1
|
Liu SX, Harris AC, Gewirtz JC. How life events may confer vulnerability to addiction: the role of epigenetics. Front Mol Neurosci 2024; 17:1462769. [PMID: 39359689 PMCID: PMC11446245 DOI: 10.3389/fnmol.2024.1462769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Substance use disorder (SUD) represents a large and growing global health problem. Despite the strong addictive potency of drugs of abuse, only a minority of those exposed develop SUDs. While certain life experiences (e.g., childhood trauma) may increase subsequent vulnerability to SUDs, mechanisms underlying these effects are not yet well understood. Given the chronic and relapsing nature of SUDs, and the length of time that can elapse between prior life events and subsequent drug exposure, changes in SUD vulnerability almost certainly involve long-term epigenetic dysregulation. To validate this idea, functional effects of specific epigenetic modifications in brain regions mediating reinforcement learning (e.g., nucleus accumbens, prefrontal cortex) have been investigated in a variety of animal models of SUDs. In addition, the effects of epigenetic modifications produced by prior life experiences on subsequent SUD vulnerability have been studied, but mostly in a correlational manner. Here, we review how epigenetic mechanisms impact SUD-related behavior in animal models and summarize our understanding of the relationships among life experiences, epigenetic regulation, and future vulnerability to SUDs. Despite variations in study design, epigenetic modifications that most consistently affect SUD-related behavior are those that produce predominantly unidirectional effects on gene regulation, such as DNA methylation and histone phosphorylation. Evidence explicitly linking environmentally induced epigenetic modifications to subsequent SUD-related behavior is surprisingly sparse. We conclude by offering several directions for future research to begin to address this critical research gap.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
2
|
Bayassi-Jakowicka M, Lietzau G, Czuba E, Patrone C, Kowiański P. More than Addiction—The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052618. [PMID: 35269761 PMCID: PMC8910774 DOI: 10.3390/ijms23052618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Stress and negative emotions evoked by social relationships and working conditions, frequently accompanied by the consumption of addictive substances, and metabolic and/or genetic predispositions, negatively affect brain function. One of the affected structures is nucleus accumbens (NAc). Although its function is commonly known to be associated with brain reword responses and addiction, a growing body of evidence also suggests its role in some mental disorders, such as depression and schizophrenia, as well as neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s. This may result from disintegration of the extensive connections based on numerous neurotransmitter systems, as well as impairment of some neuroplasticity mechanisms in the NAc. The consequences of NAc lesions are both morphological and functional. They include changes in the NAc’s volume, cell number, modifications of the neuronal dendritic tree and dendritic spines, and changes in the number of synapses. Alterations in the synaptic plasticity affect the efficiency of synaptic transmission. Modification of the number and structure of the receptors affects signaling pathways, the content of neuromodulators (e.g., BDNF) and transcription factors (e.g., pCREB, DeltaFosB, NFκB), and gene expression. Interestingly, changes in the NAc often have a different character and intensity compared to the changes observed in the other parts of the basal ganglia, in particular the dorsal striatum. In this review, we highlight the role of the NAc in various pathological processes in the context of its structural and functional damage, impaired connections with the other brain areas cooperating within functional systems, and progression of the pathological processes.
Collapse
Affiliation(s)
- Martyna Bayassi-Jakowicka
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| | - Ewelina Czuba
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Sjukhusbacken 17, 11883 Stockholm, Sweden;
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| |
Collapse
|
3
|
Ehinger Y, Phamluong K, Darevesky D, Welman M, Moffat JJ, Sakhai SA, Whiteley EL, Berger AL, Laguesse S, Farokhnia M, Leggio L, Lordkipanidzé M, Ron D. Differential correlation of serum BDNF and microRNA content in rats with rapid or late onset of heavy alcohol use. Addict Biol 2021; 26:e12890. [PMID: 32135570 DOI: 10.1111/adb.12890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022]
Abstract
Heavy alcohol use reduces the levels of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex of rodents through the upregulation of microRNAs (miRs) targeting BDNF mRNA. In humans, an inverse correlation exists between circulating blood levels of BDNF and the severity of psychiatric disorders including alcohol abuse. Here, we set out to determine whether a history of heavy alcohol use produces comparable alterations in the blood of rats. We used an intermittent access to 20% alcohol using the two-bottle choice paradigm (IA20%2BC) and measured circulating levels of BDNF protein and miRs targeting BDNF in the serum of Long-Evans rats before and after 8 weeks of excessive alcohol intake. We observed that the drinking profile of heavy alcohol users is not unified, whereas 70% of the rats gradually escalate their alcohol intake (late onset), and 30% of alcohol users exhibit a very rapid onset of drinking (rapid onset). We found that serum BDNF levels are negatively correlated with alcohol intake in both rapid onset and late onset rats. In contrast, increased expression of the miRs targeting BDNF, miR30a-5p, miR-195-5p, miR191-5p and miR206-3p, was detected only in the rapid onset rats. Finally, we report that the alcohol-dependent molecular changes are not due to alterations in platelet number. Together, these data suggest that rats exhibit both late and rapid onset of alcohol intake. We further show that heavy alcohol use produces comparable changes in BDNF protein levels in both groups. However, circulating microRNAs are responsive to alcohol only in the rapid onset rats.
Collapse
Affiliation(s)
- Yann Ehinger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Khanhky Phamluong
- Department of Neurology University of California, San Francisco San Francisco California
| | - David Darevesky
- Department of Neurology University of California, San Francisco San Francisco California
| | - Melanie Welman
- Research Center Montreal Heart Institute Montreal Quebec Canada
| | - Jeffrey J. Moffat
- Department of Neurology University of California, San Francisco San Francisco California
| | - Samuel A. Sakhai
- Department of Neurology University of California, San Francisco San Francisco California
| | - Ellanor L. Whiteley
- Department of Neurology University of California, San Francisco San Francisco California
| | - Anthony L. Berger
- Department of Neurology University of California, San Francisco San Francisco California
| | - Sophie Laguesse
- Department of Neurology University of California, San Francisco San Francisco California
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section National Institute on Drug Abuse Intramural Research Program Baltimore Maryland
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program National Institutes of Health Baltimore Maryland
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences Brown University Providence Rhode Island
- National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research National Institutes of Health Bethesda Maryland
| | - Marie Lordkipanidzé
- Research Center Montreal Heart Institute Montreal Quebec Canada
- Faculty of Pharmacy University of Montreal Montreal Quebec Canada
| | - Dorit Ron
- Department of Neurology University of California, San Francisco San Francisco California
| |
Collapse
|
4
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Goldberg LR, Gould TJ. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. Eur J Neurosci 2018; 50:2453-2466. [PMID: 29949212 DOI: 10.1111/ejn.14060] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
Addictions are highly heritable disorders, with heritability estimates ranging from 39% to 72%. Multiple studies suggest a link between paternal drug abuse and addiction in their children. However, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Exposure to drugs of abuse results in epigenetic changes that may be passed on through the germline. This mechanism of epigenetic transgenerational inheritance may provide a link between paternal drug exposure and addiction susceptibility in the offspring. Recent studies have begun to investigate the effect of paternal drug exposure on behavioral and neurobiological phenotypes in offspring of drug-exposed fathers in rodent models. This review aims to discuss behavioral and neural effects of paternal exposure to alcohol, cocaine, opioids, and nicotine. Although a special focus will be on addiction-relevant behaviors, additional behavioral effects including cognition, anxiety, and depressive-like behaviors will be discussed.
Collapse
Affiliation(s)
- Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, USA
| |
Collapse
|
7
|
Viral-mediated overexpression of the Myelin Transcription Factor 1 (MyT1) in the dentate gyrus attenuates anxiety- and ethanol-related behaviors in rats. Psychopharmacology (Berl) 2017; 234:1829-1840. [PMID: 28303373 DOI: 10.1007/s00213-017-4588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
RATIONALE Myelin Transcription Factor 1 (MyT1), a member of the Zinc Finger gene family, plays a fundamental role in the nervous system. Recent research has suggested that this transcription factor is associated with the pathophysiology of psychiatric disorders including addiction, schizophrenia, and depression. However, the role of MyT1 in anxiety- and ethanol-related behaviors is still unknown. OBJECTIVES We evaluated the effects of lentiviral-mediated overexpression of MyT1 in the dentate gyrus (DG) on anxiety- and ethanol-related behaviors in rats. METHODS We used the elevated plus maze (EPM) and the open field (OF) tests to assess anxiety-like behavior and a two-bottle choice procedure to measure the effects of MyT1 on ethanol intake and preference. RESULTS MyT1 overexpression produced anxiolytic-like effects in the EPM test and decreased the number of fecal boli in the OF test, without affecting locomotor activity in both behavioral tests. Next, we demonstrated that ethanol intake and preference were decreased in the MyT1-overexpressing rats with no effect on saccharin and quinine, used to assess taste discrimination, and no effect on ethanol clearance suggesting specific alterations in the rewarding effects of ethanol. Most importantly, ectopic MyT1 overexpression increased both MyT1 and BDNF mRNA levels in the DG. Using Pearson's correlation, results showed a strong negative relationship between MyT1 mRNA and anxiety parameters and ethanol consumption and a positive correlation between MyT1 and BDNF mRNAs. CONCLUSION Taken together, MyT1 along with being a key component in anxiety may be a suitable candidate in the search of the molecular underpinnings of alcoholism.
Collapse
|
8
|
Rompala GR, Finegersh A, Slater M, Homanics GE. Paternal preconception alcohol exposure imparts intergenerational alcohol-related behaviors to male offspring on a pure C57BL/6J background. Alcohol 2017; 60:169-177. [PMID: 27876231 DOI: 10.1016/j.alcohol.2016.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022]
Abstract
While alcohol use disorder (AUD) is a highly heritable condition, the basis of AUD in families with a history of alcoholism is difficult to explain by genetic variation alone. Emerging evidence suggests that parental experience prior to conception can affect inheritance of complex behaviors in offspring via non-genomic (epigenetic) mechanisms. For instance, male C57BL/6J (B6) mice exposed to chronic intermittent vapor ethanol (CIE) prior to mating with Strain 129S1/SvImJ ethanol-naïve females produce male offspring with reduced ethanol-drinking preference, increased ethanol sensitivity, and increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). In the present study, we tested the hypothesis that these intergenerational effects of paternal CIE are reproducible in male offspring on an inbred B6 background. To this end, B6 males were exposed to 6 weeks of CIE (or room air as a control) before mating with ethanol-naïve B6 females to produce ethanol (E)-sired and control (C)-sired male and female offspring. We observed a sex-specific effect, as E-sired males exhibited decreased two-bottle free-choice ethanol-drinking preference, increased sensitivity to the anxiolytic effects of ethanol, and increased VTA BDNF expression; no differences were observed in female offspring. These findings confirm and extend our previous results by demonstrating that the effects of paternal preconception ethanol are reproducible using genetically identical, inbred B6 animals.
Collapse
|
9
|
BDNF concentrations and daily fluctuations differ among ADHD children and respond differently to methylphenidate with no relationship with depressive symptomatology. Psychopharmacology (Berl) 2017; 234:267-279. [PMID: 27807606 DOI: 10.1007/s00213-016-4460-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023]
Abstract
RATIONALE Brain-derived neurotrophic factor (BDNF) enhances the growth and maintenance of several monoamine neuronal systems, serves as a neurotransmitter modulator and participates in the mechanisms of neuronal plasticity. Therefore, BDNF is a good candidate for interventions in the pathogenesis and/or treatment response of attention deficit hyperactivity disorder (ADHD). OBJECTIVE We quantified the basal concentration and daily fluctuation of serum BDNF, as well as changes after methylphenidate treatment. METHOD A total of 148 children, 4-5 years old, were classified into groups as follows: ADHD group (n = 107, DSM-IV-TR criteria) and a control group (CG, n = 41). Blood samples were drawn at 2000 and 0900 hours from both groups, and after 4.63 ± 2.3 months of treatment, blood was drawn only from the ADHD group for BDNF measurements. Factorial analysis was performed (Stata software, version 12.0). RESULTS Morning BDNF (36.36 ± 11.62 ng/ml) in the CG was very similar to that in the predominantly inattentive children (PAD), although the evening concentration in the CG was higher (CG 31.78 ± 11.92 vs PAD 26.41 ± 11.55 ng/ml). The hyperactive-impulsive group, including patients with comorbid conduct disorder (PHI/CD), had lower concentrations. Methylphenidate (MPH) did not modify the concentration or the absence of daily BDNF fluctuations in the PHI/CD children; however, MPH induced a significant decrease in BDNF in PAD and basal day/night fluctuations disappeared in this ADHD subtype. This profile was not altered by the presence of depressive symptoms. CONCLUSIONS Our data support a reduction in BDNF in untreated ADHD due to the lower concentrations in PHI/CD children, which is similar to other psychopathologic and cognitive disorders. MPH decreased BDNF only in the PAD group, which might indicate that BDNF is not directly implicated in the methylphenidate-induced amelioration of the neuropsychological and organic immaturity of ADHD patients.
Collapse
|
10
|
Association of testosterone and BDNF serum levels with craving during alcohol withdrawal. Alcohol 2016; 54:67-72. [PMID: 27514572 DOI: 10.1016/j.alcohol.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022]
Abstract
Preclinical and clinical studies show associations between testosterone and brain-derived neurotrophic growth factor (BDNF) serum levels. BDNF and testosterone have been independently reported to influence alcohol consumption. Therefore, we aimed to investigate a possible interplay of testosterone and BDNF contributing to alcohol dependence. Regarding possible interplay of testosterone and BDNF and the activity of the hypothalamic pituitary axis (HPA), we included cortisol serum levels in our research. We investigated testosterone and BDNF serum levels in a sample of 99 male alcohol-dependent patients during alcohol withdrawal (day 1, 7, and 14) and compared them to a healthy male control group (n = 17). The testosterone serum levels were significantly (p < 0.001) higher in the patients' group than in the control group and decreased significantly during alcohol withdrawal (p < 0.001). The decrease of testosterone serum levels during alcohol withdrawal (days 1-7) was significantly associated with the BDNF serum levels (day 1: p = 0.008). In a subgroup of patients showing high cortisol serum levels (putatively mirroring high HPA activity), we found a significant association of BDNF and testosterone as well as with alcohol craving measured by the Obsessive and Compulsive Drinking Scale (OCDS). Our data suggest a possible association of BDNF and testosterone serum levels, which may be relevant for the symptomatology of alcohol dependence. Further studies are needed to clarify our results.
Collapse
|
11
|
Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, Mancinelli R, Tirassa P, Chaldakov GN, Pascale E, Ceccanti M, Codazzo C, Fiore M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21:776-87. [PMID: 25940002 DOI: 10.1111/adb.12255] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT); National Research Council of Italy (C.N.R.); Italy
| | - Giampiero Ferraguti
- Department of Cellular Biotechnologies and Hematology; Sapienza University of Rome; Italy
| | - Giacomo Giacovazzo
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | - Rosanna Mancinelli
- Centro Nazionale Sostanze Chimiche; Instituto Superiore di Sanità; Rome Italy
| | - Paola Tirassa
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| | | | - Esterina Pascale
- Department of Medical-Surgical Sciences and Biotechnologies; Sapienza University of Rome; Italy
| | - Marco Ceccanti
- Department of Neurology and Psychiatry; Sapienza University of Rome; Italy
| | - Claudia Codazzo
- Centro Riferimento Alcologico Regione Lazio; Sapienza University of Rome; Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology (IBCN)/IRCCS S. Lucia Foundation; Italy
| |
Collapse
|
12
|
Shojaei S, Ghavami S, Panjehshahin MR, Owji AA. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats. Int J Mol Sci 2015; 16:30422-30437. [PMID: 26703578 PMCID: PMC4691182 DOI: 10.3390/ijms161226242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 01/19/2023] Open
Abstract
We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats.
Collapse
Affiliation(s)
- Shahla Shojaei
- Department of Biochemistry and Recombinant Protein Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Research Policy Centre, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| | - Ali Akbar Owji
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz 713484579, Iran.
| |
Collapse
|