1
|
Chakraborty S, Rao S, Tripathi SJ. The neuroprotective effects of N-acetylcysteine in psychiatric and neurodegenerative disorders: From modulation of glutamatergic transmission to restoration of synaptic plasticity. Neuropharmacology 2025:110527. [PMID: 40414419 DOI: 10.1016/j.neuropharm.2025.110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/10/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
N-acetylcysteine (NAC) is an effective pleiotropic drug with a strong safety profile. It is predominantly used as a mucolytic agent and in the treatment of paracetamol overdose. However, extensive research in the last decade has shown the prominent efficacy of NAC in many neuropsychiatric and neurodegenerative disorders. NAC acts through multiple mechanisms; primarily, it releases cysteine and modulates glutamatergic and monoaminergic transmission. Further, it restores glutathione levels, promotes oxidative balance, reverses decreased synaptic plasticity, reduces neuroinflammation and mitochondrial dysfunction, and provides neurotrophic support. Additionally, it regulates one-carbon metabolism pathways, leading to the production of key metabolites. In this review, we will be discussing in-depth mechanisms of action of NAC and its promising ability to reverse neuropathological changes, particularly cognitive deficits, and associated plasticity changes in various psychiatric and neurodegenerative diseases, including depression, bipolar disorders, schizophrenia, Alzheimer's disease, Huntington's disease, traumatic brain injury, aging. Overall, several preclinical studies and clinical trials have demonstrated the efficacy of NAC in reversing regressive plasticity, cognitive deficits, and associated changes in the brain. NAC remains among the strongest candidates with a high safety profile for managing several types of neurological disorders.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India.
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Bilister Egilmez C, Azak Pazarlar B, Erdogan MA, Erbas O. N-acetyl cysteine: A new look at its effect on PTZ-induced convulsions. Epilepsy Res 2023; 193:107144. [PMID: 37116249 DOI: 10.1016/j.eplepsyres.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION/AIM Epilepsy is widely investigated as a common neurological disease requiring pharmacologically effective agents. N-acetyl cysteine (NAC), has become a remarkable molecule with its role in both antioxidant and glutaminergic modulation. There are many points and processes waiting to be revealed regarding the role of NAC in epilepsy. MATERIALS AND METHODS Pentylenetetrazole (PTZ) was administered to induce seizures in a total number of 48 Sprague-Dawley rats. 35 mg/kg PTZ dose as a sub-convulsive dose was administered to 24 animals to monitor EEG changes, while 70 mg/kg PTZ dose which was a convulsive dose was administered to 24 animals to determine seizure-related behavioral changes with the Racine's scale. 30 min before the seizure-induced procedure, NAC was administered at doses of 300 and 600 mg/kg as pretreatment to investigate anti-seizure and anti-oxidative effects. The spike percentage, the stage of convulsion, and the onset time of the first myoclonic jerk were evaluated to determine the anti-seizure effect. Furthermore, its effect on oxidative stress was determined by measuring both malondialdehyde (MDA) level and superoxide dismutase (SOD) enzyme activity. RESULTS There was a dose-dependent reduction in the seizure stage and prolonged onset time of the first myoclonic jerk in rats with NAC pretreatment. EEG recordings resulted in a dose-dependent decrease in spike percentages. Moreover, the same dose-dependent changes were observed in oxidative stress biomarkers, both 300 mg/kg NAC and 600 mg/kg decreased MDA levels and ameliorated SOD activity. CONCLUSION We can report that 300 mg/kg and 600 mg/kg doses of NAC are promising with their reducing effect on convulsions and have a beneficial effect by preventing oxidative stress. In addition, NAC has been also determined that this effect is dose-dependent. Detailed and comparative studies are needed on the convulsion-reducing effect of NAC in epilepsy.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burcu Azak Pazarlar
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Bilim University, Istanbul, Turkey
| |
Collapse
|
3
|
N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy. Mol Neurobiol 2022; 59:2702-2714. [PMID: 35167014 DOI: 10.1007/s12035-021-02720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
N-acetylcysteine (NAC) is an antioxidant with some demonstrated efficacy in a range of neuropsychiatric disorders. NAC has shown anticonvulsant effects in animal models. NAC effects on absence seizures are still not uncovered, and considering its clinical use as a mucolytic in patients with lung diseases, people with epilepsy are also likely to be exposed to the drug. Therefore, we aimed to study the effects of NAC on absence seizures in the WAG/Rij rat model of absence epilepsy with neuropsychiatric comorbidities. The effects of NAC chronic treatment in WAG/Rij rats were evaluated on: absence seizures at 15 and 30 days by EEG recordings and animal behaviour at 30 days on neuropsychiatric comorbidities. Furthermore, the mechanism of action of NAC was evaluated by analysing brain expression levels of some possible key targets: the excitatory amino acid transporter 2, cystine-glutamate antiporter, metabotropic glutamate receptor 2, the mechanistic target of rapamycin and p70S6K as well as levels of total glutathione. Our results demonstrate that in WAG/Rij rats, NAC treatment significantly increased the number and duration of SWDs, aggravating absence epilepsy while ameliorating neuropsychiatric comorbidities. NAC treatment was linked to an increase in brain mGlu2 receptor expression with this being likely responsible for the observed absence seizure-promoting effects. In conclusion, while confirming the positive effects on animal behaviour induced by NAC also in epileptic animals, we report the aggravating effects of NAC on absence seizures which could have some serious consequences for epilepsy patients with the possible wider use of NAC in clinical therapeutics.
Collapse
|
4
|
Selected Molecular Targets for Antiepileptogenesis. Int J Mol Sci 2021; 22:ijms22189737. [PMID: 34575901 PMCID: PMC8466306 DOI: 10.3390/ijms22189737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.
Collapse
|
5
|
Kurt S, Aygun H. Anticonvulsive effects of edaravone on penicillin-induced focal onset seizure model in the conscious rats. Fundam Clin Pharmacol 2021; 35:861-869. [PMID: 33484001 DOI: 10.1111/fcp.12651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Edaravone is a potent antioxidant and anti-inflammatory agent that is used in the clinic. The aim of the present study was to evaluate the chronic treatment effect of edaravone on penicillin-induced epileptiform activity. Twenty-eight Wistar rats were randomly divided into a total of four groups as penicillin control and edaravone pretreatment groups (1, 10, and 30mg/kg). Firstly, permanent electrodes for electrocorticography (ECoG) recording and canula for penicillin injection were placed as stereotactic under anesthesia. At the end of the recovery period, edaravone pretreatment groups received different doses of edaravone by intraperitoneal injection for 14 days and before 30-min penicillin microinjection. Epileptiform activity was induced by injecting 500 IU penicillin through the intracortical cannula. The effects of edaravone pretreatment on epileptiform activity were evaluated by using both electrophysiological and behavioral parameters. Edaravone pretreatment suppressed epileptiform activity by reducing the mean spike frequency and the behavior scores in ECoG recording. The results of the present study indicated that the use of chronic edaravone had an anticonvulsant effect on penicillin-induced focal onset epileptic activity. Edaravone had an anticonvulsant effect even at low doses.
Collapse
Affiliation(s)
- Semiha Kurt
- Department of Neurology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
6
|
Barna L, Walter FR, Harazin A, Bocsik A, Kincses A, Tubak V, Jósvay K, Zvara Á, Campos-Bedolla P, Deli MA. Simvastatin, edaravone and dexamethasone protect against kainate-induced brain endothelial cell damage. Fluids Barriers CNS 2020; 17:5. [PMID: 32036791 PMCID: PMC7008534 DOI: 10.1186/s12987-019-0166-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Excitotoxicity is a central pathological pathway in many neurological diseases with blood-brain barrier (BBB) dysfunction. Kainate, an exogenous excitotoxin, induces epilepsy and BBB damage in animal models, but the direct effect of kainate on brain endothelial cells has not been studied in detail. Our aim was to examine the direct effects of kainate on cultured cells of the BBB and to test three anti-inflammatory and antioxidant drugs used in clinical practice, simvastatin, edaravone and dexamethasone, to protect against kainate-induced changes. METHODS Primary rat brain endothelial cell, pericyte and astroglia cultures were used to study cell viability by impedance measurement. BBB permeability was measured on a model made from the co-culture of the three cell types. The production of nitrogen monoxide and reactive oxygen species was followed by fluorescent probes. The mRNA expression of kainate receptors and nitric oxide synthases were studied by PCR. RESULTS Kainate damaged brain endothelial cells and made the immunostaining of junctional proteins claudin-5 and zonula occludens-1 discontinuous at the cell border indicating the opening of the barrier. The permeability of the BBB model for marker molecules fluorescein and albumin and the production of nitric oxide in brain endothelial cells were increased by kainate. Simvastatin, edaravone and dexamethasone protected against the reduced cell viability, increased permeability and the morphological changes in cellular junctions caused by kainate. Dexamethasone attenuated the elevated nitric oxide production and decreased the inducible nitric oxide synthase (NOS2/iNOS) mRNA expression increased by kainate treatment. CONCLUSION Kainate directly damaged cultured brain endothelial cells. Simvastatin, edaravone and dexamethasone protected the BBB model against kainate-induced changes. Our results confirmed the potential clinical usefulness of these drugs to attenuate BBB damage.
Collapse
Affiliation(s)
- Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.,Doctoral School in Biology, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd., Temesvári krt. 62, Szeged, 6726, Hungary
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Patricia Campos-Bedolla
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, 06720, Ciudad de México, DF, México
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
7
|
Shekh-Ahmad T, Kovac S, Abramov AY, Walker MC. Reactive oxygen species in status epilepticus. Epilepsy Behav 2019; 101:106410. [PMID: 31378559 DOI: 10.1016/j.yebeh.2019.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/30/2022]
Abstract
There has been growing evidence for a critical role of oxidative stress in neurodegenerative disease, providing novel targets for disease modifying treatments. Although antioxidants have been suggested and tried in the treatment of epilepsy, it is only recently that the pivotal role of oxidative stress in the pathophysiology of status epilepticus has been recognized. Although conventionally thought to be generated by mitochondria, reactive oxygen species during status epilepticus and prolonged seizure are generated mainly by NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (stimulated by NMDA receptor activation). Excessive production of reactive oxygen species results in lipid peroxidation, DNA damage, enzyme inhibition, and mitochondrial damage, culminating in neuronal death. Antioxidant therapy has been hampered by poor CNS penetration and rapid consumption by oxidants. However, alternative approaches such as inhibiting NADPH oxidase or increasing endogenous antioxidant defenses through activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) could avoid these problems. Small molecules that increase Nrf2 activation have proven to be not only effective neuroprotectants following status epilepticus, but also potently antiepileptogenic. There are "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
Affiliation(s)
- T Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, Queen Square UCL Institute of Neurology, University College London, London, UK; Department of Neurology, University of Muenster, Muenster, Germany
| | - S Kovac
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, UK
| | - M C Walker
- Department of Clinical and Experimental Epilepsy, Queen Square UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
8
|
Carmona-Aparicio L, Zavala-Tecuapetla C, González-Trujano ME, Sampieri AI, Montesinos-Correa H, Granados-Rojas L, Floriano-Sánchez E, Coballase-Urrutía E, Cárdenas-Rodríguez N. Status epilepticus: Using antioxidant agents as alternative therapies. Exp Ther Med 2016; 12:1957-1962. [PMID: 27698680 DOI: 10.3892/etm.2016.3609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
The epileptic state, or status epilepticus (SE), is the most serious situation manifested by individuals with epilepsy, and SE events can lead to neuronal damage. An understanding of the molecular, biochemical and physiopathological mechanisms involved in this type of neurological disease will enable the identification of specific central targets, through which novel agents may act and be useful as SE therapies. Currently, studies have focused on the association between oxidative stress and SE, the most severe epileptic condition. A number of these studies have suggested the use of antioxidant compounds as alternative therapies or adjuvant treatments for the epileptic state.
Collapse
Affiliation(s)
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of The Reticular Formation Reticular, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - María Eva González-Trujano
- Laboratory of Neuropharmacology of Natural Products, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Aristides Iii Sampieri
- Department of Comparative Biology, Faculty of Sciences, National Autonomous University of Mexico, Mexico City 04150, Mexico
| | | | - Leticia Granados-Rojas
- Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City 04530, Mexico
| | - Esaú Floriano-Sánchez
- Military School of Graduate of Health, Multidisciplinary Research Laboratory, Secretariat of National Defense, Mexico City 11270, Mexico
| | | | | |
Collapse
|