protein acetylation to synaptic processing. The autism candidate gene DIP2A is known to be involved in the synthesis of acetylated coenzyme A, but its precise role in the brain remains largely unknown. This study shows that loss of DIP2A in mice results in an imbalance in the acetylation of the synaptic protein cortactin, causing defects in spine morphogenesis and synaptic transmission that may establish a link to autism spectrum disorders.
Collapse
Affiliation(s)
- Jun Ma
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu-Qing Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ya-Jun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - You-Li Jian
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Bin-Bin Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Ce Su
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Bai-Qu Huang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Gui-Yun Wang
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yao-Wu Zheng
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (XZ); (YZ)
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail: (XZ); (YZ)
| |
Collapse
|
7
|
Cerebellar Stellate Cell Excitability Is Coordinated by Shifts in the Gating Behavior of Voltage-Gated Na + and A-Type K + Channels. eNeuro 2019; 6:ENEURO.0126-19.2019. [PMID: 31110133 PMCID: PMC6553571 DOI: 10.1523/eneuro.0126-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023] Open
Abstract
Neuronal excitability in the vertebrate brain is governed by the coordinated activity of both ligand- and voltage-gated ion channels. In the cerebellum, spontaneous action potential (AP) firing of inhibitory stellate cells (SCs) is variable, typically operating within the 5- to 30-Hz frequency range. AP frequency is shaped by the activity of somatodendritic A-type K+ channels and the inhibitory effect of GABAergic transmission. An added complication, however, is that whole-cell recording from SCs induces a time-dependent and sustained increase in membrane excitability making it difficult to define the full range of firing rates. Here, we show that whole-cell recording in cerebellar SCs of both male and female mice augments firing rates by reducing the membrane potential at which APs are initiated. AP threshold is lowered due to a hyperpolarizing shift in the gating behavior of voltage-gated Na+ channels. Whole-cell recording also elicits a hyperpolarizing shift in the gating behavior of A-type K+ channels which contributes to increased firing rates. Hodgkin–Huxley modeling and pharmacological experiments reveal that gating shifts in A-type K+ channel activity do not impact AP threshold, but rather promote channel inactivation which removes restraint on the upper limit of firing rates. Taken together, our work reveals an unappreciated impact of voltage-gated Na+ channels that work in coordination with A-type K+ channels to regulate the firing frequency of cerebellar SCs.
Collapse
|
8
|
Wang HW, Zhao JT, Li BX, Su SS, Bing YH, Chu CP, Wang WM, Li YZ, Qiu DL. Corticotrophin-Releasing Factor Modulates Cerebellar Purkinje Cells Simple Spike Activity in Vivo in Mice. Front Cell Neurosci 2018; 12:184. [PMID: 30034323 PMCID: PMC6043798 DOI: 10.3389/fncel.2018.00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/11/2018] [Indexed: 12/04/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is a major neuromodulator that modulates cerebellar neuronal activity via CRF receptors during stress responses. In the cerebellar cortex, CRF dose-dependently increases the simple spike (SS) firing rate of Purkinje cells (PCs), while the synaptic mechanisms of this are still unclear. We here investigated the effect of CRF on the spontaneous SS activity of cerebellar PCs in urethane-anesthetized mice by in vivo electrophysiological recording and pharmacological methods. Cell-attached recordings from PCs showed that micro-application of CRF in cerebellar cortical molecular layer induced a dose-dependent increase in SS firing rate in the absence of GABAA receptor activity. The CRF-induced increase in SS firing rate was completely blocked by a nonselective CRF receptor antagonist, α-helical CRF-(9–14). Nevertheless, application of either a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM) or a selective CRF-R2 antagonist, antisauvagine-30 (200 nM) significantly attenuated, but failed to abolished the CRF-induced increase in PCs SS firing rate. In vivo whole-cell patch-clamp recordings from PCs showed that molecular layer application of CRF significantly increased the frequency, but not amplitude, of miniature postsynaptic currents (mEPSCs). The CRF-induced increase in the frequency of mEPSCs was abolished by a CRF-R2 antagonist, as well as protein kinase A (PKA) inhibitors. These results suggested that CRF acted on presynaptic CRF-R2 of cerebellar PCs resulting in an increase of glutamate release through PKA signaling pathway, which contributed to modulation of the cerebellar PCs outputs in Vivo in mice.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.,Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Jing-Tong Zhao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Bing-Xue Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Shan-Shan Su
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan-Hua Bing
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Wei-Ming Wang
- Department of Osteology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yu-Zi Li
- Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular of the Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
9
|
Fang H, Wang ZH, Bu YJ, Yuan ZJ, Wang GQ, Guo Y, Cheng XY, Qiu WJ. Repeated inhalation of sevoflurane inhibits the information transmission of Purkinje cells and delays motor development via the GABAA receptor ε subunit in neonatal mice. Mol Med Rep 2017; 17:1083-1092. [PMID: 29115488 PMCID: PMC5780070 DOI: 10.3892/mmr.2017.7941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
General anesthesia is widely used in pediatric surgery, although the influence of general anesthesia on cerebellar information transmission and motor function is unclear. In the present study, neonatal mice received repeated inhalation of sevoflurane, and electrophysiological alterations in Purkinje cells (PCs) and the development of motor functions were detected. In addition, γ-aminobutyric acidA receptor ε (GABAA-R ε) subunit knockout mice were used to investigate the mechanism of action of sevoflurane on cerebellar function. In the neonatal mice, the field potential response of PCs induced by sensory stimulation and the motor function indices were markedly inhibited by sevoflurane, and the inhibitory effect was positively associated with the number of repetitions of anesthesia. In additional the GABAA-R ε subunit level of PCs was promoted by sevoflurane in a dose-dependent manner, and the inhibitory effects of sevoflurane on PC field potential response and motor function were alleviated in GABAA-R ε subunit knockout mice. The GABAA-R ε subunit was activated by sevoflurane, leading to inhibition of sensory information transmission in the cerebellar cortex, field potential responses of PCs and the development of cerebellar motor function. The present study provided experimental evidence for the safe usage of sevoflurane in clinical anesthesia, and suggested that GABAA-R ε subunit antagonists may be considered for combined application with general anesthesia with repeated inhalation of sevoflurane, for adverse effect prevention in the clinic.
Collapse
Affiliation(s)
- Hong Fang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Ze-Hua Wang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Ying-Jiang Bu
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Zhi-Jun Yuan
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Guo-Qiang Wang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Yan Guo
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Xiao-Yun Cheng
- Department of Anesthesiology, The Suburban People's Hospital, Changzhi, Shanxi 046011, P.R. China
| | - Wen-Jie Qiu
- Department of Anesthesiology, The Suburban People's Hospital, Changzhi, Shanxi 046011, P.R. China
| |
Collapse
|
10
|
Liu H, Lan Y, Bing YH, Chu CP, Qiu DL. N-methyl-D-Aspartate Receptors Contribute to Complex Spike Signaling in Cerebellar Purkinje Cells: An In vivo Study in Mice. Front Cell Neurosci 2016; 10:172. [PMID: 27445699 PMCID: PMC4928496 DOI: 10.3389/fncel.2016.00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are post-synaptically expressed at climbing fiber-Purkinje cell (CF-PC) synapses in cerebellar cortex in adult mice and contributed to CF-PC synaptic transmission under in vitro conditions. In this study, we investigated the role of NMDARs at CF-PC synapses during the spontaneous complex spike (CS) activity in cerebellar cortex in urethane-anesthetized mice, by in vivo whole-cell recording technique and pharmacological methods. Under current-clamp conditions, cerebellar surface application of NMDA (50 μM) induced an increase in the CS-evoked pause of simple spike (SS) firing accompanied with a decrease in the SS firing rate. Under voltage-clamp conditions, application of NMDA enhanced the waveform of CS-evoked inward currents, which expressed increases in the area under curve (AUC) and spikelet number of spontaneous CS. NMDA increased the AUC of spontaneous CS in a concentration-dependent manner. The EC50 of NMDA for increasing AUC of spontaneous CS was 33.4 μM. Moreover, NMDA significantly increased the amplitude, half-width and decay time of CS-evoked after-hyperpolarization (AHP) currents. Blockade of NMDARs with D-(-)-2-amino-5-phosphonopentanoic acid (D-APV, 250 μM) decreased the AUC, spikelet number, and amplitude of AHP currents. In addition, the NMDA-induced enhancement of CS activity could not be observed after α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors were blocked. The results indicated that NMDARs of CF-PC synapses contributed to the spontaneous CS activity by enhancing CS-evoked inward currents and AHP currents.
Collapse
Affiliation(s)
- Heng Liu
- Cellular Function Research Center, Yanbian UniversityYanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian UniversityYanji, China
| | - Yan Lan
- Cellular Function Research Center, Yanbian UniversityYanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian UniversityYanji, China
| | - Yan-Hua Bing
- Cellular Function Research Center, Yanbian UniversityYanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian UniversityYanji, China
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University Yanji, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian UniversityYanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian UniversityYanji, China; Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular of the Ministry of Education, Yanbian UniversityYanji, China
| |
Collapse
|
11
|
Rudolph R, Jahn HM, Courjaret R, Messemer N, Kirchhoff F, Deitmer JW. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 2016; 64:1265-80. [PMID: 27144942 DOI: 10.1002/glia.22999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Abstract
Synaptic transmission has been shown to be modulated by glial functions, but the modes of specific glial action may vary in different neural circuits. We have tested the hypothesis, if Bergmann GLIA (BG) are involved in shaping neuronal communication in the mouse cerebellar cortex, using acutely isolated cerebellar slices of wild-type (WT) and of glia-specific receptor knockout mice. Activation of P2Y1 receptors by ADP (100 µM) or glutamatergic receptors by AMPA (0.3 µM) resulted in a robust, reversible and repeatable rise of evoked inhibitory input in Purkinje cells by 80% and 150%, respectively. The ADP-induced response was suppressed by prior application of AMPA, and the AMPA-induced response was suppressed by prior application of ADP. Genetic deletion or pharmacological blockade of either receptor restored the response to the other receptor agonist. Both ADP and AMPA responses were sensitive to Rose Bengal, which blocks vesicular glutamate uptake, and to the NMDA receptor antagonist D-AP5. Our results provide strong evidence that activation of both ADP and AMPA receptors, located on BGs, results in the release of glutamate, which in turn activates inhibitory interneurons via NMDA-type glutamate receptors. This infers that BG cells, by means of metabotropic signaling via their AMPA and P2Y1 receptors, which mutually suppress each other, would interdependently contribute to the fine-tuning of Purkinje cell activity in the cerebellar cortex. GLIA 2016. GLIA 2016;64:1265-1280.
Collapse
Affiliation(s)
- Ramona Rudolph
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Hannah M Jahn
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Raphael Courjaret
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany.,Weill Cornell Medical College, Doha, Qatar
| | - Nanette Messemer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Joachim W Deitmer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| |
Collapse
|
12
|
Jin R, Liu H, Jin WZ, Shi JD, Jin QH, Chu CP, Qiu DL. Propofol depresses cerebellar Purkinje cell activity via activation of GABA(A) and glycine receptors in vivo in mice. Eur J Pharmacol 2015; 764:87-93. [PMID: 26142083 DOI: 10.1016/j.ejphar.2015.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
Propofol is an intravenous sedative-hypnotic agen, which causes rapid and reliable loss of consciousness. Under in vitro conditions, propofol activates GABAA and glycine receptors in spinal cord, hippocampus and hypothalamus neurons. However, the effects of propofol on the cerebellar neuronal activity under in vivo conditions are currently unclear. In the present study, we examined the effects of propofol on the spontaneous activity of Purkinje cells (PCs) in urethane-anesthetized mice by cell-attached recording and pharmacological methods. Our results showed that cerebellar surface perfusion of propofol (10-1000 μM) induced depression of the PC simple spike (SS) firing rate in a dose-dependent manner, but without significantly changing the properties of complex spikes (CS). The IC50 of propofol for inhibiting SS firing of PCs was 144.5 μM. Application of GABAA receptor antagonist, SR95531 (40 μM) or GABAB receptor antagonist, saclofen (20 μM), as well as glycine receptor antagonist, strychnine (10 μM) alone failed to prevent the propofol-induced inhibition of PCs spontaneous activity. However, application the mixture of SR95531 (40 μM) and strychnine (10 μM) completely blocked the propofol-induced inhibition of PC SS firing. These data indicated that cerebellar surface application of propofol depressed PC SS firing rate via facilitation of GABAA and functional glycine receptors activity in adult cerebellar PCs under in vivo conditions. Our present results provide a new insight of the anesthetic action of propofol in cerebellar cortex, suggesting that propofol depresses the SS outputs of cerebellar PCs which is involved in both GABAA and glycine receptors activity.
Collapse
Affiliation(s)
- Ri Jin
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China; Department of Osteology, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Heng Liu
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Wen-Zhe Jin
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China; Department of Pain, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Jin-Di Shi
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Qing-Hua Jin
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China.
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|