1
|
Gall CM, Le AA, Lynch G. Contributions of site- and sex-specific LTPs to everyday memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230223. [PMID: 38853551 PMCID: PMC11343211 DOI: 10.1098/rstb.2023.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 06/11/2024] Open
Abstract
Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA92697, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA92868, USA
| |
Collapse
|
2
|
Beletskiy A, Zolotar A, Fortygina P, Chesnokova E, Uroshlev L, Balaban P, Kolosov P. Downregulation of Ribosomal Protein Genes Is Revealed in a Model of Rat Hippocampal Neuronal Culture Activation with GABA(A)R/GlyRa2 Antagonist Picrotoxin. Cells 2024; 13:383. [PMID: 38474347 PMCID: PMC10930765 DOI: 10.3390/cells13050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity.
Collapse
Affiliation(s)
- Alexander Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Anastasia Zolotar
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Ekaterina Chesnokova
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Leonid Uroshlev
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Amano R, Nakao M, Matsumiya K, Miwakeichi F. A computational model to explore how temporal stimulation patterns affect synapse plasticity. PLoS One 2022; 17:e0275059. [PMID: 36149886 PMCID: PMC9506666 DOI: 10.1371/journal.pone.0275059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Plasticity-related proteins (PRPs), which are synthesized in a synapse activation-dependent manner, are shared by multiple synapses to a limited spatial extent for a specific period. In addition, stimulated synapses can utilize shared PRPs through synaptic tagging and capture (STC). In particular, the phenomenon by which short-lived early long-term potentiation is transformed into long-lived late long-term potentiation using shared PRPs is called “late-associativity,” which is the underlying principle of “cluster plasticity.” We hypothesized that the competitive capture of PRPs by multiple synapses modulates late-associativity and affects the fate of each synapse in terms of whether it is integrated into a synapse cluster. We tested our hypothesis by developing a computational model to simulate STC, late-associativity, and the competitive capture of PRPs. The experimental results obtained using the model revealed that the number of competing synapses, timing of stimulation to each synapse, and basal PRP level in the dendritic compartment altered the effective temporal window of STC and influenced the conditions under which late-associativity occurs. Furthermore, it is suggested that the competitive capture of PRPs results in the selection of synapses to be integrated into a synapse cluster via late-associativity.
Collapse
Affiliation(s)
- Ryota Amano
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- * E-mail:
| | - Mitsuyuki Nakao
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | | | - Fumikazu Miwakeichi
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Statistical Modeling, The Institute of Statistical Mathematics, Tachikawa-Shi, Japan
| |
Collapse
|
4
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
5
|
Kim CH, Kim S, Kim SH, Roh J, Jin H, Song B. Role of densin-180 in mouse ventral hippocampal neurons in 24-hr retention of contextual fear conditioning. Brain Behav 2020; 10:e01891. [PMID: 33064361 PMCID: PMC7749528 DOI: 10.1002/brb3.1891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Densin-180 interacts with postsynaptic molecules including calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) but its function in learning and memory process has been unclear. METHODS To investigate a role of hippocampal densin-180 in contextual fear conditioning (CFC) learning and memory processes, knockdown (KD) of densin-180 in hippocampal subareas was applied. RESULTS First, ventral hippocampal (vHC) densin-180 KD impaired single-trial CFC (stCFC) memory one day later. stCFC caused freezing behaviors to reach the peak about one hour later in both control and KD mice, but then freezing was disappeared at 2 hr postshock in KD mice. Second, stCFC caused an immediate and transient reduction of vHC densin-180 in control mice, which was not observed in KD mice. Third, stCFC caused phosphorylated-T286 (p-T286) CaMKIIα to change similarly to densin-180, but p-T305 CaMKIIα was increased 1 hr later in control mice. In KD mice, these effects were gone. Moreover, both basal levels of p-T286 and p-T305 CaMKIIα were reduced without change in total CaMKIIα in KD mice. Fourth, we found double-trial CFC (dtCFC) memory acquisition and retrieval kinetics were different from those of stCFC in vHC KD mice. In addition, densin-180 in dorsal hippocampal area appeared to play its unique role during the very early retrieval period of both CFC memories. CONCLUSION This study shows that vHC densin-180 is necessary for stCFC memory formation and retrieval and suggests that both densin-180 and p-T305 CaMKIIα at 1 ~ 2 hr postshock are important for stCFC memory formation. We conclude that roles of hippocampal neuronal densin-180 in CFC are temporally dynamic and differential depending on the pattern of conditioning stimuli and its location along the dorsoventral axis of hippocampal formation.
Collapse
Affiliation(s)
- Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Seoyul Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Jongtae Roh
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Harin Jin
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| | - Bokyung Song
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea.,Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|
6
|
Nadei OV, Khvorova IA, Agalakova NI. Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling. Biol Trace Elem Res 2020; 197:495-506. [PMID: 31797207 DOI: 10.1007/s12011-019-01993-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
The study was designed to evaluate an influence of excessive fluoride (F-) intake on cognitive capacities of adult rats and on proteins of memory-related calpain signaling in hippocampus. Control animals were given water with natural F- content of 0.4 ppm; rats from other groups consumed the same water supplemented with 5, 20, and 50 ppm F- (as NaF) for 12 months. The efficiency of learning and memory formation was evaluated by novel object recognition (NOR) and Morris water maze tests. The expression of enzymes of calpain-1 and calpain-2 signaling in hippocampus was detected by Western blotting. Excessive F- consumption had moderate impact on short-term memory, but impaired spatial learning and long-term memory of animals. Intoxication of rats with 5-50 ppm F- led to stimulation of calpain-1 in hippocampal cells and its translocation from cytosol to membranes, accompanied by activation of GTPase RhoA. Exposure to 20-50 ppm F- resulted in proteolytic cleavage of phosphatase PHLPP1 and increased expression of phospho-ERK1/2 kinase with insignificant decline of total ERK1/2 activity. In contrast, F- did not change the expression of calpain-2 and its substrates-phosphatase PTEN and kinase mTOR. However, F- intake led to downregulation of cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF). Thus, altered expression of calpain-1 and its downstream effectors at a background of stable activity of calpain-2 indicates overstimulation of signaling pathways of early LTP phase and disrupted link between early and late LTP phases, most probably due to altered activity of transcriptional and neurotrophic factors.
Collapse
Affiliation(s)
- Olga V Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez av., Saint Petersburg, Russia, 194223
| | - Irina A Khvorova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez av., Saint Petersburg, Russia, 194223
| | - Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez av., Saint Petersburg, Russia, 194223.
| |
Collapse
|
7
|
Baidoo N, Wolter M, Leri F. Opioid withdrawal and memory consolidation. Neurosci Biobehav Rev 2020; 114:16-24. [PMID: 32294487 DOI: 10.1016/j.neubiorev.2020.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
It is well established that learning and memory are central to substance dependence. This paper specifically reviews the effect of opioid withdrawal on memory consolidation. Although there is evidence that opioid withdrawal can interfere with initial acquisition and retrieval of older memories, there are several reasons to postulate a facilitatory action on the consolidation of newly acquired memories. In fact, there is substantial evidence that memory consolidation is facilitated by the release of stress hormones, that it requires the activation of the amygdala, of central noradrenergic and cholinergic pathways, and that it involves long-term potentiation. This review highlights evidence that very similar neurobiological processes are involved in opioid withdrawal, and summarizes recent results indicating that naltrexone-precipitated withdrawal enhanced consolidation in rats. From this neurocognitive perspective, therefore, opioid use may escalate during the addiction cycle in part because memories of stimuli and actions experienced during withdrawal are strengthened.
Collapse
Affiliation(s)
- Nana Baidoo
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Michael Wolter
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada.
| |
Collapse
|
8
|
Müller-Thomsen L, Borgmann D, Morcinek K, Schröder S, Dengler B, Moser N, Neumaier F, Schneider T, Schröder H, Huggenberger S. Consequences of hyperphosphorylated tau on the morphology and excitability of hippocampal neurons in aged tau transgenic mice. Neurobiol Aging 2020; 93:109-123. [PMID: 32278495 DOI: 10.1016/j.neurobiolaging.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The intracellular accumulation of hyperphosphorylated tau characterizes many neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. A critical role for tau is supported by studies in transgenic mouse models expressing the P301L mutation with accumulation of hyperphosphorylated human tau in hippocampal pyramidal neurons of aged mice. Especially, the somatodendritic mislocalization of hyperphosphorylated tau seems to affect the neuronal network of the hippocampus. To show the consequences of aggregation of hyperphosphorylated tau within hippocampal neurons of aged mice, the CA1 pyramidal cells were analyzed morphologically and electrophysiologically. Here we demonstrate in the P301L pR5 mouse model that hyperphosphorylated tau leads to an increase in stubby spines and filopodia, as well as a decrease in total dendritic length of hippocampal pyramidal neurons due to a decrease in apical dendritic length and nodes. This atrophy is in line with the significant reduction in CA1 long-term potentiation. Furthermore, mutant tau induced a depolarized threshold for action potential initiation and an increased current of inward rectifying potassium channels, which should lead, together with the long-term potentiation decrease, to a decreased excitability of CA1 neurons.
Collapse
Affiliation(s)
| | - Diba Borgmann
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Kerstin Morcinek
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Sophia Schröder
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Brigitte Dengler
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Natasha Moser
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Stefan Huggenberger
- Department II of Anatomy, University of Cologne, Cologne, Germany; Institute of Anatomy and Clinical Morphology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
9
|
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: A link with adaptive behavior to environmental stress? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:29-61. [PMID: 32138903 DOI: 10.1016/bs.ircmb.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stressors elicit a neuroendocrine response leading to increased levels of glucocorticoids, allowing the organism to adapt to environmental changes and maintain homeostasis. Glucocorticoids have a broad effect in the body, modifying the activity of the immune system, metabolism, and behavior through the activation of receptors in the limbic system. Chronic exposition to stressors operates as a risk factor for psychiatric diseases such as depression and posttraumatic stress disorder. Among the cellular alterations observed as a consequence of environmental stress, alterations to organelle function at the level of mitochondria and endoplasmic reticulum (ER) are emerging as possible factors contributing to neuronal dysfunction. ER proteostasis alterations elicit the unfolded protein response (UPR), a conserved signaling network that re-establish protein homeostasis. In addition, in the context of brain function, the UPR has been associated to neurodevelopment, synaptic plasticity and neuronal connectivity. Recent studies suggest a role of the UPR in the adaptive behavior to stress, suggesting a mechanistic link between environmental and cellular stress. Here, we revise recent evidence supporting an evolutionary connection between the neuroendocrine system and the UPR to modulate behavioral adaptive responses.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
10
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Bello-Medina PC, Prado-Alcalá RA, Rivas-Arancibia S. Effect of Ozone Exposure on Dendritic Spines of CA1 Pyramidal Neurons of the Dorsal Hippocampus and on Object-place Recognition Memory in Rats. Neuroscience 2019; 402:1-10. [PMID: 30685541 DOI: 10.1016/j.neuroscience.2019.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The growth of many cities has generated an increase in the emission of environmental pollutants. Exposure to these pollutants has been associated with increased mortality worldwide. These pollutants, such as ozone, produce reactive oxygen species (ROS), which cause oxidative stress throughout the body. It has been observed that there is a relationship between chronic oxidative stress and the development of degenerative diseases typical of old age such as amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease. The purpose of this research was to evaluate whether chronic exposure to ozone produces a deleterious effect on density and morphology of dendritic spines in CA1 of dorsal hippocampus and on learning and memory of object-place recognition. Rats were exposed to ozone or to ozone-free air for a period of 15, 30, 60, or 90 days. The principal results indicate that chronic oxidative stress induced by ozone produces a decrease in the density of dendritic spines, a decrease in thin and mushroom spine ratios, and an increase in stubby spine ratio, as well as a deficit in learning and memory of the object-place recognition task. These results indicate that chronic ozone exposure produces a loss in the inputs of CA1 neurons of the dorsal hippocampus, which may be the source of the cognitive deficits observed in the object-place recognition task, as indicated by the decrease in density of dendritic spines; these alterations are similar to those reported in some neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
12
|
Arias-Cavieres A, More J, Vicente JM, Adasme T, Hidalgo J, Valdés JL, Humeres A, Valdés-Undurraga I, Sánchez G, Hidalgo C, Barrientos G. Triclosan Impairs Hippocampal Synaptic Plasticity and Spatial Memory in Male Rats. Front Mol Neurosci 2018; 11:429. [PMID: 30534053 PMCID: PMC6275195 DOI: 10.3389/fnmol.2018.00429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Triclosan, a widely used industrial and household agent, is present as an antiseptic ingredient in numerous products of everyday use, such as toothpaste, cosmetics, kitchenware, and toys. Previous studies have shown that human brain and animal tissues contain triclosan, which has been found also as a contaminant of water and soil. Triclosan disrupts heart and skeletal muscle Ca2+ signaling, damages liver function, alters gut microbiota, causes colonic inflammation, and promotes apoptosis in cultured neocortical neurons and neural stem cells. Information, however, on the possible effects of triclosan on the function of the hippocampus, a key brain region for spatial learning and memory, is lacking. Here, we report that triclosan addition at low concentrations to hippocampal slices from male rats inhibited long-term potentiation but did not affect basal synaptic transmission or paired-pulse facilitation and modified the content or phosphorylation levels of synaptic plasticity-related proteins. Additionally, incubation of primary hippocampal cultures with triclosan prevented both the dendritic spine remodeling induced by brain-derived neurotrophic factor and the emergence of spontaneous oscillatory Ca2+ signals. Furthermore, intra-hippocampal injection of triclosan significantly disrupted rat navigation in the Oasis maze spatial memory task, an indication that triclosan impairs hippocampus-dependent spatial memory performance. Based on these combined results, we conclude that triclosan exerts highly damaging effects on hippocampal neuronal function in vitro and impairs spatial memory processes in vivo.
Collapse
Affiliation(s)
| | - Jamileth More
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | | | - Tatiana Adasme
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Jorge Hidalgo
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alexis Humeres
- Department of Morphofunction, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | | | - Gina Sánchez
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Fabbri C, Tansey KE, Perlis RH, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Breen G, Curtis C, Sang-Hyuk L, Newhouse S, Patel H, Guipponi M, Perroud N, Bondolfi G, O'Donovan M, Lewis G, Biernacka JM, Weinshilboum RM, Farmer A, Aitchison KJ, Craig I, McGuffin P, Uher R, Lewis CM. New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. THE PHARMACOGENOMICS JOURNAL 2018; 18:413-421. [PMID: 29160301 PMCID: PMC10204124 DOI: 10.1038/tpj.2017.44] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at the single-nucleotide polymorphism (SNP), gene and pathway levels. Coverage of genetic variants was increased compared with previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. A total of 7062 950 SNPs were analyzed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (P=1.80e-08, ITGA9 (integrin α9)) and rs76191705 (P=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At the gene level, no consistent effect was found. At the pathway level, the Gene Ontology (GO) terms GO: 0005694 (chromosome) and GO: 0044427 (chromosomal part) were associated with improvement (corrected P=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (P=0.047), whereas rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying their role.
Collapse
Affiliation(s)
- C Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K E Tansey
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - R H Perlis
- Department of Psychiatry, Center for Experimental Drugs and Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - J Hauser
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - N Henigsberg
- Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb, Croatia
| | - W Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - O Mors
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - A Placentino
- Biological Psychiatry Unit and Dual Diagnosis Ward, Istituto Di Ricovero e Cura a Carattere Scientifico, Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - M Rietschel
- Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - D Souery
- Laboratoire de Psychologie Médicale, Université Libre de Bruxelles and Psy Pluriel-Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - G Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - L Sang-Hyuk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - H Patel
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospitals of Geneva, Geneva, Switzerland
| | - N Perroud
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - G Bondolfi
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - M O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - G Lewis
- Division of Psychiatry, University College London (UCL), London, UK
| | - J M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - A Farmer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K J Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - I Craig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P McGuffin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Uher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - C M Lewis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
14
|
The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory. eNeuro 2017; 4:eN-NWR-0212-16. [PMID: 28275711 PMCID: PMC5318545 DOI: 10.1523/eneuro.0212-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory.
Collapse
|
15
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
16
|
Kastellakis G, Silva AJ, Poirazi P. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell Rep 2016; 17:1491-1504. [PMID: 27806290 PMCID: PMC5149530 DOI: 10.1016/j.celrep.2016.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022] Open
Abstract
Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1) learning of a single associative memory, (2) rescuing of a weak memory when paired with a strong one, and (3) linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.
Collapse
Affiliation(s)
- George Kastellakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), N. Plastira 100, P.O. Box 1385, Heraklion, Crete 70013, Greece; Department of Biology, University of Crete, P.O. Box 2208, Heraklion, Crete 70013, Greece
| | - Alcino J Silva
- Integrative Center for Learning and Memory, Departments of Neurobiology, Psychology, and Psychiatry, and Brain Research Institute, UCLA, 2554 Gonda Center, Los Angeles, CA 90095, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), N. Plastira 100, P.O. Box 1385, Heraklion, Crete 70013, Greece.
| |
Collapse
|
17
|
Abbas AK. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats. PLoS One 2016; 11:e0161270. [PMID: 27517693 PMCID: PMC4982604 DOI: 10.1371/journal.pone.0161270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/02/2016] [Indexed: 11/26/2022] Open
Abstract
In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8–10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary.
Collapse
Affiliation(s)
- Abdul-Karim Abbas
- Institute of Neuroscience and Physiology, University of Gothenburg, Box 432, SE-40530, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
18
|
Pirbhoy PS, Farris S, Steward O. Synaptic activation of ribosomal protein S6 phosphorylation occurs locally in activated dendritic domains. ACTA ACUST UNITED AC 2016; 23:255-69. [PMID: 27194793 PMCID: PMC4880148 DOI: 10.1101/lm.041947.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6) locally near active synapses. Using antibodies specific for phosphorylation at different sites (ser235/236 versus ser240/244), we show that strong synaptic activation led to dramatic increases in immunostaining throughout postsynaptic neurons with selectively higher staining for p-ser235/236 in the activated dendritic lamina. Following LTP induction, phosphorylation at ser235/236 was detectable by 5 min, peaked at 30 min, and was maintained for hours. Phosphorylation at both sites was completely blocked by local infusion of the NMDA receptor antagonist, APV. Despite robust induction of p-rpS6 following high frequency stimulation, assessment of protein synthesis by autoradiography revealed no detectable increases. Exploration of a novel environment led to increases in the number of p-rpS6-positive neurons throughout the forebrain in a pattern reminiscent of immediate early gene induction and many individual neurons that were p-rpS6-positive coexpressed Arc protein. Our results constrain hypotheses about the possible role of rpS6 phosphorylation in regulating postsynaptic protein synthesis during induction of synaptic plasticity.
Collapse
Affiliation(s)
- Patricia Salgado Pirbhoy
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
| | - Shannon Farris
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA Department of Neurosurgery, University of California, Irvine, California 92697, USA
| |
Collapse
|
19
|
Hidalgo C, Arias-Cavieres A. Calcium, Reactive Oxygen Species, and Synaptic Plasticity. Physiology (Bethesda) 2016; 31:201-15. [DOI: 10.1152/physiol.00038.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this review article, we address how activity-dependent Ca2+ signaling is crucial for hippocampal synaptic/structural plasticity and discuss how changes in neuronal oxidative state affect Ca2+ signaling and synaptic plasticity. We also analyze current evidence indicating that oxidative stress and abnormal Ca2+ signaling contribute to age-related synaptic plasticity deterioration.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
- Center of Molecular Studies of the Cell and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandra Arias-Cavieres
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; and
| |
Collapse
|
20
|
Metaplastic Regulation of CA1 Schaffer Collateral Pathway Plasticity by Hebbian MGluR1a-Mediated Plasticity at Excitatory Synapses onto Somatostatin-Expressing Interneurons. eNeuro 2015; 2:eN-NWR-0051-15. [PMID: 26464997 PMCID: PMC4596015 DOI: 10.1523/eneuro.0051-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023] Open
Abstract
Cortical GABAergic interneurons represent a highly diverse neuronal type that regulates neural network activity. In particular, interneurons in the hippocampal CA1 oriens/alveus (O/A-INs) area provide feedback dendritic inhibition to local pyramidal cells and express somatostatin (SOM). Under relevant afferent stimulation patterns, they undergo long-term potentiation (LTP) of their excitatory synaptic inputs through multiple induction and expression mechanisms. However, the cell-type specificity of these different forms of LTP and their specific contribution to the dynamic regulation of the CA1 network remain unclear. Here we recorded from SOM-expressing interneurons (SOM-INs) in the O/A region from SOM-Cre-Ai3 transgenic mice in whole-cell patch-clamp. Results indicate that, like in anatomically identified O/A-INs, theta-burst stimulation (TBS) induced a Hebbian form of LTP dependent on metabotropic glutamate receptor type 1a (mGluR1a) in SOM-INs, but not in parvalbumin-expressing interneurons, another mainly nonoverlapping interneuron subtype in CA1. In addition, we demonstrated using field recordings from transgenic mice expressing archaerhodopsin 3 selectively in SOM-INs, that a prior conditioning TBS in O/A, to induce mGluR1a-dependent LTP in SOM-INs, upregulated LTP in the Schaffer collateral pathway of pyramidal cells. This effect was prevented by light-induced hyperpolarization of SOM-INs during TBS, or by application of the mGluR1a antagonist LY367385, indicating a necessity for mGluR1a and SOM-INs activation. These results uncover that SOM-INs perform an activity-dependent metaplastic control on hippocampal CA1 microcircuits in a cell-specific fashion. Our findings provide new insights on the contribution of interneuron synaptic plasticity in the regulation of the hippocampal network activity and mnemonic processes.
Collapse
|
21
|
|