1
|
Seemiller LR, Goldberg LR, Sebastian A, Siegel SR, Praul C, Zeid D, Albert I, Beierle J, Bryant CD, Gould TJ. Alcohol and fear conditioning produce strain-specific changes in the dorsal hippocampal transcriptome of adolescent C57BL/6J and DBA/2J mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2022-2034. [PMID: 39279663 DOI: 10.1111/acer.15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Adolescent sensitivity to alcohol is influenced by genetic background. Data from our laboratory suggested that adolescent C57BL/6J and DBA/2J inbred mice differed in susceptibility to alcohol-induced deficits in dorsal hippocampus-dependent contextual fear learning. METHODS To investigate the biological underpinnings of this strain difference, we examined dorsal hippocampus gene expression using RNA-sequencing after alcohol or saline administration followed by Pavlovian fear conditioning across male and female C57BL/6J and DBA/2J adolescents. RESULTS Strains exhibited dramatic differences in dorsal hippocampus gene expression. Specifically, C57BL/6J and DBA/2J strains differed by 3526 transcripts in males and 2675 transcripts in females. We identified pathways likely to be involved in mediating alcohol's effects on learning, including networks associated with Chrna7, a gene encoding the nicotinic cholinergic receptor alpha 7 subunit, and Fmr1, a gene encoding the fragile X messenger ribonucleoprotein. CONCLUSIONS These findings provide insight into the mechanisms underlying strain differences in alcohol's effects on learning and suggest that different biological networks are recruited for learning based on genetics, sex, and alcohol exposure.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Sue Rutherford Siegel
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Craig Praul
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Jacob Beierle
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Camron D Bryant
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Prefrontal NMDA-receptor antagonism disrupts encoding or consolidation but not retrieval of incidental context learning. Behav Brain Res 2021; 405:113175. [PMID: 33596432 DOI: 10.1016/j.bbr.2021.113175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 02/07/2021] [Indexed: 01/27/2023]
Abstract
The Context Preexposure Facilitation Effect (CPFE) is a variant of contextual fear conditioning in which learning about the context, acquiring a context-shock association, and retrieval of this association occur separately across three phases (context preexposure, immediate-shock training, and retention). We have shown that prefrontal inactivation or muscarinic-receptor antagonism prior to any phase disrupts retention test freezing during the CPFE in adolescent rats (Heroux et al., 2017; Robinson-Drummer et al., 2017). Furthermore, the medial prefrontal cortex (mPFC) is the only region in which robust learning-related expression of the immediate early genes c-Fos, Arc, Egr-1 and Npas4 is observed during immediate-shock training in the CPFE (Asok et al., 2013; Heroux et al., 2018; Schreiber et al., 2014). However, the role of prefrontal NMDA-receptor plasticity in supporting preexposure- and training-day processes of the CPFE is not known. Therefore, the current study examined the effects of intra-mPFC infusion of the NMDA-receptor antagonist MK-801 or saline vehicle prior to context preexposure (Experiment 1) or immediate-shock training (Experiment 2) in adolescent Long-Evans male and female rats. This infusion given prior to context preexposure but not training abolished retention test freezing, with no difference between MK-801-infused rats and non-associative controls preexposed to an alternative context (pooled across drug). These results demonstrate a role of prefrontal NMDA-receptor plasticity in the acquisition and/or consolidation of incidental context learning (i.e., encoded in the absence of reinforcement). In contrast, this plasticity is not required for context retrieval, or acquisition, expression, or consolidation of a context-shock association during immediate-shock training in the CPFE. These experiments add to a growing body of work implicating the mPFC in Pavlovian contextual fear conditioning processes in rodents.
Collapse
|
3
|
Heroux NA, Horgan CJ, Pinizzotto CC, Rosen JB, Stanton ME. Medial prefrontal and ventral hippocampal contributions to incidental context learning and memory in adolescent rats. Neurobiol Learn Mem 2019; 166:107091. [DOI: 10.1016/j.nlm.2019.107091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
|
4
|
Heroux NA, Horgan CJ, Rosen JB, Stanton ME. Cholinergic rescue of neurocognitive insult following third-trimester equivalent alcohol exposure in rats. Neurobiol Learn Mem 2019; 163:107030. [PMID: 31185278 PMCID: PMC6689250 DOI: 10.1016/j.nlm.2019.107030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Neonatal ethanol exposure during the third trimester equivalent of human pregnancy in the rat significantly impairs hippocampal and prefrontal neurobehavioral functioning. Postnatal day [PD] 4-9 ethanol exposure in rats disrupts long-term context memory formation, resulting in abolished post-shock and retention test freezing in a variant of contextual fear conditioning called the Context Preexposure Facilitation Effect (CPFE). This behavioral impairment is accompanied by disrupted medial prefrontal, but not dorsal hippocampal expression of the immediate early genes (IEGs) c-Fos, Arc, Egr-1, and Npas4 (Heroux, Robinson-Drummer, Kawan, Rosen, & Stanton, 2019). The current experiment examined if systemic administration of the acetylcholinesterase inhibitor physostigmine (PHY) prior to context learning would rescue prefrontal IEG expression and freezing in the CPFE. From PD4-9, Long-Evans rats received oral intubation of ethanol (EtOH; 5.25 g/kg/day) or sham-intubation (SI). Rats received a systemic injection of saline (SAL) or PHY (0.01 mg/kg) prior to all three phases (Experiment 1) or just context exposure (Experiment 2) in the CPFE from PD31-33. A subset of rats were sacrificed 30 min after context learning to assay changes in IEG expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and ventral hippocampus (vHPC). Administration of PHY prior to all three phases or just context learning rescued both post-shock and retention test freezing in the CPFE in EtOH rats without altering performance in SI rats. EtOH-SAL rats had significantly reduced mPFC but not dHPC expression of c-Fos, Arc, Egr-1, and Npas4. EtOH-PHY treatment rescued mPFC expression of c-Fos in ethanol-exposed rats and increased Arc and Npas4 regardless of dosing condition. While there was no effect of PHY on dHPC or vHPC expression of Arc, Egr-1, or Npas4, this treatment significantly boosted hippocampal expression of c-Fos regardless of ethanol treatment. These findings implicate impaired cholinergic and prefrontal function in cognitive deficits arising from 3rd-trimester equivalent alcohol exposure.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - Colin J Horgan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
5
|
Jablonski SA, Robinson-Drummer PA, Schreiber WB, Asok A, Rosen JB, Stanton ME. Impairment of the context preexposure facilitation effect in juvenile rats by neonatal alcohol exposure is associated with decreased Egr-1 mRNA expression in the prefrontal cortex. Behav Neurosci 2018; 132:497-511. [PMID: 30346189 DOI: 10.1037/bne0000272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which learning about the context (preexposure) and associating the context with a shock (training) occur on separate occasions. The CPFE is sensitive to a range of neonatal alcohol doses (Murawski & Stanton, 2011). The current study examined the impact of neonatal alcohol on Egr-1 mRNA expression in the infralimbic (IL) and prelimbic (PL) subregions of the mPFC, the CA1 of dorsal hippocampus (dHPC), and the lateral nucleus of the amygdala (LA), following the preexposure and training phases of the CPFE. Rat pups were exposed to a 5.25 g/kg/day single binge-like dose of alcohol (Group EtOH) or were sham intubated (SI; Group SI) over postnatal days (PD) 7-9. In behaviorally tested rats, alcohol administration disrupted freezing. Following context preexposure, Egr-1 mRNA was elevated in both EtOH and SI groups compared with baseline control animals in all regions analyzed. Following both preexposure and training, Group EtOH displayed a significant decrease in mPFC Egr-1 mRNA expression compared with Group SI. However, this decrease was greatest after training. Training day decreases in Egr-1 expression were not found in LA or CA1 in Group EtOH compared with Group SI. A second experiment confirmed that the EtOH-induced training-day deficits in mPFC Egr-1 mRNA expression were specific to groups which learned contextual fear (vs. nonassociative controls). Thus, memory processes that engage the mPFC during the context-shock association may be most susceptible to the teratogenic effects of neonatal alcohol. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Arun Asok
- Department of Psychological and Brain Sciences
| | | | | |
Collapse
|
6
|
Finnie PSB, Gamache K, Protopoulos M, Sinclair E, Baker AG, Wang SH, Nader K. Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Curr Biol 2018; 28:2900-2909.e5. [PMID: 30197087 DOI: 10.1016/j.cub.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
The neurobiology of memory formation has been studied primarily in experimentally naive animals, but the majority of learning unfolds on a background of prior experience. Considerable evidence now indicates that the brain processes initial and subsequent learning differently. In rodents, a first instance of contextual fear conditioning requires NMDA receptor (NMDAR) activation in the dorsal hippocampus, but subsequent conditioning to another context does not. This shift may result from a change in molecular plasticity mechanisms or in the information required to learn the second task. To clarify how related events are encoded, it is critical to identify which aspect of a first task engages NMDAR-independent learning and the brain regions that maintain this state. Here, we show in rats that the requirement for NMDARs in hippocampus depends neither on prior exposure to context nor footshock alone but rather on the procedural similarity between two conditioning tasks. Importantly, NMDAR-independent learning requires the memory of the first task to remain hippocampus dependent. Furthermore, disrupting memory maintenance in the anterior cingulate cortex after the first task also reinstates NMDAR dependency. These results reveal cortico-hippocampal interactions supporting experience-dependent learning.
Collapse
Affiliation(s)
- Peter S B Finnie
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Karine Gamache
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Maria Protopoulos
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Elizabeth Sinclair
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Andrew G Baker
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building GU507c, Edinburgh EH16 4SB, UK.
| | - Karim Nader
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
7
|
Miller LA, Heroux NA, Stanton ME. Differential involvement of amygdalar NMDA receptors across variants of contextual fear conditioning in adolescent rats. Behav Brain Res 2018; 356:236-242. [PMID: 30142395 DOI: 10.1016/j.bbr.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022]
Abstract
In standard contextual fear conditioning (sCFC), learning of the context and formation of the context-shock association occur in the same training session whereas in the context preexposure facilitation effect (CPFE) learning the context (preexposure) and the context-shock association (training) are separated by 24 h. In both procedures conditioned freezing can be measured immediately (post-shock test) or during a 24-hour retention test. In adult rats, disrupting basolateral amygdala (BLA) activity or plasticity during training on sCFC impairs both post-shock and retention freezing [Maren et al, 1996; 1]. This manipulation on the training day of the CPFE disrupts retention freezing but effects on post-shock freezing are unknown [Matus-Amat et al, 2007; 2]. Experiment 1 extended this literature from adult to adolescent rats and to the role of BLA activity and plasticity in post-shock freezing during the CPFE. Intra-BLA infusions of muscimol prior to the training day of the CPFE disrupted both post-shock and retention freezing in Postnatal Day (PD) 31-33 rats. In the second two experiments, intra-BLA infusions of APV prior to the training day of sCFC disrupted retention but not post-shock freezing, while infusions of APV prior to training of the CPFE disrupt both post-shock and retention freezing. Our findings suggest that the BLA plasticity plays a different role in the CPFE vs. sCFC. Its role in the CPFE is similar in both adolescent and adult rats, while the role of the BLA in post-shock freezing during sCFC may differ across age or across studies that employ different procedures or parameters.
Collapse
|
8
|
Santarelli AJ, Khan AM, Poulos AM. Contextual fear retrieval-induced Fos expression across early development in the rat: An analysis using established nervous system nomenclature ontology. Neurobiol Learn Mem 2018; 155:42-49. [PMID: 29807127 DOI: 10.1016/j.nlm.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/07/2023]
Abstract
The neural circuits underlying the acquisition, retention and retrieval of contextual fear conditioning have been well characterized in the adult animal. A growing body of work in younger rodents indicates that context-mediated fear expression may vary across development. However, it remains unclear how this expression may be defined across the full range of key developmental ages. Nor is it fully clear whether the structure of the adult context fear network generalizes to earlier ages. In this study, we compared context fear retrieval-induced behavior and neuroanatomically constrained immediate early-gene expression across infant (P19), early and late juvenile (P24 and P35), and adult (P90) male Long-Evans rats. We focused our analysis on neuroanatomically defined subregions and nuclei of the basolateral complex of the amygdala (BLA complex), dorsal and ventral portions of the hippocampus and the subregions of the medial prefrontal cortex as defined by the nomenclature of the Swanson (2004) adult rat brain atlas. Relative to controls and across all ages tested, there were greater numbers of Fos immunoreactive (Fos-ir) neurons in the posterior part of the basolateral amygdalar nuclei (BLAp) following context fear retrieval that correlated statistically with the expression of freezing. However, Fos-ir within regions having known connections with the BLA complex was differentially constrained by developmental age: early juvenile, but not adult rats exhibited an increase of context fear-dependent Fos-ir neurons in prelimbic and infralimbic areas, while adult, but not juvenile rats displayed increases in Fos-ir neurons within the ventral CA1 hippocampus. These results suggest that juvenile and adult rodents may recruit developmentally unique pathways in the acquisition and retrieval of contextual fear. This study extends prior work by providing a broader set of developmental ages and a rigorously defined neuroanatomical ontology within which the contextual fear network can be studied further.
Collapse
Affiliation(s)
- Anthony J Santarelli
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Andrew M Poulos
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
9
|
Robinson-Drummer PA, Chakraborty T, Heroux NA, Rosen JB, Stanton ME. Age and experience dependent changes in Egr-1 expression during the ontogeny of the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 150:1-12. [PMID: 29452227 DOI: 10.1016/j.nlm.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which acquisition of the contextual representation and association of the retrieved contextual memory with an immediate foot-shock are separated by 24 h. During the CPFE, learning- related expression patterns of the early growth response-1 gene (Egr-1) vary based on training phase and brain sub-region in adult and adolescent rats (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014; Chakraborty, Asok, Stanton, & Rosen, 2016). The current experiments extended our previous findings by examining Egr-1 expression in infant (PD17) and juvenile (PD24) rats during the CPFE using preexposure protocols involving single-exposure (SE) or multiple-exposure (ME) to context. Following a 5 min preexposure to the training context (i.e. the SE protocol), Egr-1 expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC) and lateral nucleus of the amygdala (LA) was differentially increased in PD24 rats relative to PD17 rats. In contrast, increased Egr-1 expression following an immediate foot-shock (2s, 1.5 mA) did not differ between PD17 and PD24 rats, and was not learning-related. Interestingly, increasing the number of exposures to the training chamber on the preexposure day (i.e. ME protocol) altered training-day expression such that a learning-related increase in expression was observed in the mPFC in PD24 but not PD17 rats. Together, these results illustrate a clear maturation of Egr-1 expression that is both age- and experience-dependent. In addition, the data suggest that regional activity and plasticity within the mPFC on the preexposure but not the training day may contribute to the ontogenetic profile of the effect. Further studies are necessary to elucidate the causal role of sub-region-specific neuroplasticity in the ontogeny of the CPFE.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - T Chakraborty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - J B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
10
|
Heroux NA, Osborne BF, Miller LA, Kawan M, Buban KN, Rosen JB, Stanton ME. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 147:128-138. [PMID: 29222058 PMCID: PMC6314028 DOI: 10.1016/j.nlm.2017.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases (context preexposure, immediate-shock training, and retention). The current study examined changes in the expression of plasticity-associated immediate early genes (IEGs) during context and contextual fear memory formation on the preexposure and training days of the CPFE, respectively. Using adolescent Long-Evans rats, preexposure and training day expression of the IEGs c-Fos, Arc, Egr-1, and Npas4 in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC), and basolateral amygdala (BLA) was analyzed using qPCR as an extension of previous studies from our lab examining Egr-1 via in situ hybridization (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014). In Expt. 1, context preexposure induced expression of c-Fos, Arc, Egr-1 and Npas4 significantly above that of home-cage (HC) controls in all three regions. In Expt. 2, immediate-shock was followed by a post-shock freezing test, resulting in increased mPFC c-Fos expression in a group preexposed to the training context but not a control group preexposed to an alternate context, indicating expression related to associative learning. This was not seen with other IEGs in mPFC or with any IEG in dHPC or BLA. Finally, when the post-shock freezing test was omitted in Expt. 3, training-related increases were observed in prefrontal c-Fos, Arc, Egr-1, and Npas4, hippocampal c-Fos, and amygdalar Egr-1 expression. These results indicate that context exposure in a post-shock freezing test re-engages IEG expression that may obscure associatively-induced expression during contextual fear conditioning. Additionally, these studies suggest a key role for long-term synaptic plasticity in the mPFC in supporting the CPFE.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Lauren A Miller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Malak Kawan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Katelyn N Buban
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
11
|
Heroux NA, Robinson-Drummer PA, Sanders HR, Rosen JB, Stanton ME. Differential involvement of the medial prefrontal cortex across variants of contextual fear conditioning. ACTA ACUST UNITED AC 2017; 24:322-330. [PMID: 28716952 PMCID: PMC5516685 DOI: 10.1101/lm.045286.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association happens concurrently in standard contextual fear conditioning (sCFC). By infusing the GABAA receptor agonist muscimol into medial prefrontal cortex (mPFC) in adolescent Long-Evans rats, the current set of experiments examined the functional role of the mPFC in each phase of the CPFE and sCFC. In the CPFE, the mPFC is necessary for the following: acquisition and/or consolidation of context memory (Experiment 1), reconsolidation of a context memory to include shock (Experiment 2), and expression of contextual fear memory during a retention test (Experiment 3). In contrast to the CPFE, inactivation of the mPFC prior to conditioning in sCFC has no effect on acquisition, consolidation, or retention of a contextual fear memory (Experiment 4). Interestingly, the mPFC is not required for acquiring a context-shock association (measured by post-shock freezing) in the CPFE or sCFC (Experiment 2b and 4). Taken together, these results indicate that the mPFC is differentially recruited across stages of learning and variants of contextual fear conditioning (CPFE versus sCFC). More specifically, separating out learning about the context and the context-shock association necessitates activation of the medial prefrontal cortex during early learning and/or consolidation.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | - Hollie R Sanders
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
12
|
Robinson-Drummer PA, Heroux NA, Stanton ME. Antagonism of muscarinic acetylcholine receptors in medial prefrontal cortex disrupts the context preexposure facilitation effect. Neurobiol Learn Mem 2017; 143:27-35. [PMID: 28411153 DOI: 10.1016/j.nlm.2017.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cholinergic function plays a role in a variant of context fear conditioning known as the context preexposure facilitation effect (CPFE; Robinson-Drummer, Dokovna, Heroux, & Stanton, 2016). In the CPFE, acquisition of a context representation, the context-shock association, and expression of context fear occur across successive phases, usually 24h apart. Systemic administration of scopolamine, a muscarinic acetylcholine receptor antagonist, prior to each phase (context preexposure, immediate-shock training, and testing) disrupts the CPFE in juvenile rats (Robinson-Drummer et al., 2016). Dorsal hippocampal (dHPC) cholinergic function contributes significantly to this effect, as local infusion of scopolamine into the dHPC prior to any individual phase of the CPFE produces a disruption identical to systemic administration (Robinson-Drummer et al., 2016). The current experiment extended these findings to another forebrain region implicated in the CPFE, the medial prefrontal cortex (mPFC). Adolescent rats received bilateral infusions of scopolamine (35μg/side) or PBS 10min before all three phases of the CPFE or only prior to a single phase. Intra-mPFC administration of scopolamine prior to all three phases significantly impaired fear conditioning suggesting that mPFC cholinergic function is necessary for successful CPFE performance. Analyses of the individual infusion days revealed a significant impairment of the CPFE when infusions occurred prior to preexposure or training (i.e. immediate footshock) but not prior to testing. In total, these findings suggests a role of mPFC cholinergic function in the acquisition and/or consolidation of a contextual representation and the context-shock association but not in retrieval or expression of fear memory. Implications for mPFC involvement in contextual fear conditioning and neurological dysfunction following neonatal alcohol exposure are discussed.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
13
|
Gröger N, Mannewitz A, Bock J, de Schultz TF, Guttmann K, Poeggel G, Braun K. Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: I. Cellular imaging of neurons expressing the synaptic plasticity early growth response protein 1 (Egr1). Brain Struct Funct 2017; 222:3639-3651. [DOI: 10.1007/s00429-017-1423-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022]
|
14
|
Murawski NJ, Asok A. Understanding the contributions of visual stimuli to contextual fear conditioning: A proof-of-concept study using LCD screens. Neurosci Lett 2016; 637:80-84. [PMID: 27888041 DOI: 10.1016/j.neulet.2016.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
The precise contribution of visual information to contextual fear learning and discrimination has remained elusive. To better understand this contribution, we coupled the context pre-exposure facilitation effect (CPFE) fear conditioning paradigm with presentations of distinct visual scenes displayed on 4 LCD screens surrounding a conditioning chamber. Adult male Long-Evans rats received non-reinforced context pre-exposure on Day 1, an immediate 1.5mA foot shock on Day 2, and a non-reinforced context test on Day 3. Rats were pre-exposed to either digital Context (dCtx) A, dCtx B, a distinct Ctx C, or no context on Day 1. Digital context A and B were identical except for the visual image displayed on the LCD screens. Immediate shock and retention testing occurred in dCtx A. Rats pre-exposed dCtx A showed the CPFE with significantly higher levels of freezing compared to controls. Rats pre-exposed to Context B failed to show the CPFE, with freezing that did not highly differ from controls. These results suggest that visual information contributes to contextual fear learning and that visual components of the context can be manipulated via LCD screens. Our approach offers a simple modification to contextual fear conditioning paradigms whereby the visual features of a context can be manipulated to better understand the factors that contribute to contextual fear discrimination and generalization.
Collapse
Affiliation(s)
- Nathen J Murawski
- Center for Brain Science, Harvard University, Cambridge, MA 02138, United States.
| | - Arun Asok
- Department of Neuroscience, Columbia University, New York, NY 10032, United States; Howard Hughes Medical Institute, New York, NY 10032, United States
| |
Collapse
|
15
|
Asok A, Schulkin J, Rosen JB. Corticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor. Psychoneuroendocrinology 2016; 70:17-24. [PMID: 27153520 PMCID: PMC4907900 DOI: 10.1016/j.psyneuen.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/26/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in different types of fear (conditioned and/or unconditioned). Therefore, the present study investigated the effect of antalarmin, a potent CRFr1 receptor antagonist, injected intracerebroventricularly (ICV) and into the dorsolateral BNST (LBNST) during single trial contextual fear conditioning or exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Neither ICV nor LBNST antalarmin disrupted unconditioned freezing to TMT. In contrast, ICV and LBNST antalarmin disrupted the retention of contextual fear when tested 24h later. Neither ICV nor LBNST antalarmin affected baseline or post-shock freezing-indicating antalarmin does not interfere with the early phases of contextual fear acquisition. Antalarmin did not (1) permanently affect the ability to learn and express contextual fear, (2) change responsivity to footshocks, or (3) affect the ability to freeze. Our findings highlight an important role for CRFr1s within the LBNST during contextually conditioned fear, but not unconditioned predator odor fear.
Collapse
Affiliation(s)
- Arun Asok
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19716, USA
| | - Jay Schulkin
- Georgetown University, Department of Neuroscience, Washington, DC 20057, USA
| | - Jeffrey B Rosen
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19716, USA.
| |
Collapse
|
16
|
Robinson-Drummer PA, Dokovna LB, Heroux NA, Stanton ME. Cholinergic mechanisms of the context preexposure facilitation effect in adolescent rats. Behav Neurosci 2016; 130:196-205. [PMID: 26866360 DOI: 10.1037/bne0000134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which context learning, context-shock association, and expression of context conditioning occur in 3 separate phases-preexposure, training, and testing. During the preexposure phase, the CPFE is disrupted by hippocampal NMDA receptor blockade in juvenile rats (Schiffino et al., 2011), and a similar deficit is seen with a subcutaneous injection of the muscarinic receptor antagonist, scopolamine, in adult mice (Brown, Kennard, Sherer, Comalli, & Woodruff-Pak, 2011). As a foundation for further developmental research, the present study examined the role of cholinergic function in the CPFE in adolescent rats during each phase of the CPFE protocol. In Experiment 1, an i.p injection of either 0.5 or 1.0 mg/kg dose of scopolamine administered prior to all 3 phases of the CPFE protocol impaired the CPFE. Experiment 2 further showed that a 0.5 mg/kg injection prior to just 1 of the 3 phases of the CPFE also disrupted contextual fear conditioning. We further showed that the CPFE is impaired by localized scopolamine infusions into dorsal hippocampus on the preexposure day (Experiment 3a), training day (Experiment 3b), and test day (Experiment 3c). These findings demonstrate a role of cholinergic signaling in hippocampus during each of the 3 phases of the CPFE in adolescent rats. Implications for the development and neural basis of the CPFE are discussed. (PsycINFO Database Record
Collapse
|
17
|
Deal AL, Erickson KJ, Shiers SI, Burman MA. Limbic system development underlies the emergence of classical fear conditioning during the third and fourth weeks of life in the rat. Behav Neurosci 2016; 130:212-30. [PMID: 26820587 DOI: 10.1037/bne0000130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the third or fourth weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear-conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the third and fourth weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. (PsycINFO Database Record
Collapse
|
18
|
Chakraborty T, Asok A, Stanton ME, Rosen JB. Variants of contextual fear conditioning induce differential patterns of Egr-1 activity within the young adult prefrontal cortex. Behav Brain Res 2016; 302:122-30. [PMID: 26778782 DOI: 10.1016/j.bbr.2016.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/24/2015] [Accepted: 01/05/2016] [Indexed: 01/17/2023]
Abstract
Contextual fear conditioning is a form of associative learning where animals must experience a context before they can associate it with an aversive stimulus. Single-trial contextual fear conditioning (sCFC) and the context preexposure facilitation effect (CPFE) are two variants of CFC where learning about the context is temporally contiguous (sCFC) with or separated (CPFE) from receiving a footshock in that context. Neural activity within CA1 of the dorsal hippocampus (CA1), amygdala (LA), and prefrontal cortex (PFC) may play a critical role when animals learn to associate a context with a footshock (i.e., training). Previous studies from our lab have found that early-growth-response gene 1 (Egr-1), an immediate early gene, exhibits unique patterns of activity within regions of the PFC following training in sCFC and the CPFE of juvenile rats. In the present study, we extended our studies by examining Egr-1 expression in young adult rats to determine (1) if our previous work reflected changes unique to development or extend into adulthood and (2) to contrast expression profiles between sCFC and the CPFE. Rats that learned context fear with sCFC showed increased Egr-1 in the anterior cingulate, orbitofrontal and infralimbic cortices relative to non-associative controls following training, but expression in prelimbic cortex did not differ between fear conditioned and non-associative controls. In contrast, rats trained in the CPFE also showed increased Egr-1 in all the prefrontal cortex regions, including prelimbic cortex. These findings replicate our previous findings in juveniles and suggest that Egr-1 in specific PFC subregions may be uniquely involved in learning context-fear in the CPFE compared to sCFC.
Collapse
Affiliation(s)
- T Chakraborty
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19716, United States
| | - A Asok
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19716, United States
| | - M E Stanton
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19716, United States
| | - J B Rosen
- University of Delaware, Department of Psychological and Brain Sciences, Newark, DE 19716, United States.
| |
Collapse
|
19
|
Tallot L, Doyère V, Sullivan RM. Developmental emergence of fear/threat learning: neurobiology, associations and timing. GENES, BRAIN, AND BEHAVIOR 2016; 15:144-54. [PMID: 26534899 PMCID: PMC5154388 DOI: 10.1111/gbb.12261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 02/01/2023]
Abstract
Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes.
Collapse
Affiliation(s)
- L. Tallot
- Institut des Neurosciences Paris Saclay (Neuro-PSI), UMR 9197, CNRS/Université Paris-Sud, Orsay, France
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg
- Child Study Center Institute for Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - V. Doyère
- Institut des Neurosciences Paris Saclay (Neuro-PSI), UMR 9197, CNRS/Université Paris-Sud, Orsay, France
| | - R. M. Sullivan
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg
- Child Study Center Institute for Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Heroux NA, Robinson-Drummer PA, Rosen JB, Stanton ME. NMDA receptor antagonism disrupts acquisition and retention of the context preexposure facilitation effect in adolescent rats. Behav Brain Res 2015; 301:168-77. [PMID: 26711910 DOI: 10.1016/j.bbr.2015.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated. The current study investigated the involvement of NMDA receptors in contextual fear acquisition, retention, and expression across all phases of the CPFE in adolescent rats. In Experiment 1 systemic injections of 0.1mg/kg MK-801, a non-competitive NMDA receptor antagonist, given before multiple context preexposure disrupted the acquisition of a context representation. In Experiment 2, pre-training MK-801 disrupted both immediate acquisition of contextual fear measured by postshock freezing, as well as retention test freezing 24h later. Experiment 3 showed that expression of contextual fear via a 24h retention freezing test does not depend on NMDA receptors, indicating that MK-801 disrupts learning rather than performance of freezing behavior. In Experiment 4, consolidation of contextual information was partially disrupted by post-preexposure MK-801 whereas consolidation of contextual fear was not disrupted by post-training MK-801. Finally, Experiment 5 employed a dose-response design and found that a pre-training dose of 0.1mg/kg MK-801 disrupted both postshock and retention test freezing while lower pre-training doses of MK-801 (0.025 or 0.05mg/kg) only disrupted retention freezing. This is the first study to distinguish the role of NMDA receptors in acquisition (post-shock freezing), retention, expression, and consolidation of context vs. context-shock learning using the CPFE paradigm in adolescent rats. The findings provide a foundation for similar developmental studies examining these effects from early ontogeny through adulthood.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | | | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|