1
|
Delibaş Kati Ş, Palaz EA, Güneş Gencer Y, Hekim HH, Temel Aksu N, Yaman A, Toraman NF. The effect of hemispheric lesion location on trunk control. Medicine (Baltimore) 2024; 103:e38589. [PMID: 38941400 PMCID: PMC11466085 DOI: 10.1097/md.0000000000038589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Trunk control is the basic component of postural control, and achieving trunk control is a complex process that can be achieved by dynamically building and maintaining neuromuscular function. Lateropulsion, which is also defined as the body falling to one side, is considered an important condition that is frequently encountered after stroke and affects trunk control. It is known that there are differences in the regulation of postural control and trunk control according to hemispheric localization. We had a very specific group of patients and tried to find out the outcomes prospectively in this study. METHODS The patients were divided into 2 groups those with right hemisphere lesions (Group 1) and those with left hemisphere lesions (Group 2). Comorbidity and cognitive function were evaluated using the Charlson Comorbidity Index (CMI) and Standardized Mini-Mental State Test (SMMSE). Activities of daily living were evaluated using the Turkish version of the Modified Barthel Index (MBI). The Stroke Rehabilitation Assessment of Movement Instrument (STREAM) test was used to assess trunk control and the Brunnstrom (BS) test was used to assess motor functions. RESULTS There was a significant difference between Groups 1 and 2 in terms of STREAM in lower extremity scores were higher in Group 2 (P < .05). The number of patients in BS lower extremity Stages IV-VI was higher in Group 1 and Group 2 (P < .05). It was determined that upper extremity, lower extremity and Total STREAM scores and BS Hand stage in Group 2 were significantly higher than Group 1 in patients with total middle cerebral artery (MCA) affected(P < .05). CONCLUSION It was determined that trunk control was more affected in patients with right hemispheric lesions. Additionally, trunk control is significantly affected in patients with total MCA lesions.
Collapse
Affiliation(s)
- Şennur Delibaş Kati
- Department of Neurology, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| | - Elif Ayşen Palaz
- Private Artrolife Clinic, Physical Medicine and Rehabilitation, Antalya, Türkiye
| | - Yağmur Güneş Gencer
- Department of Gerontology, Akdeniz University, Faculty of Health Sciences, Antalya, Türkiye
| | - Hanife Hale Hekim
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| | - Neriman Temel Aksu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Akdeniz University, Antalya, Türkiye
| | - Aylin Yaman
- Department of Neurology, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| | - Naciye Füsun Toraman
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Antalya Health Research Center, Antalya, Türkiye
| |
Collapse
|
2
|
Christman SD, Prichard EC. Historical changes in everyday human lifestyles and their effects on hemispheric activation: Speculations on McGilchrist's The Master and His Emissary. Laterality 2024; 29:169-183. [PMID: 38408188 DOI: 10.1080/1357650x.2024.2315854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
McGilchrist [McGilchrist, I. (2009). The master and His emissary: The divided brain and the making of the modern world. Yale University Press] argued that Western society has undergone a population-level shift from greater right hemisphere influence on cognition to increasingly greater left hemisphere influence over the past few centuries. Four historical lifestyle changes that replaced behaviours associated with right hemisphere activation with behaviours associated with left hemisphere activation may be responsible: (i) shifts from standing to sitting, (ii) from being outdoors to indoors, (iii) from communal to solitary activities, and (iv) from analogue/concrete to holistic/abstract representations.
Collapse
Affiliation(s)
| | - Eric C Prichard
- Department of Psychology, University of Arkansas, Monticello, AR, USA
| |
Collapse
|
3
|
Bertrand-Charette M, Perron MP, da Silva RA, Beaulieu LD. Vibration-induced postural reactions: a scoping review on parameters and populations studied. Front Hum Neurosci 2024; 17:1307639. [PMID: 38234593 PMCID: PMC10791994 DOI: 10.3389/fnhum.2023.1307639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Objective Mechanical vibration is an effective way for externally activating Ia primary endings of the muscle spindles and skin mechanoreceptors. Despite its popularity in proprioception and postural control studies, there is still no review covering the wide variety of vibration parameters or locations used in studies. The main purpose of this scoping review was thus to give an overview of general vibration parameters and to identify, if available, the rationale for justifying methodological choices concerning vibration parameters. Methods Three databases (Pubmed, CINHAL, and SPORTDiscus) were searched from inception to July 2022. Included articles were to focus on the study of muscle spindles and skin mechanoreceptors vibration in humans and assess postural control. Following inclusion, data regarding demographic information, populations, vibration parameters and rationale were extracted and summarized. Results One hundred forty-seven articles were included, mostly targeting lower extremities (n = 137) and adults (n = 126). The parameters used varied widely but were most often around 80 Hz, at an amplitude of 1 mm for 10-20 s. Regarding rationales, nearly 50% of the studies did not include any, whereas those including one mainly cited the same two studies, without elaborating specifically on the parameter's choice. Conclusion This scoping review provided a comprehensive description of the population recruited and parameters used for vibration protocols in current studies with humans. Despite many studies, there remain important gaps of knowledge that needs to be filled, especially for vibration amplitude and duration parameters in various populations.
Collapse
Affiliation(s)
- Michaël Bertrand-Charette
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| | - Marie-Pier Perron
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| | - Rubens A. da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
- Centre Intégré de Santé et Services Sociaux du Saguenay—Lac-Saint-Jean (CIUSSS SLSJ), Specialized Geriatrics Services–La Baie Hospital, Saguenay, QC, Canada
| | - Louis-David Beaulieu
- BioNR Research Lab, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Département des Sciences de la Santé, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi (UQAC), Saguenay, QC, Canada
| |
Collapse
|
4
|
Bruyneel AV, Reinmann A, Sordet C, Venturelli P, Feldmann I, Guyen E. Reliability and validity of the trunk position sense and modified functional reach tests in individuals after stroke. Physiother Theory Pract 2024; 40:118-127. [PMID: 35850603 DOI: 10.1080/09593985.2022.2101407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
The psychometric qualities of the proprioception and dynamic trunk control tests have rarely been studied in individuals after stroke. OBJECTIVE To investigate the reliability and validity of the Trunk Position Sense Test (TPS) and Modified Functional Reach Test (MFRT) in persons after stroke. METHODS Thirty-two participants were included. The TPS and MFRT were assessed by two physiotherapists during a first session. After resting, a second session was conducted. The intraclass correlation coefficient (ICC) was calculated to assess the test-retest (ICC3,k) and inter-rater reliability (ICC2,k). Pearson correlations coefficients were calculated between TPS/MFRT performances and clinical tests (trunk strength, Timed Up and Go and Balance Assessment in Sitting and Standing Positions - BASSP). RESULTS The TPS inter-rater reliability was good for vertical error (ICC = 0.75 [0.50-0.88]) while it was moderate for horizontal error (ICC = 0.48 [0.10-0.75]) as well as for test-retest reliability (0.39 ≤ ICC ≤ 0.59). As for the MFRT, inter-rater (0.76 ≤ ICC ≤ 0.90) and test-retest reliability (0.71 ≤ ICC ≤ 0.91) were good to excellent for anterior, paretic et non-paretic displacements. Horizontal errors for the TPS (-0.26 ≤ r ≤ -0.36) and anterior MFRT (0.38 ≤ r ≤ 0.64) values correlated moderately with trunk strength. CONCLUSION The MFRT is a reliable test for persons after stroke with trunk control impairments. The TPS does not appear to be relevant for post-stroke individuals. This can be explained by the fact that its procedure is not easily applied for individuals after stroke - who may have significant motor and cognitive impairments.
Collapse
Affiliation(s)
- Anne-Violette Bruyneel
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Aline Reinmann
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Caroline Sordet
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Pablo Venturelli
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Irmgard Feldmann
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Emmanuel Guyen
- Neuro-rehabilitation department, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| |
Collapse
|
5
|
Teixeira Alves E, Rinaldin CD, Hembecker PK, Manffra EF, Nadeau S, Nogueira Neto GN, Mesure S. Postural Responses to Achilles Tendon Vibration Depend on Feet Positioning. Percept Mot Skills 2023; 130:2327-2342. [PMID: 37654231 DOI: 10.1177/00315125231198161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Mechanical vibration of the Achilles tendon is widely used to analyze the role of proprioception in postural control. The response to this tendon vibration (TV) has been analyzed in the upright posture, but the feet positions have varied in past research. Moreover, investigators have addressed only temporal parameters of the center of pressure (CoP). We investigated the effect of TV on both temporal and spectral characteristics of the CoP motion. Eighteen healthy young adults, stood barefoot, with one foot on each side of a dual platform, wearing glasses with opaque lenses. We applied 20 seconds of Achilles TV (bilaterally with inertial vibrators at a frequency of 80 Hz and an amplitude of .2-.5 mm). We analyzed CoP signals pre-vibration (PRE,4-seconds), during vibration (VIB,20 seconds), and after vibration cessation (REC,20 seconds). We repeated this protocol in natural and standardized positions (15° feet angular opening). For determining CoP amplitude and velocity, we divided the 20 seconds into five phases of four seconds each and calculated spectral parameters for the whole 20-second signals. There was an adaptation process in the speed of the CoP mediolateral (p < .01) and anteroposterior (p < .01) and in the displacement of the CoP anteroposterior (p < .01), with higher values in the VIB condition. Velocity and displacement decreased progressively in the REC condition. Median and peak frequencies were higher in the VIB condition when compared to the REC condition, but only in the mediolateral direction (p = .01). The standardized foot position led to increased speed in CoP mediolateral, anteroposterior, and mediolateral displacement (p < .01). CoP spectral characteristics were not affected by foot positioning. We concluded that adaptation of CoP motion in the presence of TV and after its cessation are observable both in time and frequency domains. Feet positioning influenced CoP motion in the presence of TV and after its cessation but it did not affect its spectral characteristics.
Collapse
Affiliation(s)
- E Teixeira Alves
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná (PPGTS/PUCPR), Paraná, Brazil
| | - C D Rinaldin
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná (PPGTS/PUCPR), Paraná, Brazil
| | - P K Hembecker
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná (PPGTS/PUCPR), Paraná, Brazil
| | - E F Manffra
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná (PPGTS/PUCPR), Paraná, Brazil
| | - S Nadeau
- École de Réadaptation, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - G N Nogueira Neto
- Graduate Program in Health Technology, Pontifícia Universidade Católica do Paraná (PPGTS/PUCPR), Paraná, Brazil
| | - S Mesure
- ISM Institut des Sciences du Mouvement E.J. MAREY, Faculté des Sciences du Sport, Aix-Marseille Université, Marseille, France
| |
Collapse
|
6
|
Roytman S, Paalanen R, Griggs A, David S, Pongmala C, Koeppe RA, Scott PJH, Marusic U, Kanel P, Bohnen NI. Cholinergic system correlates of postural control changes in Parkinson's disease freezers. Brain 2023; 146:3243-3257. [PMID: 37086478 PMCID: PMC10393403 DOI: 10.1093/brain/awad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
Postural instability and freezing of gait are the most debilitating dopamine-refractory motor impairments in advanced stages of Parkinson's disease because of increased risk of falls and poorer quality of life. Recent findings suggest an inability to efficaciously utilize vestibular information during static posturography among people with Parkinson's disease who exhibit freezing of gait, with associated changes in cholinergic system integrity as assessed by vesicular acetylcholine transporter PET. There is a lack of adequate understanding of how postural control varies as a function of available sensory information in patients with Parkinson's disease with freezing of gait. The goal of this cross-sectional study was to examine cerebral cholinergic system changes that associate with inter-sensory postural control processing features as assessed by dynamic computerized posturography and acetylcholinesterase PET. Seventy-five participants with Parkinson's disease, 16 of whom exhibited freezing of gait, underwent computerized posturography on the NeuroCom© Equitest sensory organization test platform, striatal dopamine, and acetylcholinesterase PET scanning. Findings demonstrated that patients with Parkinson's disease with freezing of gait have greater difficulty maintaining balance in the absence of reliable proprioceptive cues as compared to those without freezing of gait [β = 0.28 (0.021, 0.54), P = 0.034], an effect that was independent of disease severity [β = 0.16 (0.062, 0.26), P < 0.01] and age [β = 0.092 (-0.005, 0.19), P = 0.062]. Exploratory voxel-based analysis revealed an association between postural control and right hemispheric cholinergic network related to visual-vestibular integration and self-motion perception. High anti-cholinergic burden predicted postural control impairment in a manner dependent on right hemispheric cortical cholinergic integrity [β = 0.34 (0.065, 0.61), P < 0.01]. Our findings advance the perspective that cortical cholinergic system might play a role in supporting postural control after nigro-striatal dopaminergic losses in Parkinson's disease. Failure of cortex-dependent visual-vestibular integration may impair detection of postural instability in absence of reliable proprioceptive cues. Better understanding of how the cholinergic system plays a role in this process may augur novel treatments and therapeutic interventions to ameliorate debilitating symptoms in patients with advanced Parkinson's disease.
Collapse
Affiliation(s)
- Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca Paalanen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis Griggs
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon David
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chatkaew Pongmala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Uros Marusic
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute for Kinesiology Research, Science and Research Centre Koper, 6000 Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
7
|
Négyesi J, Petró B, Salman DN, Khandoker A, Katona P, Wang Z, Almaazmi AISQ, Hortobágyi T, Váczi M, Rácz K, Pálya Z, Grand L, Kiss RM, Nagatomi R. Biosignal processing methods to explore the effects of side-dominance on patterns of bi- and unilateral standing stability in healthy young adults. Front Physiol 2022; 13:965702. [PMID: 36187771 PMCID: PMC9523607 DOI: 10.3389/fphys.2022.965702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
We examined the effects of side-dominance on the laterality of standing stability using ground reaction force, motion capture (MoCap), and EMG data in healthy young adults. We recruited participants with strong right (n = 15) and left (n = 9) hand and leg dominance (side-dominance). They stood on one or two legs on a pair of synchronized force platforms for 50 s with 60 s rest between three randomized stance trials. In addition to 23 CoP-related variables, we also computed six MoCap variables representing each lower-limb joint motion time series. Moreover, 39 time- and frequency-domain features of EMG data from five muscles in three muscle groups were analyzed. Data from the multitude of biosignals converged and revealed concordant patterns: no differences occurred between left- and right-side dominant participants in kinetic, kinematic, or EMG outcomes during bipedal stance. Regarding single leg stance, larger knee but lower ankle joint kinematic values appeared in left vs right-sided participants during non-dominant stance. Left-vs right-sided participants also had lower medial gastrocnemius EMG activation during non-dominant stance. While right-side dominant participants always produced larger values for kinematic data of ankle joint and medial gastrocnemius EMG activation during non-dominant vs dominant unilateral stance, this pattern was the opposite for left-sided participants, showing larger values when standing on their dominant vs non-dominant leg, i.e., participants had a more stable balance when standing on their right leg. Our results suggest that side-dominance affects biomechanical and neuromuscular control strategies during unilateral standing.
Collapse
Affiliation(s)
- János Négyesi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Bálint Petró
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Diane Nabil Salman
- Biomedical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahsan Khandoker
- Biomedical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Péter Katona
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Ziheng Wang
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | | | - Tibor Hortobágyi
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Márk Váczi
- Department of Sport Biology, Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - Kristóf Rácz
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsófia Pálya
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Grand
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Rita M. Kiss
- Faculty of Mechanical Engineering, Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Reinmann A, Bruyneel AV, Gligorov J, Mesure S, Combescure C, Koessler T, Bodmer A. Influence of chemotherapy on postural control and quality of life in women with gynaecological cancer: a protocol of a prospective observational study. BMJ Open 2022; 12:e061664. [PMID: 36691184 PMCID: PMC9454005 DOI: 10.1136/bmjopen-2022-061664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/31/2022] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy is a frequent side effect of some chemotherapies that can cause postural control disorders and has a serious impact on quality of life (QoL). An enhanced understanding of postural control dysfunction could help build a systematic and accurate assessment as well as specific exercises to limit the impact on QoL. This study aims to assess the influence of chemotherapy on postural control and the QoL for women with gynaecological cancer. METHODS AND ANALYSIS This prospective observational study will include 37 participants with cancer treated using neurotoxic chemotherapy. Their postural control in various conditions (rigid and foam surfaces, eyes open and closed, with and without tendon vibration, and dual tasks), limits of stability, QoL and modified Total Neuropathy Score will be assessed. A linear mixed model will compare postural control pre-chemotherapy and post-chemotherapy. ETHICS AND DISSEMINATION This study was approved by an ethical review board in Geneva (CCER-2020-01639). The study findings will be disseminated through conference presentations and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04692168.
Collapse
Affiliation(s)
- Aline Reinmann
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Anne-Violette Bruyneel
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Joseph Gligorov
- Department of Oncology, AP-HP. Sorbonne University, Paris, France
| | - Serge Mesure
- Institute of Movement Sciences, National Centre of Scientific Research, Aix-Marseille-University, Marseille, France
| | - Christophe Combescure
- CRC & Division of clinical epidemiology, Department of health and community medicine, University of Geneva & University Hospitals of Geneva, Geneva, Switzerland
| | - Thibaud Koessler
- Service of Oncology, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva, Geneva, Switzerland
| | - Alexandre Bodmer
- Service of Oncology, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Sambe AY, Silva JKMD, Pellizzari CCDA, Valenciano PJ. Efeitos da vibração do tendão muscular no equilíbrio após acidente vascular cerebral: revisão sistemática. FISIOTERAPIA E PESQUISA 2022. [DOI: 10.1590/1809-2950/22007629032022pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RESUMO Após o acidente vascular cerebral (AVC), as pessoas apresentam combinações complexas de déficits sensoriais, motores, cognitivos e emocionais que podem afetar o equilíbrio estático e dinâmico. O objetivo do estudo foi compilar e resumir as principais características e achados de protocolos utilizados em pesquisas que investigaram os efeitos da vibração no tendão muscular no equilíbrio estático e dinâmico em adultos com AVC. Trata-se de uma revisão sistemática, registrada na PROSPERO (CRD42022303874), em que foram realizadas buscas nas bases de dados PubMed, Cochrane, LILACS, SciELO, MEDLINE, Science Direct e PEDro, durante o mês de janeiro de 2022, por meio da combinação de palavras-chave relacionadas a “stroke”, “balance”, “muscle tendon vibration” e “randomized controlled trial”. A qualidade metodológica foi avaliada através da escala PEDro. Foram identificados 1.560 estudos, dos quais 11 foram incluídos, publicados entre 1994 e 2020, envolvendo 242 adultos pós-AVC. Apenas cinco estudos utilizaram a vibração como intervenção e verificaram melhora no equilíbrio estático e dinâmico. Seis estudos analisaram a interferência da vibração no controle postural, observando que o equilíbrio foi afetado durante a aplicação da vibração e que os indivíduos precisaram de mais tempo para se recuperar ou não sofreram diferenças significativas. Verificou-se que os efeitos da vibração do tendão muscular podem melhorar o equilíbrio em pessoas com AVC e influenciar o controle postural através de mecanismos proprioceptivos da vibração. Entretanto, são necessários mais estudos de alta qualidade metodológica para atingir um consenso em relação aos protocolos de tratamento com vibração do tendão muscular e sua recomendação na prática clínica.
Collapse
|
10
|
Sambe AY, Silva JKMD, Pellizzari CCDA, Valenciano PJ. Effects of muscle tendon vibration on balance after stroke: systematic review. FISIOTERAPIA E PESQUISA 2022. [DOI: 10.1590/1809-2950/22007629032022en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT After cerebrovascular accident (CVA), people have complex combinations of sensory, motor, cognitive, and emotional deficits, which can affect static and dynamic balance. This study aimed to compile and summarize the main features and findings of protocols used in research that investigated the effects of muscle tendon vibration on static and dynamic balance in adults with stroke. This is a systematic review, registered in PROSPERO (CRD42022303874), in which searches were performed in the databases PubMed, Cochrane, LILACS, SciELO, MEDLINE, Science Direct, and PEDro, during the month of January 2022, using the combination of keywords related to “stroke,” “balance,” “muscle tendon vibration,” “randomized controlled trial.” Methodological quality was assessed using the PEDro scale. A total of 1,560 studies were identified, 11 of which were included, between the years 1994 to 2020, involving 242 post-stroke adults. Only five studies used vibration as an intervention and found an improvement in static and dynamic balance. Six studies analyzed the interference of vibration on postural control, showing that balance was affected during the application of vibration and that individuals needed more time to recover or did not experience significant differences. We found that the effects of muscle tendon vibration may be able to improve balance in people with stroke and influence postural control by proprioceptive mechanisms of vibration. However, more studies of high methodological quality are needed to reach a consensus regarding muscle tendon vibration treatment protocols and their recommendation in clinical practice.
Collapse
|
11
|
Changes in the Organization of the Secondary Somatosensory Cortex While Processing Lumbar Proprioception and the Relationship With Sensorimotor Control in Low Back Pain. Clin J Pain 2020; 35:394-406. [PMID: 30730445 DOI: 10.1097/ajp.0000000000000692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients with nonspecific low back pain (NSLBP) rely more on the ankle compared with the lower back proprioception while standing, perform sit-to-stand-to-sit (STSTS) movements slower, and exhibit perceptual impairments at the lower back. However, no studies investigated whether these sensorimotor impairments relate to a reorganization of the primary and secondary somatosensory cortices (S1 and S2) and primary motor cortex (M1) during proprioceptive processing. MATERIALS AND METHODS Proprioceptive stimuli were applied at the lower back and ankle muscles during functional magnetic resonance imaging in 15 patients with NSLBP and 13 controls. The location of the activation peaks during the processing of proprioception within S1, S2, and M1 were determined and compared between groups. Proprioceptive use during postural control was evaluated, the duration to perform 5 STSTS movements was recorded, and participants completed the Fremantle Back Awareness Questionnaire (FreBAQ) to assess back-specific body perception. RESULTS The activation peak during the processing of lower back proprioception in the right S2 was shifted laterally in the NSLBP group compared with the healthy group (P=0.007). Moreover, patients with NSLSP performed STSTS movements slower (P=0.018), and reported more perceptual impairments at the lower back (P<0.001). Finally, a significant correlation between a more lateral location of the activation peak during back proprioceptive processing and a more disturbed body perception was found across the total group (ρ=0.42, P=0.025). CONCLUSIONS The results suggest that patients with NSLBP show a reorganization of the higher-order processing of lower back proprioception, which could negatively affect spinal control and body perception.
Collapse
|
12
|
Kadri MA, Chevalier G, Mecheri H, Ngomo S, Lavallière M, da Silva RA, Beaulieu LD. Time course and variability of tendinous vibration-induced postural reactions in forward and backward directions. J Electromyogr Kinesiol 2020; 51:102386. [PMID: 32014802 DOI: 10.1016/j.jelekin.2020.102386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022] Open
Abstract
Mechanical vibration of tendons induces large postural reactions (PR-VIB) but little is known about how these reactions vary within and between subjects. We investigated the intra- and inter-individual variability of PR-VIB and determined the reliability of center of pressure (COP) measures. Bipodal postural control (eyes closed) of 30 healthy adults were evaluated using a force platform under 02 conditions: bilateral VIB of the tibialis anterior (TA) and Achilles tendons (ACH-T) at 80 Hz. Each condition consisted of 03 trials of 30 s duration (Baseline: 10 s; VIB: 10 s; POST-VIB: 10 s). The Amplitude and Velocity of the COP in the antero-posterior/medio-lateral (AP/ML) directions were recorded and analyzed according to 5 time-windows incremented every 2 s of vibration (i.e. the first 2 s; 4 s; 6 s; 8 s & 10 s), whereas the COP position/AP was monitored every 0.5 s. All postural parameters increased significantly during TA and ACH-T vibration compared to the Baseline. The reliability of the COP measures showed good ICC scores (0.40-0.84) and measurement errors that varied depending on the duration of VIB time-windows. The COP position/AP reveals a lower intra- and inter-subject variability of PR-VIB in the first 2 s of VIB. The metrological characteristics of PR-VIB should be investigated further to guide their future use by clinicians and researchers.
Collapse
Affiliation(s)
- Mohamed Abdelhafid Kadri
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.
| | - Gabrielle Chevalier
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Hakim Mecheri
- IRSST, Institut de recherche Robert-Sauvé en santé et en sécurité de travail, Montréal, QC, Canada
| | - Suzy Ngomo
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Martin Lavallière
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Rubens A da Silva
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Louis-David Beaulieu
- BioNR Research Lab, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
13
|
Lima CA, Alouche SR, Baldan AMS, de Freitas PB, Freitas SMSF. Influence of target uncertainty on reaching movements while standing in stroke. Hum Mov Sci 2019; 64:283-295. [DOI: 10.1016/j.humov.2019.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
|
14
|
Fernandez NB, Hars M, Trombetti A, Vuilleumier P. Age-related changes in attention control and their relationship with gait performance in older adults with high risk of falls. Neuroimage 2019; 189:551-559. [PMID: 30660655 DOI: 10.1016/j.neuroimage.2019.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Falls are the leading cause of injury-related deaths in the elderly worldwide. Both gait impairment and cognitive decline have been shown to constitute major fall risk factors. However, further investigations are required to establish a more precise link between the influence of age on brain systems mediating executive cognitive functions and their relationship with gait disturbances, and thus help define novel markers and better guide remediation strategies to prevent falls. METHODS Event-related functional magnetic resonance imaging (fMRI) was used to evaluate age-related effects on the recruitment of executive control brain network in selective attention task, as measured with a flanker paradigm. Brain activation patterns were compared between twenty young (21 years ± 2.5) and thirty-four old participants (72 years ± 5.3) with high fall risks. We then determined to what extend age-related differences in activation patterns were associated with alterations in several gait parameters, measured with electronic devices providing a precise quantitative evaluation of gait, as well as with alterations in several aspects of cognitive and physical abilities. RESULTS We found that both young and old participants recruited a distributed fronto-parietal-occipital network during interference by incongruent distractors in the flanker task. However, additional activations were observed in posterior parieto-occipital areas in the older relative to the younger participants. Furthermore, a differential recruitment of both the left dorsal parieto-occipital sulcus and precuneus was significantly correlated with higher gait variability. Besides, decreased activation in the right cerebellum was found in the older with poorer cognitive processing speed scores. CONCLUSIONS Overall results converge to indicate greater sensitivity to attention interference and heightened recruitment of cortical executive control systems in the elderly with fall risks. Critically, this change was associated with selective increases in gait variability indices, linking attentional control with gait performance in elderly with high risks of falls.
Collapse
Affiliation(s)
- Natalia B Fernandez
- Laboratory of Behavioral Neurology and Imaging of Cognition, Dept. of Neurosciences, University Medical Center, University of Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Switzerland.
| | - Mélany Hars
- Division of Bone Diseases, Dept. of Internal Medicine Specialties, Geneva University Hospitals, Faculty of Medicine, Switzerland
| | - Andrea Trombetti
- Division of Bone Diseases, Dept. of Internal Medicine Specialties, Geneva University Hospitals, Faculty of Medicine, Switzerland
| | - Patrik Vuilleumier
- Laboratory of Behavioral Neurology and Imaging of Cognition, Dept. of Neurosciences, University Medical Center, University of Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Switzerland
| |
Collapse
|
15
|
Martinelli AR, Coelho DB, Teixeira LA. Light touch leads to increased stability in quiet and perturbed balance: Equivalent effects between post-stroke and healthy older individuals. Hum Mov Sci 2018. [DOI: 10.1016/j.humov.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Helmich I, Berger A, Lausberg H. Neural Control of Posture in Individuals with Persisting Postconcussion Symptoms. Med Sci Sports Exerc 2017; 48:2362-2369. [PMID: 27387294 DOI: 10.1249/mss.0000000000001028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Postural instability has been shown to characterize individuals who suffered from long-term symptoms after mild traumatic brain injury. However, recordings of neural processes during postural control are difficult to realize with standard neuroimaging techniques. Thus, we used functional nearinfrared spectroscopy to investigate brain oxygenation of individuals with persistent postconcussion symptoms (pPCS) during postural control in altered environments. METHODS We compared brain oxygenation and postural sway during balance control in three groups: individuals suffering from pPCS, individuals with a history of mild traumatic brain injury but without pPCS, and healthy controls. Individuals were investigated during postural control tasks with six different conditions: i) eyes opened, ii) eyes closed, and iii) blurred visual input, each while standing a) on a stable and b) an unstable surface. RESULTS In all groups, during the eyes closed/unstable surface condition as compared with the other conditions, the postural sway increased as well as the brain oxygenation in frontal brain cortices. In the most difficult balance condition, as compared with the other two groups, subjects with pPCS applied more force over time to keep balance as measured by the force plate system with a significantly greater activation in frontopolar/orbitofrontal areas of the right hemisphere. CONCLUSIONS As subjects with pPCS applied more force over time to control balance, we propose that with regard to cognitive processes, the increase of cerebral activation in these individuals indicates an increase of attention-demanding processes during postural control in altered environments.
Collapse
Affiliation(s)
- Ingo Helmich
- Department of Neurology, Psychosomatic Medicine and Psychiatry, Institute of Health Promotion and Clinical Movement Science, German Sport University Cologne, Cologne, GERMANY
| | | | | |
Collapse
|