1
|
Docherty JR, Alsufyani HA. Cardiovascular and temperature adverse actions of stimulants. Br J Pharmacol 2021; 178:2551-2568. [PMID: 33786822 DOI: 10.1111/bph.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The vast majority of illicit stimulants act at monoaminergic systems, causing both psychostimulant and adverse effects. Stimulants can interact as substrates or antagonists at the nerve terminal monoamine transporter that mediates the reuptake of monoamines across the nerve synaptic membrane and at the vesicular monoamine transporter (VMAT-2) that mediates storage of monoamines in vesicles. Stimulants can act directly at presynaptic or postsynaptic receptors for monoamines or have indirect monoamine-mimetic actions due to the release of monoamines. Cocaine and other stimulants can acutely increase the risk of sudden cardiac death. Stimulants, particularly MDMA, in hot conditions, such as that occurring at a "rave," have caused fatalities from the consequences of hyperthermia, often compounding cardiac adverse actions. This review examines the pharmacology of the cardiovascular and temperature adverse actions of stimulants.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Zaretsky DV, Kline H, Zaretskaia MV, Rusyniak DE. Automatic analysis of treadmill running to estimate times to fatigue and exhaustion in rodents. PeerJ 2018; 6:e5017. [PMID: 30002953 PMCID: PMC6037152 DOI: 10.7717/peerj.5017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction The determination of fatigue and exhaustion in experimental animals is complicated by the subjective nature of the measurement. Typically, it requires an observer to watch exercising animals, e.g. rats running on the treadmill, and to identify the time of the event. In this study, we hypothesized that automatic analysis of the time-averaged position of a rat on a treadmill could be an objective way for estimating times to fatigue and exhaustion. To test this hypothesis, we compared these times measured by a human observer to the results of an automated video tracking system. Methods Rats, previously familiarized to running on the treadmill, ran at a fixed speed with zero incline, until exhaustion. The experiments were performed at either room temperature (24 °C) or in a hot environment (32 °C). Each experiment was video recorded. A trained observer estimated the times to fatigue and exhaustion. Then, video tracking software was used to determine the position of the animals on the treadmill belt. The times to fatigue and exhaustion were determined, based on the position on the treadmill using predefined criteria. Results Manual scores and the average position on the treadmill had significant correlation. Both the observer and the automated video tracking determined that exercise in a hot environment, compared with the exercise at room temperature, results in shorter times to exhaustion and fatigue. Also, estimates of times made by the observer and the automated video tracking were not statistically different from each other. Discussion A similarity between the estimates of times to fatigue and exhaustion made by the observer and the automated technique suggests that video tracking of rodents running on a treadmill can be used to determine both parameters in experimental studies. Video tracking technique allows for a more objective measure and would allow for an increased performance in experimentation. The Supplemental information to this manuscript contains an Excel file, which includes the code in Virtual Basic with freeware license, to process and visualize running data and automatically estimate the times to fatigue and exhaustion. Instructions for the software are also included.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hannah Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Zaretsky DV, Romanovsky AA, Zaretskaia MV, Molkov YI. Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature by up to 1.3 oC: Implications for brain, brown adipose tissue, and muscle physiology. Temperature (Austin) 2018; 5:22-35. [PMID: 29687042 DOI: 10.1080/23328940.2018.1437311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022] Open
Abstract
Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only cooling mechanism, when direct dissipation of heat from the tissue to the environment is insignificant, e.g., in the brain. While this concept is relatively simple, it has not been described quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the blood, the temperature difference between the organ tissue and the arterial blood is proportional to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot exceed 1.3oC. Unlike the equilibrium temperature difference, the rate of change of the local temperature, with respect to time, does depend on the blood flow. In organs with high perfusion rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes. In organs with low perfusion rates, such changes may have characteristic time constants of tens or hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant of the temperature of tissues with limited heat exchange, such as the brain.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Discovery and Translational Medicine Division, Intarcia Therapeutics, Research Triangle, NC 27709
| | - Andrej A Romanovsky
- Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, GA 30303
| |
Collapse
|
4
|
Zaretsky DV, Kline H, Zaretskaia MV, Brown MB, Durant PJ, Alves NJ, Rusyniak DE. Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment. Brain Res 2018; 1689:12-20. [PMID: 29577887 DOI: 10.1016/j.brainres.2018.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hannah Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mary Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, USA
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan J Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Tormoehlen LM, Rusyniak DE. Neuroleptic malignant syndrome and serotonin syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:663-675. [PMID: 30459031 DOI: 10.1016/b978-0-444-64074-1.00039-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The clinical manifestation of drug-induced abnormalities in thermoregulation occurs across a variety of drug mechanisms. The aim of this chapter is to review two of the most common drug-induced hyperthermic states, serotonin syndrome and neuroleptic malignant syndrome. Clinical features, pathophysiology, and treatment strategies will be discussed, in addition to differentiating between these two syndromes and differentiating them from other hyperthermic or febrile syndromes. Our goal is to both review the current literature and to provide a practical guide to identification and treatment of these potentially life-threatening illnesses. The diagnostic and treatment recommendations made by us, and by other authors, are likely to change with a better understanding of the pathophysiology of these syndromes.
Collapse
Affiliation(s)
- Laura M Tormoehlen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Emergency Medicine, Division of Medical Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Division of Medical Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
6
|
Hrometz SL, Ebert JA, Grice KE, Nowinski SM, Mills EM, Myers BJ, Sprague JE. Potentiation of Ecstasy-induced hyperthermia and FAT/CD36 expression in chronically exercised animals. Temperature (Austin) 2017; 3:557-566. [PMID: 28090559 PMCID: PMC5198810 DOI: 10.1080/23328940.2016.1166310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Fatal hyperthermia as a result of 3,4-methylenedioxymethamphetamine (MDMA) use involves non-esterified free fatty acids (NEFA) and the activation of mitochondrial uncoupling proteins (UCP). NEFA gain access into skeletal muscle via specific transport proteins, including fatty acid translocase (FAT/CD36). FAT/CD36 expression is known to increase following chronic exercise. Previous studies have demonstrated the essential role of NEFA and UCP3 in MDMA-induced hyperthermia. The aims of the present study were to use a chronic exercise model (swimming for two consecutive hours per day, five days per wk for six wk) to increase FAT/CD36 expression in order to: 1) determine the contribution of FAT/CD36 in MDMA (20 mg/kg, s.c.)-mediated hyperthermia; and 2) examine the effects of the FAT/CD36 inhibitor, SSO (sulfo-N-succinimidyl oleate), on MDMA-induced hyperthermia in chronic exercise and sedentary control rats. MDMA administration resulted in hyperthermia in both sedentary and chronic exercise animals. However, MDMA-induced hyperthermia was significantly potentiated in the chronic exercise animals compared to sedentary animals. Additionally, chronic exercise significantly reduced body weight, increased FAT/CD36 protein expression levels and reduced plasma NEFA levels. The FAT/CD36 inhibitor, SSO (40 mg/kg, ip), significantly attenuated the hyperthermia mediated by MDMA in chronic exercised but not sedentary animals. Plasma NEFA levels were elevated in sedentary and exercised animals treated with SSO prior to MDMA suggesting attenuation of NEFA uptake into skeletal muscle. Chronic exercise did not alter skeletal muscle UCP3 protein expression levels. In conclusion, chronic exercise potentiates MDMA-mediated hyperthermia in a FAT/CD36 dependent fashion.
Collapse
Affiliation(s)
- Sandra L Hrometz
- Department of Pharmaceutical Sciences, College of Pharmacy, Natural and Health Sciences, Manchester University , Fort Wayne, IN, USA
| | - Jeremy A Ebert
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University , Ada, OH, USA
| | - Karen E Grice
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University , Ada, OH, USA
| | - Sara M Nowinski
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| | - Edward M Mills
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, TX, USA
| | - Brian J Myers
- Department of Chemistry and Biochemistry, The Getty College of Arts & Sciences, Ohio Northern University ; Ada, OH, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University , Bowling Green, OH, USA
| |
Collapse
|