1
|
Acute Inflammation Alters Brain Energy Metabolism in Mice and Humans: Role in Suppressed Spontaneous Activity, Impaired Cognition, and Delirium. J Neurosci 2020; 40:5681-5696. [PMID: 32513828 PMCID: PMC7363463 DOI: 10.1523/jneurosci.2876-19.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023] Open
Abstract
Systemic infection triggers a spectrum of metabolic and behavioral changes, collectively termed sickness behavior, which while adaptive, can affect mood and cognition. In vulnerable individuals, acute illness can also produce profound, maladaptive, cognitive dysfunction including delirium, but our understanding of delirium pathophysiology remains limited. Here, we used bacterial lipopolysaccharide (LPS) in female C57BL/6J mice and acute hip fracture in humans to address whether disrupted energy metabolism contributes to inflammation-induced behavioral and cognitive changes. LPS (250 µg/kg) induced hypoglycemia, which was mimicked by interleukin (IL)-1β (25 µg/kg) but not prevented in IL-1RI−/− mice, nor by IL-1 receptor antagonist (IL-1RA; 10 mg/kg). LPS suppression of locomotor activity correlated with blood glucose concentrations, was mitigated by exogenous glucose (2 g/kg), and was exacerbated by 2-deoxyglucose (2-DG) glycolytic inhibition, despite preventing IL-1β synthesis. Using the ME7 model of chronic neurodegeneration in female mice, to examine vulnerability of the diseased brain to acute stressors, we showed that LPS (100 µg/kg) produced acute cognitive dysfunction, selectively in those animals. These acute cognitive impairments were mimicked by insulin (11.5 IU/kg) and mitigated by glucose, demonstrating that acutely reduced glucose metabolism impairs cognition selectively in the vulnerable brain. To test whether these acute changes might predict altered carbohydrate metabolism during delirium, we assessed glycolytic metabolite levels in CSF in humans during inflammatory trauma-induced delirium. Hip fracture patients showed elevated CSF lactate and pyruvate during delirium, consistent with acutely altered brain energy metabolism. Collectively, the data suggest that disruption of energy metabolism drives behavioral and cognitive consequences of acute systemic inflammation. SIGNIFICANCE STATEMENT Acute systemic inflammation alters behavior and produces disproportionate effects, such as delirium, in vulnerable individuals. Delirium has serious short and long-term sequelae but mechanisms remain unclear. Here, we show that both LPS and interleukin (IL)-1β trigger hypoglycemia, reduce CSF glucose, and suppress spontaneous activity. Exogenous glucose mitigates these outcomes. Equivalent hypoglycemia, induced by lipopolysaccharide (LPS) or insulin, was sufficient to trigger cognitive impairment selectively in animals with existing neurodegeneration and glucose also mitigated those impairments. Patient CSF from inflammatory trauma-induced delirium also shows altered brain carbohydrate metabolism. The data suggest that the degenerating brain is exquisitely sensitive to acute behavioral and cognitive consequences of disrupted energy metabolism. Thus “bioenergetic stress” drives systemic inflammation-induced dysfunction. Elucidating this may offer routes to mitigating delirium.
Collapse
|
2
|
Kiyatkin EA. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019; 151:219-226. [PMID: 30735692 DOI: 10.1016/j.neuropharm.2019.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Opioid drugs are important tools to alleviate pain of different origins, but they have strong addictive potential and their abuse at higher doses often results in serious health complications. Respiratory depression that leads to brain hypoxia is perhaps the most dangerous symptom of acute intoxication with opioids, and it could result in lethality. The development of substrate-specific sensors coupled with amperometry made it possible to directly evaluate physiological and drug-induced fluctuations in brain oxygen levels in awake, freely-moving rats. The goal of this review paper is to consider changes in brain oxygen levels induced by several opioid drugs (heroin, fentanyl, oxycodone, morphine). While some of these drugs are widely used in clinical practice, they all are abused, often at doses exceeding the clinical range and often resulting in serious health complications. First, we consider some basic knowledge regarding brain oxygen, its physiological fluctuations, and mechanisms involved in regulating its entry into brain tissue. Then, we present and discuss data on brain oxygen changes induced by each opioid drug within a wide range of doses, from low, behaviorally relevant, to high, likely to be self-administered by drug users. These data allowed us to compare the effects of these drugs on brain oxygen in terms of their potency, time-course, and their potential danger when used at high doses via rapid-onset administration routes. While most data discussed in this work were obtained in rats, we believe that these data have clear human relevance in addressing the alarming rise in lethality associated with the opioid abuse.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institute of Health, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Kiyatkin EA. Central and Peripheral Mechanisms Underlying Physiological and Drug-Induced Fluctuations in Brain Oxygen in Freely-Moving Rats. Front Integr Neurosci 2018; 12:44. [PMID: 30333733 PMCID: PMC6176053 DOI: 10.3389/fnint.2018.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023] Open
Abstract
The goal of this work is to consider physiological fluctuations in brain oxygen levels and its changes induced by opioid drugs. This review article presents, as a comprehensive story, the most important findings obtained in our laboratory by using high-speed amperometry with oxygen sensors in awake, freely moving rats; most of these findings were separately published elsewhere. First, we show that oxygen levels in the nucleus accumbens (NAc) phasically increase following exposure to natural arousing stimuli. Since accumbal neurons are excited by arousing stimuli and NAc oxygen levels increase following glutamate (GLU) microinjections in the NAc, local neural activation with subsequent cerebral vasodilation appears to mediate the rapid oxygen increases induced by arousing stimuli. While it is established that intra-cerebral entry of oxygen depends on brain metabolism, physiological increases in NAc oxygen occurred more rapidly than increases in metabolic activity as assessed by intra-brain heat production. Therefore, due to neural activation and the subsequent rise in local cerebral blood flow (CBF), the brain receives more oxygen in advance of its metabolic requirement, thus preventing potential metabolic deficits. In contrast to arousing stimuli, three opioid drugs tested (heroin, fentanyl and oxycodone) decrease oxygen levels. As confirmed by our recordings in the subcutaneous space, a densely vascularized location with no metabolic activity of its own, these decreases result from respiratory depression with subsequent fall in blood oxygen levels. While respiratory depression was evident for all tested drugs, heroin was ~6-fold more potent than oxycodone, and fentanyl was 10-20-fold more potent than heroin. Changes in brain oxygen induced by respiratory depression appear to be independent of local vascular and blood flow responses, which are triggered, via neuro-vascular coupling, by the neuronal effects of opioid drugs.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Department of Health and Human Services (DHHS), Baltimore, MD, United States
| |
Collapse
|
4
|
Kealy J, Commins S, Lowry JP. The effect of NMDA-R antagonism on simultaneously acquired local field potentials and tissue oxygen levels in the brains of freely-moving rats. Neuropharmacology 2017; 116:343-350. [DOI: 10.1016/j.neuropharm.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
|
5
|
Kealy J, Bennett R, Woods B, Lowry JP. Real-time changes in hippocampal energy demands during a spatial working memory task. Behav Brain Res 2017; 326:59-68. [PMID: 28249730 DOI: 10.1016/j.bbr.2017.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task. Male Sprague Dawley rats were implanted into the hippocampus with either: 1) microdialysis probe; or 2) an oxygen sensor and glucose biosensor co-implanted together. Animals were pre-treated with either saline or glucose (250mg/kg) 30min prior to performing a single 20-min spontaneous alternation task in a +-maze. There were no significant differences found between either treatment group in terms of spontaneous alternation performance. Additionally, there was a significant difference found between treatment groups on hippocampal glucose levels measured using microdialysis (a decrease associated with glucose pre-treatment in control animals) but not amperometry. There were significant increases in hippocampal oxygen during +-maze exploration. Combining the findings from both methods, it appears that hippocampal activity in the spontaneous alternation task does not cause an increase in glucose consumption, despite an increase in regional cerebral blood flow (using oxygen supply as an index of blood flow) and, as such, pre-treatment with glucose does not enhance spontaneous alternation performance.
Collapse
Affiliation(s)
- John Kealy
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel Bennett
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Barbara Woods
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John P Lowry
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Marcos ABW, Forner S, Martini AC, Patrício ES, Clarke JR, Costa R, Felix-Alves J, Vieira VJ, de Andrade EL, Mazzuco TL, Calixto JB, Figueiredo CP. Temporal and Regional Expression of Glucose-Dependent Insulinotropic Peptide and Its Receptor in Spinal Cord Injured Rats. J Neurotrauma 2015; 33:261-8. [PMID: 26421658 DOI: 10.1089/neu.2015.3877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) results in loss of movement, sensibility, and autonomic control at the level of the lesion and at lower parts of the body. Several experimental strategies have been used in attempts to increase endogenous mechanisms of neuroprotection, neuroplasticity, and repair, but with limited success. It is known that glucose-dependent insulinotropic peptide (GIP) and its receptor (GIPR) can enhance synaptic plasticity, neurogenesis, and axonal outgrowth. However, their role in the injury has never been studied. The aim of this study was to evaluate the changes in expression levels of both GIP and GIPR in acute and chronic phases of SCI in rats. Following SCI (2 to 24 h after damage), the rat spinal cord showed a lesion in which the epicenter had a cavity with hemorrhage and necrosis. Furthermore, the lesion cavity also showed ballooned cells 14 and 28 days after injury. We found that SCI induced increases in GIPR expression in areas neighboring the site of injury at 6 h and 28 days after the injury. Moreover, higher GIP expression was observed in these regions on day 28. Neuronal projections from the injury epicenter showed an increase in GIP immunoreactivity 24 h and 14 and 28 days after SCI. Interestingly, GIP was also found in progenitor cells at the spinal cord canal 24 h after injury, whereas both GIP and GIPR were present in progenitor cells at the injury epicenter 14 days after in SCI animals. These results suggest that GIP and its receptor might be implicated with neurogenesis and the repair process after SCI.
Collapse
Affiliation(s)
- Ana Beatriz W Marcos
- 1 Programa de Pós-Graduação em Ciências Médicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Stefania Forner
- 2 Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Alessandra C Martini
- 2 Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Eliziane S Patrício
- 2 Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Julia R Clarke
- 3 Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brazil
| | - Robson Costa
- 3 Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brazil
| | - João Felix-Alves
- 2 Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Vilberto José Vieira
- 1 Programa de Pós-Graduação em Ciências Médicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Edinéia Lemos de Andrade
- 2 Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Tânia Longo Mazzuco
- 4 Departamento de Clínica Médica, Centro de Ciências da Saúde, Universidade Estadual de Londrina , PR, Brazil
| | - João Batista Calixto
- 2 Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC) , Florianópolis, SC, Brazil
| | - Claudia Pinto Figueiredo
- 3 Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Altered Plasticity of Glycogen Phosphorylase in Forebrain Gliosomes Obtained from Insulinoma Patients. J Mol Neurosci 2015; 57:21-7. [PMID: 25946981 DOI: 10.1007/s12031-015-0573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
We investigated a control model of hypoglycemia-exposed brain tissues from a small series of patients with insulinoma, immediately dissect them, and perform a differential cold centrifugation to obtain gliosomes and examine alterations of glycogenolytic mechanisms. The BB as well as MM isoforms of glycogen phosphorylase enzymatic protein expression remained unaltered between insulinoma and control subjects within the gliosomes. However, the glycogen phosphorylase remained in a form that was potentially activated several folds on placing the gliosomes in a glucose-free medium. This was examined by its increased interaction with protein kinase A. Inhibitors of glycogen phosphorylase was used as controls. Furthermore, we demonstrated that glucose-depleted medium enhanced production of both ATP and lactate by the gliosomes. It is possible that a portion of glucose obtained from glycogen breakdown was circuited through glycolytic pathways to generate ATP. It has been reported earlier that ATP within gliosomes plays a major role in glutamate uptake, thus potentially preventing seizure during active bouts of hypoglycemia. Lactate shuttle from astrocytes is a potential mechanism to balance neuronal bioenergetics during events of hypoglycemia. Newer approaches to pharmacologically modulate glycogen phosphorylase may prove to be rational approach for neuroprotective therapy in this common clinical syndrome of hypoglycemia.
Collapse
|