1
|
Hu X, Ju Y, Zhang YK. Ivermectin as a potential therapeutic strategy for glioma. J Neurosci Res 2024; 102:e25254. [PMID: 37814994 DOI: 10.1002/jnr.25254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Ivermectin (IVM), a semi-synthetic macrolide parasiticide, has demonstrated considerable effectiveness in combating internal and external parasites, particularly nematodes and arthropods. Its remarkable ability to control parasites has earned it significant recognition, culminating in Satoshi Omura and William C. Campbell's receipt of the 2015 Nobel Prize in Physiology or Medicine for their contributions to the development of IVM. In recent years, investigations have revealed that IVM possesses antitumor properties. It can suppress the growth of various cancer cells, including glioma, through a multitude of mechanisms such as selective targeting of tumor-specific proteins, inducing programmed cell death, and modulation of tumor-related signaling pathways. Hence, IVM holds tremendous potential as a novel anticancer drug. This review seeks to provide an overview of the underlying mechanisms that enable IVM's capacity to suppress glioma. Furthermore, it aims to elucidate the challenges and prospects associated with utilizing IVM as a new anticancer agent.
Collapse
Affiliation(s)
- Xing Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yue-Kang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
2
|
KARABULUT UZUNÇAKMAK S, ŞAHİN A, TAVACI ÖZÇELİK A, HALICI Z. LRIG1 Levels in Chronic Rhinosinusitis With Nasal Polyps. CUKUROVA MEDICAL JOURNAL 2023. [DOI: 10.17826/cumj.1230714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Purpose: Nasal polyps (NPs), usually occurring together with chronic rhinosinusitis (CRS), are benign masses of mucosal origin arising from inflammation. The transmembrane protein known as leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) is a member of the Lrig family. Lrig1 is frequently expressed in the respiratory tract and epithelial tissues and can inhibit several signaling pathways involved in cell proliferation. The aim of this study was to determine Lrig1 levels in NP tissues of patients with CRS.
Material and Methods: This study included 36 patients with CRS and NPs and 15 patients who underwent rhinoplasty as the control group. The Lrig1 levels of all participants were measured by the ELISA method.
Results: This study revealed that Lrig1 levels were significantly lower in NP tissues than in tissues of the control group. The mean level of Lrig1 of the NP tissues was 22.2 ng/ml, while the mean level of the control group was 28.5 ng/ml. According to the results of ROC analysis, Lrig1 levels have the power to distinguish polyp tissues from control tissues (AUC=0.794). Lrig1 levels were higher in tissues with scores of 4-8 than in tissues with scores of 16-20 based on the results of computed tomography scoring. According to endoscopic evaluations, Lrig1 levels of tissues with scores of 5-8 or 9-11 were relatively lower than those of tissues with scores of 2-4.
Conclusion: Lrig1 levels were found to be decreased in NP tissues. Thus, Lrig1 may be used to confirm the presence of NPs. Lrig1 may also be helpful in NP grading. Increasing the Lrig1 levels in cases of NPs has the potential to become a targetable treatment modality.
Collapse
|
3
|
Gong L, Yin Y, Chen C, Wan Q, Xia D, Wang M, Pu Z, Zhang B, Zou J. Characterization of EGFR-reprogrammable temozolomide-resistant cells in a model of glioblastoma. Cell Death Dis 2022; 8:438. [PMID: 36316307 PMCID: PMC9622861 DOI: 10.1038/s41420-022-01230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ) resistance is a major clinical challenge for glioblastoma (GBM). O6-methylguanine-DNA methyltransferase (MGMT) mediated DNA damage repair is a key mechanism for TMZ resistance. However, MGMT-null GBM patients remain resistant to TMZ, and the process for resistance evolution is largely unknown. Here, we developed an acquired TMZ resistant xenograft model using serial implantation of MGMT-hypermethylated U87 cells, allowing the extraction of stable, TMZ resistant (TMZ-R) tumors and primary cells. The derived tumors and cells exhibited stable multidrug resistance both in vitro and in vivo. Functional experiments, as well as single-cell RNA sequencing (scRNA-seq), indicated that TMZ treatment induced cellular heterogeneity including quiescent cancer stem cells (CSCs) in TMZ-R tumors. A subset of these were labeled by NES+/SOX2+/CADM1+ and demonstrated significant advantages for drug resistance. Further study revealed that Epidermal Growth Factor Receptor (EGFR) deficiency and diminished downstream signaling may confer this triple positive CSCs subgroup’s quiescent phenotypes and chemoresistance. Continuous EGF treatment improved the chemosensitivity of TMZ-R cells both in vitro and in vivo, mechanically reversing cell cycle arrest and reduced drug uptake. Further, EGF treatment of TMZ-R tumors favorably normalized the response to TMZ in combination therapy. Here, we characterize a unique subgroup of CSCs in MGMT-null experimental glioblastoma, identifying EGF + TMZ therapy as a potential strategy to overcome cellular quiescence and TMZ resistance, likely endowed by deficient EGFR signaling.
Collapse
Affiliation(s)
- Lingli Gong
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Ying Yin
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Cheng Chen
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Quan Wan
- grid.89957.3a0000 0000 9255 8984Department of Neurosurgery, The Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002 China
| | - Die Xia
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Mei Wang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Zhening Pu
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Bo Zhang
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| | - Jian Zou
- grid.89957.3a0000 0000 9255 8984Department of Laboratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China ,grid.89957.3a0000 0000 9255 8984Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
4
|
Ferguson KM, Blin C, Alfazema N, Gangoso E, Pollard SM, Marques-Torrejon MA. Lrig1 regulates the balance between proliferation and quiescence in glioblastoma stem cells. Front Cell Dev Biol 2022; 10:983097. [PMID: 36420140 PMCID: PMC9677454 DOI: 10.3389/fcell.2022.983097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2023] Open
Abstract
Patients with glioblastoma (GBM) face a dismal prognosis. GBMs are driven by glioblastoma stem cells (GSCs) that display a neural stem cell (NSC)-like phenotype. These glioblastoma stem cells are often in a quiescent state that evades current therapies, namely debulking surgery and chemo/radiotherapy. Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated as regulators of growth factor signalling across many tissue stem cells. Lrig1 is highly expressed in gliomas and importantly, polymorphisms have been identified that are risk alleles for patients with GBM, which suggests some functional role in gliomagenesis. We previously reported that Lrig1 is a gatekeeper of quiescence exit in adult mouse neural stem cells, suppressing epidermal growth factor receptor signalling prior to cell cycle re-entry. Here, we perform gain- and loss-of-function studies to understand the function of Lrig1 in glioblastoma stem cells. Using a novel mouse glioblastoma stem cell model, we show that genetic ablation of Lrig1 in cultured GBM stem cells results in higher proliferation and loss of quiescence. In vivo, mice transplanted with glioblastoma stem cells lacking Lrig1 display lower survival compared to Lrig1 WT glioblastoma stem cells, with tumours displaying increased proportions of proliferative cells and reduced quiescent subpopulations. In contrast, Lrig1 overexpression in mouse glioblastoma stem cells results in enhanced quiescence and reduced proliferation, with impaired tumour formation upon orthotopic transplantation. Mechanistically, we find that Lrig1-null cells have a deficiency in BMP signalling responses that may underlie their lack of responsiveness to quiescence cues in vivo. These findings highlight important roles for Lrig1 in controlling responsiveness to both epidermal growth factor receptor and BMPR signalling, and hence the proportions of quiescent and proliferative subpopulations in GBMs.
Collapse
Affiliation(s)
- Kirsty M. Ferguson
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Carla Blin
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Neza Alfazema
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ester Gangoso
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven M. Pollard
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
- Predepartment Unit of Medicine. Jaume I University, Castellon, Spain
| |
Collapse
|
5
|
Wang Z, Liu Y, Xiao Y, Xie Y, Wang R, Zhang Y, Zhou Q, Liu L, Sun S, Xiao H, Zou Y, Yang K, Li X, Zhao M, Hu Y, Liu H. Intelligent Nanoparticles With pH-Sensitive Co-Delivery of Temozolomide and siEGFR to Ameliorate Glioma Therapy. Front Genet 2022; 13:921051. [PMID: 35903366 PMCID: PMC9315344 DOI: 10.3389/fgene.2022.921051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most lethal forms of human cancer, with very few long-term survivors. In addition to surgery, chemotherapy is still an important strategy. Unfortunately, GBM chemotherapy faces two main challenges: first, in GBM, epidermal growth factor receptor (EGFR) overexpression results in chemoresistance; second, temozolomide (TMZ) lacks target specificity, which can lead to a reduction in the concentration and side effects in GBM. Nowadays, with the development of nanomedicine systems for applications in tumor therapies, increasing anticancer efficacy and reducing side effects with multi-drug delivery are huge advantages. In this study, pH-sensitive and GBM-targeting nanovesicle (Tf-PEG-PAE(SS)) was fabricated. The chemotherapy drug (TMZ) and EGFR inhibitor (EGFR-siRNA) were co-encapsulated in the nanocarrier, and their anticancer outcomes were investigated in detail. In vitro experiments have shown that the nanocarrier transports TMZ and EGFR-siRNA efficiently into U87 cells, causing a vigorous apoptotic response by silencing the proliferative EGFR gene and increasing the drug concentration of TMZ simultaneously. An experimental study in mice bearing orthotropic glioma revealed that the accumulated nanocarriers in the tumor site could inhibit the tumor growth and prolong the mice survival remarkably through the intracranial injection of Tf-PEG-PAE(SS)/TMZ@siEGFR. The drug co-delivery system could extend the blood circulation time and offer a new strategy to treat glioblastoma.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuyang Liu
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong Xiao
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yandong Xie
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Ran Wang
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yiding Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Qi Zhou
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Liang Liu
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Shuo Sun
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital with Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Mengjie Zhao, ; Yifang Hu, ; Hongyi Liu,
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Mengjie Zhao, ; Yifang Hu, ; Hongyi Liu,
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
- *Correspondence: Mengjie Zhao, ; Yifang Hu, ; Hongyi Liu,
| |
Collapse
|
6
|
Adham AN, Abdelfatah S, Naqishbandi A, Sugimoto Y, Fleischer E, Efferth T. Transcriptomics, molecular docking, and cross-resistance profiling of nobiletin in cancer cells and synergistic interaction with doxorubicin upon SOX5 transfection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154064. [PMID: 35344715 DOI: 10.1016/j.phymed.2022.154064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nobiletin is a polymethoxylated flavone from citrus fruit peels. Among other bioactivities, it acts antioxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective. Nobiletin exerts profound anticancer activity in vitro and in vivo but the underlying mechanisms are not well understood. PURPOSE The aim was to unravel the multiple modes of action against cancer cells by bioinformatic and transcriptomic techniques and their verification by molecular pharmacological methods. METHODS The in silico methods used were COMPARE analysis of transcriptomic data, signaling pathway analysis, transcription factor binding motif analysis in promoter sequences of target genes, and molecular docking. The in vitro methods used were resazurin assay, isobologram analysis, generation of stably SOX5-tranfected cells, and Western blotting. RESULTS Nobiletin was cytotoxic against a wide range of cell lines from different tumor types, including diverse phenotypes to established anticancer drugs (e.g., P-glycoprotein, ABCB5, p53, EGFR). Cross-resistance profiling with 83 standard anticancer drugs revealed a correlation to antihormonal anticancer drugs, which can be explained by the phytoestrogenic features of nobiletin. Transcriptomic analysis showed that the responsiveness of tumor cells was predictable by their specific mRNA expression profile. Nobiletin bound to the transcription factor SOX5 in silico. SOX5 conferred resistance to the control drug doxorubicin but collateral sensitivity to nobiletin in HEK293 cells transfected with a lentiviral GFP-tagged pLOCORF-SOX5 vector. The combination of nobiletin and doxorubicin synergistically killed HEK293-SOX5 cells in isobologram analyses, implying attractive new treatment options. CONCLUSION Nobiletin represents an interesting candidate for cancer therapy with broad-spectrum activity and multiple modes of action. The identification of novel targets (i.e., SOX5) may allow its use for targeted tumor therapy in individualized treatment protocols.
Collapse
Affiliation(s)
- Aveen N Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Alaadin Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Edmond Fleischer
- Fischer Analytics, Department Fischer Organics, 55413 Weiler, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Palomeras S, Porta R, Vásquez-Dongo C, Bosch-Barrera J, Puig T, Ciurana J. Polycaprolactone Electrospun Scaffolds Produce an Enrichment of Lung Cancer Stem Cells in Sensitive and Resistant EGFRm Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13215320. [PMID: 34771484 PMCID: PMC8582538 DOI: 10.3390/cancers13215320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The culture of lung cancer stem cells (LCSCs) is not possible using traditional flat polystyrene surfaces. The study of these tumor-initiating cells is fundamental due to their key role in the resistance to anticancer therapies, tumor recurrence, and metastasis. Hence, we evaluated the use of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSC population in sensitive and resistant EGFR-mutated lung adenocarcinoma models. Our findings revealed that both cell models seeded on PCL-ES structures showed a higher drug resistance, enhanced levels of several genes and proteins related to epithelial-to-mesenchymal process, stemness, and surface markers, and the activation of the Hedgehog pathway. We also determined that the non-expression of CD133 was associated with a low degree of histological differentiation, disease progression, distant metastasis, and worse overall survival in EGFR-mutated non-small cell lung cancer patients. Therefore, we confirmed PCL-ES scaffolds as a suitable three-dimensional cell culture model for the study of LCSC niche. Abstract The establishment of a three-dimensional (3D) cell culture model for lung cancer stem cells (LCSCs) is needed because the study of these stem cells is unable to be done using flat surfaces. The study of LCSCs is fundamental due to their key role in drug resistance, tumor recurrence, and metastasis. Hence, the purpose of this work is the evaluation of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSCs in sensitive and resistant EGFR-mutated (EGFRm) lung adenocarcinoma cell models. We performed a thermal, physical, and biological characterization of 10% and 15%-PCL-ES structures. Several genes and proteins associated with LCSC features were analyzed by RT-qPCR and Western blot. Vimentin and CD133 tumor expression were evaluated in samples from 36 patients with EGFRm non-small cell lung cancer through immunohistochemistry. Our findings revealed that PC9 and PC9-GR3 models cultured on PCL-ES scaffolds showed higher resistance to osimertinib, upregulation of ABCB1, Vimentin, Snail, Twist, Sox2, Oct-4, and CD166, downregulation of E-cadherin and CD133, and the activation of Hedgehog pathway. Additionally, we determined that the non-expression of CD133 was significantly associated with a low degree of histological differentiation, disease progression, and distant metastasis. To sum up, we confirmed PCL-ES scaffolds as a suitable 3D cell culture model for the study of the LCSC niche.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Marc Rabionet
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Rut Porta
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Medical Oncology Department, Catalan Institute of Oncology, 17007 Girona, Spain;
| | - Carmen Vásquez-Dongo
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Department of Pathology, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | | | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| |
Collapse
|
8
|
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 2021; 1876:188616. [PMID: 34419533 DOI: 10.1016/j.bbcan.2021.188616] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023]
Abstract
Temozolomide (TMZ) is a first-choice alkylating agent inducted as a gold standard therapy for glioblastoma multiforme (GBM) and astrocytoma. A majority of patients do not respond to TMZ during the course of their treatment. Activation of DNA repair pathways is the principal mechanism for this phenomenon that detaches TMZ-induced O-6-methylguanine adducts and restores genomic integrity. Current understanding in the domain of oncology adds several other novel mechanisms of resistance such as the involvement of miRNAs, drug efflux transporters, gap junction's activity, the advent of glioma stem cells as well as upregulation of cell survival autophagy. This review describes a multifaceted account of different mechanisms responsible for the intrinsic and acquired TMZ-resistance. Here, we summarize different strategies that intensify the TMZ effect such as MGMT inhibition, development of novel imidazotetrazine analog, and combination therapy; with an aim to incorporate a successful treatment and increased overall survival in GBM patients.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
9
|
Baricitinib prevents GvHD by increasing Tregs via JAK3 and treats established GvHD by promoting intestinal tissue repair via EGFR. Leukemia 2021; 36:292-295. [PMID: 34304247 DOI: 10.1038/s41375-021-01360-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
|
10
|
Español AJ, Salem A, Di Bari M, Cristofaro I, Sanchez Y, Tata AM, Sales ME. The metronomic combination of paclitaxel with cholinergic agonists inhibits triple negative breast tumor progression. Participation of M2 receptor subtype. PLoS One 2020; 15:e0226450. [PMID: 32911509 PMCID: PMC7482849 DOI: 10.1371/journal.pone.0226450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Triple negative tumors are more aggressive than other breast cancer subtypes and there is a lack of specific therapeutic targets on them. Since muscarinic receptors have been linked to tumor progression, we investigated the effect of metronomic therapy employing a traditional anti-cancer drug, paclitaxel plus muscarinic agonists at low doses on this type of tumor. We observed that MDA-MB231 tumor cells express muscarinic receptors, while they are absent in the non-tumorigenic MCF-10A cell line, which was used as control. The addition of carbachol or arecaidine propargyl ester, a non-selective or a selective subtype 2 muscarinic receptor agonist respectively, plus paclitaxel reduces cell viability involving a down-regulation in the expression of ATP “binding cassette” G2 drug transporter and epidermal growth factor receptor. We also detected an inhibition of tumor cell migration and anti-angiogenic effects produced by those drug combinations in vitro and in vivo (in NUDE mice) respectively. Our findings provide substantial evidence about subtype 2 muscarinic receptors as therapeutic targets for the treatment of triple negative tumors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Administration, Metronomic
- Animals
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Arecoline/administration & dosage
- Arecoline/analogs & derivatives
- Carbachol/administration & dosage
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cholinergic Agonists/administration & dosage
- Down-Regulation/drug effects
- ErbB Receptors/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Paclitaxel/administration & dosage
- RNA, Small Interfering/metabolism
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Triple Negative Breast Neoplasms/blood supply
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/pathology
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Alejandro J. Español
- Center of Pharmacological and Botanical Studies (CEFYBO), CONICET, Buenos Aires, Argentine
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentine
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy
- * E-mail: (AJE); (AMT)
| | - Agustina Salem
- Center of Pharmacological and Botanical Studies (CEFYBO), CONICET, Buenos Aires, Argentine
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentine
| | - María Di Bari
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Ilaria Cristofaro
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Yamila Sanchez
- Center of Pharmacological and Botanical Studies (CEFYBO), CONICET, Buenos Aires, Argentine
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentine
| | - Ada M. Tata
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome, Italy
- Center of Neurobiology Daniel Bovet, Sapienza University of Rome, Rome, Italy
- * E-mail: (AJE); (AMT)
| | - María E. Sales
- Center of Pharmacological and Botanical Studies (CEFYBO), CONICET, Buenos Aires, Argentine
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentine
| |
Collapse
|
11
|
Knockdown of Amphiregulin Triggers Doxorubicin-Induced Autophagic and Apoptotic Death by Regulating Endoplasmic Reticulum Stress in Glioblastoma Cells. J Mol Neurosci 2020; 70:1461-1470. [PMID: 32472393 DOI: 10.1007/s12031-020-01598-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. The present standard treatment for GBM has not been effective; therefore, the prognosis remains dramatically poor and prolonged survival after treatment is still limited. The new therapeutic strategies are urgently needed to improve the treatment efficiency. Doxorubicin (Dox) has been widely used in the treatment of many cancers for decades. In recent years, with the advancement of delivery technology, more and more research indicates that Dox has the opportunity to be used in the treatment of GBM. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor (EGFR), has been reported to have oncogenic effects in many cancer cell types and is implicated in drug resistance. However, the biological function and molecular mechanism of AREG in Dox treatment of GBM are still unclear. Here, we demonstrate that knockdown of AREG can boost Dox-induced endoplasmic reticulum (ER) stress to trigger activation in both autophagy and apoptosis in GBM cells, ultimately leading to cell death. To explore the importance of AREG in the clinic, we used available bioinformatics tools and found AREG is highly expressed in GBM tumor tissues that are associated with poor survival. In addition, we also used antibody array analysis to dissect pathways that are likely to be activated by AREG. Taken together, our results revealed AREG can serve as a potential therapeutic target and a promising biomarker in GBM.
Collapse
|
12
|
Dong M, Xiao Q, Hu J, Cheng F, Zhang P, Zong W, Tang Q, Li X, Mao F, He Y, Yu X, Wan F, Lei T, Guo D, Wang B. Targeting LRIG2 overcomes resistance to EGFR inhibitor in glioblastoma by modulating GAS6/AXL/SRC signaling. Cancer Gene Ther 2020; 27:878-897. [PMID: 31988476 DOI: 10.1038/s41417-020-0163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
Epidermal growth factor receptor (EGFR) gene amplification and mutation occurs most frequently in glioblastoma (GBM). However, EGFR-tyrosine kinase inhibitors (TKIs), including gefitinib, have not yet shown clear clinical benefit and the underlying mechanisms remain largely unexplored. We previously demonstrated that LRIG2 plays a protumorigenic role and functions as a modulator of multiple oncogenic receptor tyrosine kinases (RTKs) in GBM. We therefore hypothesized that LRIG2 might mediate the resistance to EGFR inhibitor through modulating other RTK signaling. In this study, we report that LRIG2 is induced by EGFR inhibitor in gefitinib-treated GBM xenografts or cell lines and promotes resistance to EGFR inhibition by driving cell cycle progression and inhibiting apoptosis in GBM cells. Mechanistically, LRIG2 increases the secretion of growth-arrest specific 6 (GAS6) and stabilizes AXL by preventing its proteasome-mediated degradation, leading to enhancement of the gefitinib-induced activation of AXL and then reactivation of the gefitinib-inhibited SRC. Targeting LRIG2 significantly sensitizes the GBM cells to gefitinib, and inhibition of the downstream GAS6/AXL/SRC signaling abrogates LRIG2-mediated gefitinib resistance in vitro and in vivo. Collectively, our findings uncover a novel mechanism in resistance to EGFR inhibition and provide a potential therapeutic strategy to overcome resistance to EGFR inhibition in GBM.
Collapse
Affiliation(s)
- Minhai Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qiaoying Tang
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xingjiang Yu
- Department of Histology and Embryology, College of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
13
|
Fan X, Bai J, Zhao S, Hu M, Sun Y, Wang B, Ji M, Jin J, Wang X, Hu J, Li Y. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein (BCRP): From library screening to biological evaluation to structure-activity relationship. Toxicol In Vitro 2019; 61:104642. [PMID: 31493543 DOI: 10.1016/j.tiv.2019.104642] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Flavonoids are a group of polyphenols ubiquitously present in vegetables, fruits and herbal products, despite various known pharmacological activities, few researches have been done about the interaction of flavonoids with breast cancer resistance protein (BCRP). The present study was designed to investigate the inhibitory effects of 99 flavonoids on BCRP in vitro and in vivo and to clarify structure-activity relationships of flavonoids with BCRP. Eleven flavonoids, including amentoflavone, apigenin, biochanin A, chrysin, diosimin, genkwanin, hypericin, kaempferol, kaempferide, licochalcone A and naringenin, exhibited significant inhibition (>50%) on BCRP in BCRP-MDCKII cells, which reduced the BCRP-mediated efflux of doxorubicin and temozolomide, accordingly increased their cytotoxicity. In addition, co-administration of mitoxantrone with the 11 flavonoids increased the AUC0-t of mitoxantrone in different extents in rats. Among them, chrysin increased the AUC0-t most significantly, by 81.97%. Molecular docking analysis elucidated the inhibition of flavonoids on BCRP might be associated with Pi-Pi stacked interactions and/or potential Pi-Alkyl interactions, but not conventional hydrogen bonds. The pharmacophore model indicated the aromatic ring B, hydrophobic groups and hydrogen bond acceptors may play critical role in the potency of flavonoids inhibition on BCRP. Thus, our findings would provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans.
Collapse
Affiliation(s)
- Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiaojian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Jiang L, Wang P, Sun YJ, Wu YJ. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:265. [PMID: 31215501 PMCID: PMC6580523 DOI: 10.1186/s13046-019-1251-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
Abstract
Background Discovery and development of novel drugs that are capable of overcoming drug resistance in tumor cells are urgently needed clinically. In this study, we sought to explore whether ivermectin (IVM), a macrolide antiparasitic agent, could overcome the resistance of cancer cells to the therapeutic drugs. Methods We used two solid tumor cell lines (HCT-8 colorectal cancer cells and MCF-7 breast cancer cells) and one hematologic tumor cell line (K562 chronic myeloid leukemia cells), which are resistant to the chemotherapeutic drugs vincristine and adriamycin respectively, and two xenograft mice models, including the solid tumor model in nude mice with the resistant HCT-8 cells and the leukemia model in NOD/SCID mice with the resistant K562 cells to investigate the reversal effect of IVM on the resistance in vitro and in vivo. MTT assay was used to investigate the effect of IVM on cancer cells growth in vitro. Flow cytometry, immunohistochemistry, and immunofluorescence were performed to investigate the reversal effect of IVM in vivo. Western blotting, qPCR, luciferase reporter assay and ChIP assay were used to detect the molecular mechanism of the reversal effect. Octet RED96 system and Co-IP were used to determine the interactions between IVM and EGFR. Results Our results indicated that ivermectin at its very low dose, which did not induce obvious cytotoxicity, drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo. Mechanistically, ivermectin reversed the resistance mainly by reducing the expression of P-glycoprotein (P-gp) via inhibiting the epidermal growth factor receptor (EGFR), not by directly inhibiting P-gp activity. Ivermectin bound with the extracellular domain of EGFR, which inhibited the activation of EGFR and its downstream signaling cascade ERK/Akt/NF-κB. The inhibition of the transcriptional factor NF-κB led to the reduced P-gp transcription. Conclusions These findings demonstrated that ivermectin significantly enhanced the anti-cancer efficacy of chemotherapeutic drugs to tumor cells, especially in the drug-resistant cells. Thus, ivermectin, a FDA-approved antiparasitic drug, could potentially be used in combination with chemotherapeutic agents to treat cancers and in particular, the drug-resistant cancers. Electronic supplementary material The online version of this article (10.1186/s13046-019-1251-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Rd., Chaoyang, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Rd., Chaoyang, Beijing, 100101, China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Rd., Chaoyang, Beijing, 100101, China. .,Department of Veterinary Medicine, Beijing University of Agriculture, Beinonglu Rd, Changping, Beijing, 102206, China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Rd., Chaoyang, Beijing, 100101, China.
| |
Collapse
|
15
|
Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, Zhang S, Zhuge Y, Shang Y, Zou X. Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci 2018; 109:1044-1054. [PMID: 29450946 PMCID: PMC5891193 DOI: 10.1111/cas.13538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/28/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) significantly restricts the clinical efficacy of gastric cancer (GC) chemotherapy, and it is critical to search novel targets to predict and overcome MDR. Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) has been proved to be correlated with drug resistance in several cancers. The present study revealed that LRIG1 was overexpressed in chemosensitive GC tissues and decreased expression of LRIG1 predicted poor survival in GC patients. We observed that upregulation of LRIG1 enhanced chemosensitivity in GC cells. Interestingly, miR-20a, which was overexpressed in GC MDR cell lines and tissues, was identified to regulate LRIG1 expression by directly targeting its 3' untranslated region. We also found that inhibition of miR-20a suppressed GC MDR, and upregulation showed opposite effects. Moreover, we demonstrated that the miR-20a/LRIG1 axis regulated GC cell MDR through epidermal growth factor receptor (EGFR)-mediated PI3K/AKT and MAPK/ERK signaling pathways. Finally, LRIG1 expression in human GC tissues is inversely correlated with miR-20a and EGFR. Taken together, the newly identified miR-20a/LRIG1/EGFR link provides insight into the MDR process of GC, and targeting this axis represents a novel potential therapeutic strategy to block GC chemoresistance.
Collapse
Affiliation(s)
- Lin Zhou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive DiseasesXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Fan Zhou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Zhi'an Jin
- The Second Outpatient Department of Chengdu Army Region AuthorityChengduChina
| | - Di Chen
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive DiseasesXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Pin Wang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Shu Zhang
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Yuzheng Zhuge
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| | - Yulong Shang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive DiseasesXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Xiaoping Zou
- Department of GastroenterologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Clinical Medical Center of Digestive DiseaseNanjingChina
| |
Collapse
|
16
|
Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017; 2017:9673537. [PMID: 29230082 PMCID: PMC5688260 DOI: 10.1155/2017/9673537] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since its discovery, ADAM17, also known as TNFα converting enzyme or TACE, is now known to process over 80 different substrates. Many of these substrates are mediators of cancer and inflammation. The field of ADAM metalloproteinases is at a crossroad with many of the new potential therapeutic agents for ADAM17 advancing into the clinic. Researchers have now developed potential drugs for ADAM17 that are selective and do not have the side effects which were seen in earlier chemical entities that targeted this enzyme. ADAM17 inhibitors have broad therapeutic potential, with properties ranging from tumor immunosurveillance and overcoming drug and radiation resistance in cancer, as treatments for cardiac hypertrophy and inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. This review focuses on substrates and inhibitors identified more recently for ADAM17 and their role in cancer and inflammation.
Collapse
|
17
|
Jin W, Liao X, Lv Y, Pang Z, Wang Y, Li Q, Liao Y, Ye Q, Chen G, Zhao K, Huang L. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis 2017; 8:e2980. [PMID: 28796259 PMCID: PMC5596566 DOI: 10.1038/cddis.2017.378] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/11/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
Abstract
Chemoresistance contributes to cancer relapse and increased mortality in a variety of cancer types, raising a pressing need to better understand the underlying mechanism. MUC1 is abnormally overexpressed in numerous carcinomas and associated with poor prognosis. However, the functional significance of MUC1 in chemoresistance has not been fully elucidated. Here, we showed that MUC1 expression was considerably induced in cells that had acquired chemoresistance at both transcriptional and post-translational levels. Using gain- and loss-of function approaches, we demonstrated a critical role of MUC1 in induction of drug resistance. Through stimulation of EGFR activation and nuclear translocation, MUC1 increased the expression of ATP-binding cassette transporter B1 (ABCB1). Remarkably, targeted suppression of EGFR or ABCB1 by both shRNAs and inhibitors effectively reversed chemoresistance. Moreover, co-administration of the inhibitors of MUC1-EGFR-ABCB1 with paclitaxel significantly blocked not only tumor growth but also relapse in xenograft mouse model. Our data collectively support a model in which MUC1 induces acquired chemotherapy resistance by upregulating ABCB1 in an EGFR-dependent manner, providing a novel molecular basis of using the EGFR inhibitor in MUC1-positive cancers to prevent chemotherapy resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Chromatin Immunoprecipitation
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- HEK293 Cells
- Humans
- Immunoprecipitation
- In Situ Nick-End Labeling
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mucin-1/genetics
- Mucin-1/metabolism
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Liao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Lv
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Pang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuming Wang
- Department of Cardiothoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanfu Li
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Liao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Ye
- Department of Cardiothoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Huang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Yang H, Yao J, Yin J, Wei X. Decreased LRIG1 in Human Ovarian Cancer Cell SKOV3 Upregulates MRP-1 and Contributes to the Chemoresistance of VP16. Cancer Biother Radiopharm 2016; 31:125-32. [PMID: 27183435 DOI: 10.1089/cbr.2015.1970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Hua Yang
- Department of Gynaecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jun Yao
- Department of Gynaecology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jiangpin Yin
- Department of Gynaecology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuan Wei
- Department of Gynaecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|