1
|
Sümer E, Kaynak H. Age-related decline in source and associative memory. Cogn Process 2025; 26:1-13. [PMID: 39325322 DOI: 10.1007/s10339-024-01230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
This review explores the multifaceted nature of age-related decline in source memory and associative memory. The review highlights the potential effects of age-related decline in these types of memory. By integrating insights from behavioral, cognitive, and neuroscientific research, it examines how encoding, retrieval, and neural mechanisms influence this decline. Understanding these processes is critical to alleviate memory decline in older adults. Directing attention to source information during encoding, employing unitization techniques to strengthen memory associations, and utilizing metacognitive strategies to focus on relevant details show promise in enhancing memory retrieval for older adults. However, the review acknowledges limitations in processing resources and executive function, necessitating a nuanced approach to the complexities of age-related decline. In conclusion, this review underscores the importance of understanding the complexities of age-related source and associative memory decline and the potential benefits of specific cognitive strategies. It emphasizes the need for continued research on age-related memory function to improve the quality of life for aging populations.
Collapse
Affiliation(s)
- Erdi Sümer
- Department of Psychology, Çankaya University, Ankara, Turkey
| | - Hande Kaynak
- Department of Psychology, Çankaya University, Central Campus: Eskişehir Yolu 29. km, Yukarıyurtçu Mahallesi Mimar Sinan Caddesi No:4, Ankara, Turkey.
| |
Collapse
|
2
|
Sullivan MA, Fritch HA, Slotnick SD. Spatial memory encoding is associated with the anterior and posterior hippocampus: An fMRI activation likelihood estimation meta-analysis. Hippocampus 2024; 34:575-582. [PMID: 39150234 DOI: 10.1002/hipo.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/15/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
It has been hypothesized that differential processing occurs along the longitudinal (anterior-posterior) axis of the hippocampus. One hypothesis is that spatial memory (during both encoding and retrieval) is associated with the posterior hippocampus. An alternative hypothesis is that memory encoding (either spatial or nonspatial) is associated with the anterior hippocampus and memory retrieval is associated with the posterior hippocampus. Of importance, during spatial memory encoding, the spatial-posterior hypothesis predicts posterior hippocampal involvement, whereas the encoding-retrieval hypothesis predicts anterior hippocampal involvement. To distinguish between these hypotheses, we conducted a coordinate-based fMRI activation likelihood estimation (ALE) meta-analysis of 26 studies (with a total of 435 participants) that reported hippocampal activity during spatial memory encoding and/or spatial memory retrieval. Both spatial memory encoding and spatial memory retrieval produced extensive activity along the longitudinal axis of the hippocampus as well as the entorhinal cortex, the perirhinal cortex, and the parahippocampal cortex. Critically, the contrast of spatial memory encoding and spatial memory retrieval produced activations in both the anterior hippocampus and the posterior hippocampus. That spatial memory encoding produced activity in both the anterior and posterior hippocampus can be taken to reject strict forms of the spatial-posterior hypothesis, which stipulates that all forms of spatial memory produce activity in the posterior hippocampus, and the encoding-retrieval hypothesis, which stipulates that all forms of encoding versus retrieval produce activity in only the anterior hippocampus. Our results indicate that spatial memory encoding can involve the anterior hippocampus and the posterior hippocampus.
Collapse
Affiliation(s)
- Madeline A Sullivan
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Haley A Fritch
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
3
|
Torres-Morales C, Cansino S. Brain representations of space and time in episodic memory: A systematic review and meta-analysis. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1-18. [PMID: 38030912 PMCID: PMC10827973 DOI: 10.3758/s13415-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
All experiences preserved within episodic memory contain information on the space and time of events. The hippocampus is the main brain region involved in processing spatial and temporal information for incorporation within episodic memory representations. However, the other brain regions involved in the encoding and retrieval of spatial and temporal information within episodic memory are unclear, because a systematic review of related studies is lacking and the findings are scattered. The present study was designed to integrate the results of functional magnetic resonance imaging and positron emission tomography studies by means of a systematic review and meta-analysis to provide converging evidence. In particular, we focused on identifying the brain regions involved in the retrieval of spatial and temporal information. We identified a spatial retrieval network consisting of the inferior temporal gyrus, parahippocampal gyrus, superior parietal lobule, angular gyrus, and precuneus. Temporal context retrieval was supported by the dorsolateral prefrontal cortex. Thus, the retrieval of spatial and temporal information is supported by different brain regions, highlighting their different natures within episodic memory.
Collapse
Affiliation(s)
- César Torres-Morales
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
4
|
Poikonen H, Tobler S, Trninić D, Formaz C, Gashaj V, Kapur M. Math on cortex-enhanced delta phase synchrony in math experts during long and complex math demonstrations. Cereb Cortex 2024; 34:bhae025. [PMID: 38365270 PMCID: PMC11461154 DOI: 10.1093/cercor/bhae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Neural oscillations are important for working memory and reasoning and they are modulated during cognitively challenging tasks, like mathematics. Previous work has examined local cortical synchrony on theta (4-8 Hz) and alpha (8-13 Hz) bands over frontal and parietal electrodes during short mathematical tasks when sitting. However, it is unknown whether processing of long and complex math stimuli evokes inter-regional functional connectivity. We recorded cortical activity with EEG while math experts and novices watched long (13-68 seconds) and complex (bachelor-level) math demonstrations when sitting and standing. Fronto-parietal connectivity over the left hemisphere was stronger in math experts than novices reflected by enhanced delta (0.5-4 Hz) phase synchrony in experts. Processing of complex math tasks when standing extended the difference to right hemisphere, suggesting that other cognitive processes, such as maintenance of body balance when standing, may interfere with novice's internal concentration required during complex math tasks more than in experts. There were no groups differences in phase synchrony over theta or alpha frequencies. These results suggest that low-frequency oscillations modulate inter-regional connectivity during long and complex mathematical cognition and demonstrate one way in which the brain functions of math experts differ from those of novices: through enhanced fronto-parietal functional connectivity.
Collapse
Affiliation(s)
- Hanna Poikonen
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Samuel Tobler
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Dragan Trninić
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Cléa Formaz
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Venera Gashaj
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Department of Psychology, University of Tuebingen, Tuebingen 72076, Germany
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| |
Collapse
|
5
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Folville A, Bahri MA, Delhaye E, Salmon E, Bastin C. Shared vivid remembering: age-related differences in across-participants similarity of neural representations during encoding and retrieval. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:526-551. [PMID: 35168499 DOI: 10.1080/13825585.2022.2036683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Recent advances in multivariate neuroimaging analyses have made possible the examination of the similarity of the neural patterns of activations measured across participants, but it has not been investigated yet whether such measure is age-sensitive. Here, in the scanner, young and older participants viewed scene pictures associated with labels. At test, participants were presented with the labels and were asked to recollect the associated picture. We used Pattern Similarity Analyses by which we compared patterns of neural activation during the encoding or the remembering of each picture of one participant with the averaged pattern of activation across the remaining participants. Results revealed that across-participants neural similarity was higher in young than in older adults in distributed occipital, temporal and parietal areas during encoding and retrieval. These findings demonstrate that an age-related reduction in specificity of neural activation is also evident when the similarity of neural representations is examined across participants.
Collapse
Affiliation(s)
- Adrien Folville
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | | | - Emma Delhaye
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
- Faculdade de Psicologia, CICPSI, Universidade de Lisboa, Lisbon, Portugal
| | - Eric Salmon
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
- Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Corbett B, Duarte A. How Proactive Interference during New Associative Learning Impacts General and Specific Memory in Young and Old. J Cogn Neurosci 2020; 32:1607-1623. [PMID: 32427067 DOI: 10.1162/jocn_a_01582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Some prior research has found that older adults are more susceptible to proactive interference than young adults. The current study investigated whether age-related deficits in pFC-mediated cognitive control processes that act to detect and resolve interference underlie increased susceptibility to proactive interference in an associative memory task. Young and older adults were scanned while tasked with remembering which associate (face or scene) objects were paired with most recently during study, under conditions of high, low, or no proactive interference. After scanning, participants' memory was tested for varying levels of episodic detail about the pairings (i.e., target category vs. specific target category vs. specific target associate). Young and older adults were similarly susceptible to proactive interference. Memory for both the general target category and the specific target associate worsened as the level of proactive interference increased, with no robust age differences. For both young and older adults, the left ventrolateral pFC, which has been indicated in controlled retrieval of goal-relevant conceptual representations, was sensitive to increasing levels of interference during encoding but was insensitive to associative memory accuracy. Consistent with the Compensation-Related Utilization of Neural Circuits Hypothesis model of cognitive aging, the ventromedial pFC, which is involved in the monitoring of internally generated information, was recruited more by older than young adults to support the successful retrieval of target-object pairs at lower levels of proactive interference. Collectively, these results suggest that some older adults are able to engage in the cognitive control processes necessary to resolve proactive interference to the same extent as young adults.
Collapse
|
8
|
Folville A, Bahri MA, Delhaye E, Salmon E, D’Argembeau A, Bastin C. Age-related differences in the neural correlates of vivid remembering. Neuroimage 2020; 206:116336. [DOI: 10.1016/j.neuroimage.2019.116336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
|
9
|
Antón-Méndez I, Talk A, Johnston S. Gaze direction reveals implicit item and source memory in older adults. PLoS One 2019; 14:e0226018. [PMID: 31805158 PMCID: PMC6894845 DOI: 10.1371/journal.pone.0226018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/19/2019] [Indexed: 12/02/2022] Open
Abstract
This study looked at eye movements in relation to source memory in older adults. Participants first studied images of common objects appearing in different quadrants of a screen. After a delay, they were shown cues one at a time presented in all four quadrants. Participants stated whether or not the cue had been seen before and in which location. Participants also rated level of confidence in their responses. In trials where participants either claimed they have not seen a previously presented cue or placed it in an incorrect location, they looked significantly more at the correct quadrant. The proportion of time looking at the correct quadrants during incorrect responses was not related to confidence ratings. These results suggest that eye gaze during the memory task does not reflect memory retrieval below the threshold of verbal report. They instead point to an implicit form of source memory in humans that is accessible to eye movements but not to verbal responses.
Collapse
Affiliation(s)
- Inés Antón-Méndez
- Discipline of Linguistics, School of Humanities, Arts and Social Sciences, University of New England, Armidale, Australia
- * E-mail: (IAM); (AT)
| | - Andrew Talk
- School of Psychology, University of New England, Armidale, Australia
- * E-mail: (IAM); (AT)
| | - Simone Johnston
- School of Psychology, University of New England, Armidale, Australia
| |
Collapse
|
10
|
Subramaniapillai S, Rajagopal S, Elshiekh A, Pasvanis S, Ankudowich E, Rajah MN. Sex Differences in the Neural Correlates of Spatial Context Memory Decline in Healthy Aging. J Cogn Neurosci 2019; 31:1895-1916. [DOI: 10.1162/jocn_a_01455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aging is associated with episodic memory decline and alterations in memory-related brain function. However, it remains unclear if age-related memory decline is associated with similar patterns of brain aging in women and men. In the current task fMRI study, we tested the hypothesis that there are sex differences in the effect of age and memory performance on brain activity during episodic encoding and retrieval of face–location associations (spatial context memory). Forty-one women and 41 men between the ages of 21 and 76 years participated in this study. Between-group multivariate partial least squares analysis of the fMRI data was conducted to directly test for sex differences and similarities in age-related and performance-related patterns of brain activity. Our behavioral analysis indicated no significant sex differences in retrieval accuracy on the fMRI tasks. In relation to performance effects, we observed similarities and differences in how retrieval accuracy related to brain activity in women and men. Both sexes activated dorsal and lateral PFC, inferior parietal cortex, and left parahippocampal gyrus at encoding, and this supported subsequent memory performance. However, there were sex differences in retrieval activity in these same regions and in lateral occipital-temporal and ventrolateral PFC. In relation to age effects, we observed sex differences in the effect of age on memory-related activity within PFC, inferior parietal cortex, parahippocampal gyrus, and lateral occipital-temporal cortices. Overall, our findings suggest that the neural correlates of age-related spatial context memory decline differ in women compared with men.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Natasha Rajah
- McGill University
- Brain Imaging Centre, Douglas Institute Research Centre, Verdun, QC, Canada
| |
Collapse
|
11
|
Langnes E, Vidal-Piñeiro D, Sneve MH, Amlien IK, Walhovd KB, Fjell AM. Development and Decline of the Hippocampal Long-Axis Specialization and Differentiation During Encoding and Retrieval of Episodic Memories. Cereb Cortex 2018; 29:3398-3414. [DOI: 10.1093/cercor/bhy209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 01/28/2023] Open
Abstract
Abstract
Change in hippocampal function is a major factor in life span development and decline of episodic memory. Evidence indicates a long-axis specialization where anterior hippocampus is more engaged during encoding than during retrieval, and posterior more engaged during retrieval than during encoding. We tested the life span trajectory of hippocampal long-axis episodic memory-related activity and functional connectivity (FC) in 496 participants (6.8–80.8 years) encoding and retrieving associative memories. We found evidence for a long-axis encoding–retrieval specialization that declined linearly during development and aging, eventually vanishing in the older adults. This was mainly driven by age effects on retrieval, which was associated with gradually lower activity from childhood to adulthood, followed by positive age relationships until 70 years. This pattern of age effects characterized task engagement regardless of memory success or failure. Especially for retrieval, children engaged posterior hippocampus more than anterior, while anterior was relatively more activated already in teenagers. Significant intrahippocampal connectivity was found during task, which declined with age. The results suggest that hippocampal long-axis differentiation and communication during episodic memory tasks develop rapidly during childhood, are different in older compared with younger adults, and that the age effects are related to task engagement, not the successful retrieval of episodic memories specifically.
Collapse
Affiliation(s)
- Espen Langnes
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Talk A, Antón-Méndez I, Pennefather B. Graded expression of source memory revealed by analysis of gaze direction. PLoS One 2017; 12:e0188727. [PMID: 29176901 PMCID: PMC5703523 DOI: 10.1371/journal.pone.0188727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
During source memory studies, knowledge of some detail about the context of a previously experienced item or event is tested. Here, participants attended to different objects presented at different quadrants on a screen. In a later test phase, a single object was presented in all four quadrants, and participants verbally reported whether the object was new or previously seen (item recognition), and if it was previously seen, they indicated the original screen location (source memory). We combined this test with eye-tracking to determine whether attention to an object during encoding would correlate with later recognition of the object and memory of its source location, and whether eye movements at test can reveal attention to the correct source location in the absence of correct explicit verbal responses. The amount of time spent looking at an object during encoding was not related to later object recognition or source recollection. However, we found that eye movements at test reveal retention of source information about an object in the absence of accurate retrieval of source information as assessed by verbal response. When participants correctly recognized an object but incorrectly indicated the source information, significantly more time was spent looking at the correct source location than to incorrect, non-selected locations. Moreover, when participants correctly recognized an object but said they could not remember the source information, significantly more time was spent looking at the correct source location. These results are consistent with the hypothesis that eye movements are sensitive to attention or other graded mental processes which can underlie the retrieval of source memories that can then be expressed verbally in a thresholded manner.
Collapse
Affiliation(s)
- Andrew Talk
- Discipline of Psychology, School of Behavioural, Cognitive, and Social Sciences, University of New England, Armidale, New South Wales, Australia
- * E-mail: (AT); (IAM)
| | - Inés Antón-Méndez
- Discipline of Linguistics, School of Behavioural, Cognitive, and Social Sciences, University of New England, Armidale, New South Wales, Australia
- * E-mail: (AT); (IAM)
| | - Bronte Pennefather
- Discipline of Psychology, School of Behavioural, Cognitive, and Social Sciences, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
13
|
Vidal-Piñeiro D, Sneve MH, Storsve AB, Roe JM, Walhovd KB, Fjell AM. Neural correlates of durable memories across the adult lifespan: brain activity at encoding and retrieval. Neurobiol Aging 2017; 60:20-33. [PMID: 28917664 DOI: 10.1016/j.neurobiolaging.2017.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023]
Abstract
Age-related effects on brain activity during encoding and retrieval of episodic memories are well documented. However, research typically tests memory only once, shortly after encoding. Retaining information over extended periods is critical, and there are reasons to expect age-related effects on the neural correlates of durable memories. Here, we tested whether age was associated with the activity elicited by durable memories. One hundred forty-three participants (22-78 years) underwent an episodic memory experiment where item-context relationships were encoded and tested twice. Participants were scanned during encoding and the first test. Memories retained after 90 minutes but later forgotten were classified as transient, whereas memories retained after 5 weeks were classified as durable. Durable memories were associated with greater encoding activity in inferior lateral parietal and posteromedial regions and greater retrieval activity in frontal and insular regions. Older adults exhibited lower posteromedial activity during encoding and higher frontal activity during retrieval, possibly reflecting greater involvement of control processes. This demonstrates that long-lasting memories are supported by specific patterns of cortical activity that are related to age.
Collapse
Affiliation(s)
- Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Andreas B Storsve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Cansino S, Trejo-Morales P, Estrada-Manilla C, Pasaye-Alcaraz EH, Aguilar-Castañeda E, Salgado-Lujambio P, Sosa-Ortiz AL. Effective connectivity during successful and unsuccessful recollection in young and old adults. Neuropsychologia 2017; 103:168-182. [DOI: 10.1016/j.neuropsychologia.2017.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/27/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
|
15
|
Meusel LA, Grady CL, Ebert PE, Anderson ND. Brain–behavior relationships in source memory: Effects of age and memory ability. Cortex 2017; 91:221-233. [DOI: 10.1016/j.cortex.2016.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
|
16
|
Nordin K, Herlitz A, Larsson EM, Söderlund H. Overlapping effects of age on associative memory and the anterior hippocampus from middle to older age. Behav Brain Res 2017; 317:350-359. [DOI: 10.1016/j.bbr.2016.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
|
17
|
Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention. Brain Sci 2016; 6:brainsci6040063. [PMID: 27999366 PMCID: PMC5187577 DOI: 10.3390/brainsci6040063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.
Collapse
|
18
|
Dong G, Wang Y, Potenza MN. The activation of the caudate is associated with correct recollections in a reward-based recollection task. Hum Brain Mapp 2016; 37:3999-4005. [PMID: 27329532 PMCID: PMC6867516 DOI: 10.1002/hbm.23290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/16/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Although specific brain regions have been implicated in long-term memory processes, the brain function responsible for correctly recollecting information remains incompletely understood. This study used a remember-recollection-recognition task to explore brain activities specifically associated with correct recollection. Seventy-eight subjects were first asked to remember 40 items and recollect them in the scanner. Comparison of correctly recollected trials to incorrectly recollected trials (when participants mistakenly believed they had recollected information correctly) identified greater activation of the caudate bilaterally. The involvement of caudate activation appears important in recollecting information correctly. Potential explanations and implications are discussed. Hum Brain Mapp 37:3999-4005, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guangheng Dong
- Department of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China.
| | - Yifan Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Marc N Potenza
- Departments of Psychiatry and Neurobiology, Child Study Center, CASAColumbia, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
19
|
Neuropsychology of aging, past, present and future: Contributions of Morris Moscovitch. Neuropsychologia 2016; 90:117-24. [PMID: 27321587 DOI: 10.1016/j.neuropsychologia.2016.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022]
Abstract
In this review we provide a broad overview of major trends in the cognitive neuroscience of aging and illustrate their roots in the pioneering ideas and discoveries of Morris Moscovitch and his close collaborators, especially Gordon Winocur. These trends include an on-going focus on the specific and dissociable contributions of medial temporal and frontal lobe processes to cognitive aging, especially in the memory domain, the role of individual variability stemming from different patterns of underlying neural decline, the possibility of compensatory neural and cognitive influences that alter the expression of neurobiological aging, and the investigation of lifestyle and psychosocial factors that affect plasticity and may contribute to the rate and level of neurocognitive decline. These prescient ideas, evident in the early work of Moscovitch and Winocur, continue to drive on-going research efforts in the cognitive neuroscience of aging.
Collapse
|
20
|
Ankudowich E, Pasvanis S, Rajah MN. Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan. Neuroimage 2016; 139:103-113. [PMID: 27311641 DOI: 10.1016/j.neuroimage.2016.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/25/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022] Open
Abstract
Age-related deficits in context memory may arise from neural changes underlying both encoding and retrieval of context information. Although age-related functional changes in the brain regions supporting context memory begin at midlife, little is known about the functional changes with age that support context memory encoding and retrieval across the adult lifespan. We investigated how age-related functional changes support context memory across the adult lifespan by assessing linear changes with age during successful context encoding and retrieval. Using functional magnetic resonance imaging (fMRI), we compared young, middle-aged and older adults during both encoding and retrieval of spatial and temporal details of faces. Multivariate behavioral partial least squares (B-PLS) analysis of fMRI data identified a pattern of whole-brain activity that correlated with a linear age term and a pattern of whole-brain activity that was associated with an age-by-memory phase (encoding vs. retrieval) interaction. Further investigation of this latter effect identified three main findings: 1) reduced phase-related modulation in bilateral fusiform gyrus, left superior/anterior frontal gyrus and right inferior frontal gyrus that started at midlife and continued to older age, 2) reduced phase-related modulation in bilateral inferior parietal lobule that occurred only in older age, and 3) changes in phase-related modulation in older but not younger adults in left middle frontal gyrus and bilateral parahippocampal gyrus that was indicative of age-related over-recruitment. We conclude that age-related reductions in context memory arise in midlife and are related to changes in perceptual recollection and changes in fronto-parietal retrieval monitoring.
Collapse
Affiliation(s)
- E Ankudowich
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Canada; Brain Imaging Centre, Douglas Mental Health University Institute, Canada
| | - S Pasvanis
- Brain Imaging Centre, Douglas Mental Health University Institute, Canada
| | - M N Rajah
- Brain Imaging Centre, Douglas Mental Health University Institute, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Canada.
| |
Collapse
|
21
|
The neural correlates of recollection and retrieval monitoring: Relationships with age and recollection performance. Neuroimage 2016; 138:164-175. [PMID: 27155127 DOI: 10.1016/j.neuroimage.2016.04.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
Abstract
The relationships between age, retrieval-related neural activity, and episodic memory performance were investigated in samples of young (18-29yrs), middle-aged (43-55yrs) and older (63-76yrs) healthy adults. Participants underwent fMRI scanning during an associative recognition test that followed a study task performed on visually presented word pairs. Test items comprised pairs of intact (studied pairs), rearranged (items studied on different trials) and new words. fMRI recollection effects were operationalized as greater activity for studied pairs correctly endorsed as intact than for pairs incorrectly endorsed as rearranged. The reverse contrast was employed to identify retrieval monitoring effects. Robust recollection effects were identified in the core recollection network, comprising the hippocampus, along with parahippocampal and posterior cingulate cortex, left angular gyrus and medial prefrontal cortex. Retrieval monitoring effects were identified in the anterior cingulate and right dorsolateral prefrontal cortex. Neither recollection effects within the core network, nor the monitoring effects differed significantly across the age groups after controlling for individual differences in associative recognition performance. Whole brain analyses did however identify three clusters outside of these regions where recollection effects were greater in the young than in the other age groups. Across-participant regression analyses indicated that the magnitude of hippocampal and medial prefrontal cortex recollection effects, and both of the prefrontal monitoring effects, correlated significantly with memory performance. None of these correlations were moderated by age. The findings suggest that the relationships between memory performance and functional activity in regions consistently implicated in successful recollection and retrieval monitoring are stable across much of the healthy adult lifespan.
Collapse
|