1
|
Niemelä L, Lerche L, Illman M, Kirveskari E, Liljeström M, Pauls KAM, Renvall H. Cortical beta modulation during active movement is highly reproducible in healthy adults. J Neurophysiol 2025; 133:1067-1073. [PMID: 40013583 DOI: 10.1152/jn.00377.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/15/2024] [Accepted: 02/22/2025] [Indexed: 02/28/2025] Open
Abstract
The rolandic beta (13-30 Hz) rhythm recorded over the sensorimotor cortices is known to be modified by movement execution and observation. Beta modulation has been considered as a biomarker of motor function in various neurological diseases, and active natural-like movements might offer a clinically feasible method to assess them. Although the stability of movement-related beta modulation has been addressed during passive and highly controlled active movements, the test-retest reliability of natural-like movements has not been established. We used magnetoencephalography (MEG) to evaluate the reproducibility of movement-related sensorimotor beta modulation longitudinally over 3 mo in a group of healthy adults (n = 22). We focused on the changes in beta activity both during active grasping movement (beta suppression) and after movement termination (beta rebound). The strengths of beta suppression and rebound were similar between the baseline and follow-up measurements; intraclass correlation coefficient values (0.76-0.96) demonstrated high reproducibility. Our results indicate that the beta modulation in response to an active hand-squeezing task has excellent test-retest reliability: the natural-like active movement paradigm is suitable for evaluating the functional state of the sensorimotor cortex and can be used as a biomarker in clinical follow-up studies.NEW & NOTEWORTHY This research demonstrates that the beta rhythm modulation related to active hand-squeezing task has an excellent test-retest reproducibility in healthy adults over a three-month follow-up period. This natural-like active movement is thus suitable for evaluating beta modulation to assess the functional state of the sensorimotor cortex and can be utilized as a biomarker, for example, in clinical longitudinal follow-up studies.
Collapse
Affiliation(s)
- Linda Niemelä
- BioMag Laboratory, HUS Diagnostic Center, Aalto University, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lola Lerche
- BioMag Laboratory, HUS Diagnostic Center, Aalto University, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Mia Illman
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Aalto University, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mia Liljeström
- BioMag Laboratory, HUS Diagnostic Center, Aalto University, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - K Amande M Pauls
- BioMag Laboratory, HUS Diagnostic Center, Aalto University, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Hanna Renvall
- BioMag Laboratory, HUS Diagnostic Center, Aalto University, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Hsu P, Jobst C, Isabella SL, Domi T, Westmacott R, Dlamini N, Cheyne D. Cortical Oscillatory Activity and Motor Control in Pediatric Stroke Patients With Hemidystonia. Hum Brain Mapp 2025; 46:e70204. [PMID: 40186512 PMCID: PMC11971656 DOI: 10.1002/hbm.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Dystonia is a movement disorder characterized by repetitive muscle contractions, twisting movements, and abnormal posture, affecting 20% of pediatric arterial ischemic stroke (AIS) survivors. Recent studies have reported that children with dystonia are at higher risk of cognitive deficits. The connection between impaired motor outcomes and cognitive impairment in dystonia is not fully understood; dystonia might affect motor control alone, or it could also contribute to cognitive impairment through disruptions in higher-order motor processes. To assess the functional correlates underlying motor control in children with dystonia, we used magnetoencephalography (MEG) to measure frontal theta (4-8 Hz), motor beta (15-30 Hz), and sensorimotor gamma (60-90 Hz) activity during a "go"/"no-go" task. Beamformer-based source analysis was carried out on 19 post-stroke patients: nine with dystonia (mean age = 13.78, SD = 2.82, 8 females), 10 without dystonia (mean age = 12.90, SD = 3.54, 4 females), and 17 healthy controls (mean age = 12.82, SD = 2.72, 8 females). To evaluate inhibitory control, frontal theta activity was analyzed during correct "no-go" (successful withhold) trials. To assess motor execution and sensorimotor integration, movement time-locked beta and sensorimotor gamma activity were analyzed during correct "go" trials. Additionally, the Delis-Kaplan Executive Function System (DKEFS) color-word interference task was used as a non-motor, inhibitory control task to evaluate general cognitive inhibition abilities. During affected hand use, dystonia patients had higher "no-go" error rates (failed withhold) compared to all other groups. Dystonia patients also exhibited higher frontal theta power during correct withhold responses for both affected and unaffected hands compared to healthy controls. Furthermore, dystonia patients exhibited decreased movement-evoked gamma power and gamma peak frequency compared to non-dystonia patients and healthy controls. Movement-related beta desynchronization (ERD) activity was increased in non-dystonia patients for both hands compared to healthy participants. These results confirm that post-stroke dystonia is associated with impaired frontally mediated inhibitory control, as reflected by increased frontal theta power. Post-stroke dystonia patients also exhibited reduced motor gamma activity during movement, reflecting altered sensorimotor integration. The increased beta ERD activity in non-dystonia patients may suggest compensatory sensorimotor plasticity not observed in dystonia patients. These findings suggest that differences in motor outcomes in childhood stroke result from a combination of cognitive and motor deficits.
Collapse
Affiliation(s)
- Prisca Hsu
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Cecilia Jobst
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Silvia L. Isabella
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Trish Domi
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Robyn Westmacott
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Nomazulu Dlamini
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Paediatrics (Neurology)University of TorontoTorontoOntarioCanada
| | - Douglas Cheyne
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Tashiro S, Takemi M, Yamada S, Tsuji T. Synchronized application of closed-loop NMES and precision tACS in post-stroke hand rehabilitation: a protocol of neurorehabilitation trial. Ther Adv Chronic Dis 2024; 15:20406223241297397. [PMID: 39575381 PMCID: PMC11580065 DOI: 10.1177/20406223241297397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/26/2024] [Indexed: 11/24/2024] Open
Abstract
Background Severe upper extremity paresis due to stroke is a significant clinical sequela. Neuromuscular electrical stimulation (NMES)-based rehabilitation has demonstrated promising results along with cortical plasticity. Transcranial alternating current stimulation (tACS) has gained attention due to its unique ability to entrain endogenous oscillatory brain rhythms with injected AC frequency, offering the potential for modifying brain conditions to enhance rehabilitative interventions. Because repetitive motor execution in rehabilitation training requires a smooth transition of the brain state despite often being impaired secondary to stroke, combining NMES and tACS may offer better treatment efficacy. Aim This study proposes a phase I/II trial of an outpatient comprehensive rehabilitative treatment combining the integrated volitional-control electrical stimulation (IVES), a closed-loop NMES, and the timing-specified focal tACS in individualized beta frequency (dynamic-precision tACS) targeting severe hand paresis in patients with chronic stroke, aiming to demonstrate the feasibility of combination treatment. Design Double-blind randomized cross-over trial. Methods The repetitive facilitative finger extension training utilizing closed-loop NMES is combined with dynamic-precision tACS on the primary motor cortex to assist post-movement beta-rebound. Together with regular occupational therapy, we propose a comprehensive outpatient neurorehabilitative regimen. Here, a total of 10 sessions will be conducted using a cross-over design using real and sham tACS. Analysis The perception and fatigue from stimulation will be investigated as the primary outcomes. The efficacy of improving sensorimotor function and their background physiological mechanisms will be evaluated as the secondary outcomes. Discussion This phase I/II trial will be the first to combine tACS and neurorehabilitation using functional electrical stimulation. A weekly outpatient protocol with cheap devices may offer a new treatment paradigm toward functional recovery for chronic stroke patients with severe upper extremity paresis. Ethics and trial registration This study was approved by the Ethics Committee of Kyorin University Faculty of Medicine (814-01). The trial was registered in a public database: UMIN000048274.
Collapse
Affiliation(s)
- Syoichi Tashiro
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 35 Shinano-machi, Mitaka, Shinjuku, Tokyo 1608582, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Mitsuaki Takemi
- Department of Biosciences and Informatics, Keio University School of Fundamental Science and Technology, Yokohama, Kanagawa, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
4
|
Adham A, Bessaguet H, Struber L, Rimaud D, Ojardias E, Giraux P. Distinct and additive effects of visual and vibratory feedback for motor rehabilitation: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:158. [PMID: 39267092 PMCID: PMC11391611 DOI: 10.1186/s12984-024-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The use of visual and proprioceptive feedback is a key property of motor rehabilitation techniques. This feedback can be used alone, for example, for vision in mirror or video therapy, for proprioception in focal tendon vibration therapy, or in combination, for example, in robot-assisted training. This Electroencephalographic (EEG) study in healthy subjects explored the distinct neurophysiological impact of adding visual (video therapy), proprioceptive (focal tendinous vibration), or combined feedback (video therapy and focal tendinous vibration) to a motor imagery task. METHODS Sixteen healthy volunteers performed 20 mental imagery (MI) tasks involving right wrist extension and flexion under four conditions: MI alone (IA), MI + video feedback observation (IO), MI + vibratory feedback (IV), and MI + observation + vibratory feedback (IOV). Brain activity was monitored with EEG, and time-frequency neurophysiological markers of movement were computed. The emotions of the patients were also measured during the task. RESULTS In the alpha band, we observed bilateral ERD in the visual feedback conditions (IO, IOV). In the beta band, the ERD was bilateral in the IA, IV and IOV but more lateralized in the IV and IOV. After movement, we observed strong ERS in the IO and IOV but not in the IA or IV. Embodiment was stronger in conditions with vibratory feedback (IOV > IV > IA and IO) CONCLUSION: Conditions with visual feedback (IO, IOV) recruit the mirror neurons system (alpha ERD) and provide more accurate feedback of the task than IA and IV, which triggers motor validation pathways (beta rebound analysis). Vibratory feedback enhances the recruitment of the left sensorimotor areas, with a synergistic effect in the IOV (beta ERD analysis), thus maximizing embodiment. Visual and vibratory feedback recruits the sensorimotor cortex during motor imagery in different ways and can be combined to maximize the benefits of both techniques TRIAL REGISTRATION: https://clinicaltrials.gov/study/NCT04449328 .
Collapse
Affiliation(s)
- Ahmed Adham
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Hugo Bessaguet
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Inter-University Laboratory of Human Movement Biology, "Physical Ability and Fatigue in Health and Disease" Team, Saint-Etienne "Jean Monnet" & Lyon 1 & "Savoie Mont- Blanc" Universities, Saint- Etienne, F-42023, France
| | - Lucas Struber
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Diana Rimaud
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
| | - Etienne Ojardias
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| | - Pascal Giraux
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| |
Collapse
|
5
|
Adham A, Le BT, Bonnal J, Bessaguet H, Ojardias E, Giraux P, Auzou P. Neural basis of lower-limb visual feedback therapy: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:114. [PMID: 38978051 PMCID: PMC11229246 DOI: 10.1186/s12984-024-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Video-feedback observational therapy (VOT) is an intensive rehabilitation technique based on movement repetition and visualization that has shown benefits for motor rehabilitation of the upper and lower limbs. Despite an increase in recent literature on the neurophysiological effects of VOT in the upper limb, there is little knowledge about the cortical effects of visual feedback therapies when applied to the lower limbs. The aim of our study was to better understand the neurophysiological effects of VOT. Thus, we identified and compared the EEG biomarkers of healthy subjects undergoing lower limb VOT during three tasks: passive observation, observation and motor imagery, observation and motor execution. METHODS We recruited 38 healthy volunteers and monitored their EEG activity while they performed a right ankle dorsiflexion task in the VOT. Three graded motor tasks associated with action observation were tested: action observation alone (O), motor imagery with action observation (OI), and motor execution synchronized with action observation (OM). The alpha and beta event-related desynchronization (ERD) and event-related synchronization (or beta rebound, ERS) rhythms were used as biomarkers of cortical activation and compared between conditions with a permutation test. Changes in connectivity during the task were computed with phase locking value (PLV). RESULTS During the task, in the alpha band, the ERD was comparable between O and OI activities across the precentral, central and parietal electrodes. OM involved the same regions but had greater ERD over the central electrodes. In the beta band, there was a gradation of ERD intensity in O, OI and OM over central electrodes. After the task, the ERS changes were weak during the O task but were strong during the OI and OM (Cz) tasks, with no differences between OI and OM. CONCLUSION Alpha band ERD results demonstrated the recruitment of mirror neurons during lower limb VOT due to visual feedback. Beta band ERD reflects strong recruitment of the sensorimotor cortex evoked by motor imagery and action execution. These results also emphasize the need for an active motor task, either motor imagery or motor execution task during VOT, to elicit a post-task ERS, which is absent during passive observation. Trial Registration NCT05743647.
Collapse
Affiliation(s)
- Ahmed Adham
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, Saint-Étienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Ba Thien Le
- Department of Neurology, CHU of Orleans, Orleans, France
| | - Julien Bonnal
- Department of Neurology, CHU of Orleans, Orleans, France
| | - Hugo Bessaguet
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Jean Monnet University, Lyon 1, Université Savoie Mont-Blanc, "Laboratoire Inter-Universitaire de Biologie de La Motricité", 42023, Saint-Étienne, France
| | - Etienne Ojardias
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Jean Monnet University, Lyon 1, Université Savoie Mont-Blanc, "Laboratoire Inter-Universitaire de Biologie de La Motricité", 42023, Saint-Étienne, France
| | - Pascal Giraux
- Department of Physical Rehabilitation, CHU of St Etienne, Saint-Étienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, Saint-Étienne, France
| | - Pascal Auzou
- Department of Neurology, CHU of Orleans, Orleans, France
- "Laboratoire Interdisciplinaire d'innovation et de Recherche en Santé d'Orléans", LI2RSO, University of Orleans, Orleans, France
| |
Collapse
|
6
|
Zhang R, Feng S, Hu N, Low S, Li M, Chen X, Cui H. Hybrid Brain-Computer Interface Controlled Soft Robotic Glove for Stroke Rehabilitation. IEEE J Biomed Health Inform 2024; 28:4194-4203. [PMID: 38648145 DOI: 10.1109/jbhi.2024.3392412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Soft robotic glove controlled by a brain-computer interface (BCI) have demonstrated effectiveness in hand rehabilitation for stroke patients. Current systems rely on static visual representations for patients to perform motor imagination (MI) tasks, resulting in lower BCI performance. Therefore, this study innovatively used MI and high-frequency steady-state visual evoked potential (SSVEP) to construct a friendly and natural hybrid BCI paradigm. Specifically, the stimulation interface sequentially presented decomposed action pictures of the left and right hands gripping a ball, with the pictures flashing at specific stimulation frequencies (left: 34 Hz, right: 35 Hz). Integrating soft robotic glove as feedback, we established a comprehensive "peripheral - central - peripheral" hand rehabilitation system to facilitate the hand rehabilitation of patients. Filter bank common spatial pattern (FBCSP) and filter bank canonical correlation analysis (FBCCA) algorithms were used to identify MI and SSVEP signals, respectively. Additionally, we proposed a novel fusion algorithm to decide the final output of the system. The feasibility of the proposed system was validated through online experiments involving 12 healthy subjects and 9 stroke patients, achieving accuracy rates of 95.83 ± 6.83% and 63.33 ± 10.38, respectively. The accuracy of MI and SSVEP in 12 healthy subjects reached 81.67 ± 15.63% and 95.14 ± 7.47%, both lower than the accuracy after fusion, these results confirmed the effectiveness of the proposed algorithm. The accuracy rate was more than 50% in both healthy subjects and patients, confirming the effectiveness of the proposed system.
Collapse
|
7
|
Akaiwa M, Matsuda Y, Kurokawa R, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K, Kozuka N. Does 20 Hz Transcranial Alternating Current Stimulation over the Human Primary Motor Cortex Modulate Beta Rebound Following Voluntary Movement? Brain Sci 2024; 14:74. [PMID: 38248289 PMCID: PMC10813667 DOI: 10.3390/brainsci14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ryo Kurokawa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasushi Sugawara
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan;
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| |
Collapse
|
8
|
Ward TW, Springer SD, Schantell M, John JA, Horne LK, Coutant AT, Okelberry HJ, Willett MP, Johnson HJ, Killanin AD, Heinrichs‐Graham E, Wilson TW. Regular cannabis use alters the neural dynamics serving complex motor control. Hum Brain Mapp 2023; 44:6511-6522. [PMID: 37955378 PMCID: PMC10681654 DOI: 10.1002/hbm.26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.
Collapse
Affiliation(s)
- Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
9
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
10
|
Kern K, Vukelić M, Guggenberger R, Gharabaghi A. Oscillatory neurofeedback networks and poststroke rehabilitative potential in severely impaired stroke patients. Neuroimage Clin 2023; 37:103289. [PMID: 36525745 PMCID: PMC9791174 DOI: 10.1016/j.nicl.2022.103289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Motor restoration after severe stroke is often limited. However, some of the severely impaired stroke patients may still have a rehabilitative potential. Biomarkers that identify these patients are sparse. Eighteen severely impaired chronic stroke patients with a lack of volitional finger extension participated in an EEG study. During sixty-six trials of kinesthetic motor imagery, a brain-machine interface turned event-related beta-band desynchronization of the ipsilesional sensorimotor cortex into opening of the paralyzed hand by a robotic orthosis. A subgroup of eight patients participated in a subsequent four-week rehabilitation training. Changes of the movement extent were captured with sensors which objectively quantified even discrete improvements of wrist movement. Albeit with the same motor impairment level, patients could be differentiated into two groups, i.e., with and without task-related increase of bilateral cortico-cortical phase synchronization between frontal/premotor and parietal areas. This fronto-parietal integration (FPI) was associated with a significantly higher volitional beta modulation range in the ipsilesional sensorimotor cortex. Following the four-week training, patients with FPI showed significantly higher improvement in wrist movement than those without FPI. Moreover, only the former group improved significantly in the upper extremity Fugl-Meyer-Assessment score. Neurofeedback-related long-range oscillatory coherence may differentiate severely impaired stroke patients with regard to their rehabilitative potential, a finding that needs to be confirmed in larger patient cohorts.
Collapse
Affiliation(s)
- Kevin Kern
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Mathias Vukelić
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Germany.
| |
Collapse
|
11
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
12
|
Ulanov M, Shtyrov Y. Oscillatory beta/alpha band modulations: A potential biomarker of functional language and motor recovery in chronic stroke? Front Hum Neurosci 2022; 16:940845. [PMID: 36226263 PMCID: PMC9549964 DOI: 10.3389/fnhum.2022.940845] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading causes of various disabilities, including debilitating motor and language impairments. Though various treatments exist, post-stroke impairments frequently become chronic, dramatically reducing daily life quality, and requiring specific rehabilitation. A critical goal of chronic stroke rehabilitation is to induce, usually through behavioral training, experience-dependent plasticity processes in order to promote functional recovery. However, the efficiency of such interventions is typically modest, and very little is known regarding the neural dynamics underpinning recovery processes and possible biomarkers of their efficiency. Some studies have emphasized specific alterations of excitatory–inhibitory balance within distributed neural networks as an important recovery correlate. Neural processes sensitive to these alterations, such as task-dependent oscillatory activity in beta as well as alpha bands, may be candidate biomarkers of chronic stroke functional recovery. In this review, we discuss the results of studies on motor and language recovery with a focus on oscillatory processes centered around the beta band and their modulations during functional recovery in chronic stroke. The discussion is based on a framework where task-dependent modulations of beta and alpha oscillatory activity, generated by the deep cortical excitatory–inhibitory microcircuits, serve as a neural mechanism of domain-general top-down control processes. We discuss the findings, their limitations, and possible directions for future research.
Collapse
Affiliation(s)
- Maxim Ulanov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- *Correspondence: Maxim Ulanov,
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Triccas LT, Camilleri KP, Tracey C, Mansoureh FH, Benjamin W, Francesca M, Leonardo B, Dante M, Geert V. Reliability of Upper Limb Pin-Prick Stimulation With Electroencephalography: Evoked Potentials, Spectra and Source Localization. Front Hum Neurosci 2022; 16:881291. [PMID: 35937675 PMCID: PMC9351050 DOI: 10.3389/fnhum.2022.881291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order for electroencephalography (EEG) with sensory stimuli measures to be used in research and neurological clinical practice, demonstration of reliability is needed. However, this is rarely examined. Here we studied the test-retest reliability of the EEG latency and amplitude of evoked potentials and spectra as well as identifying the sources during pin-prick stimulation. We recorded EEG in 23 healthy older adults who underwent a protocol of pin-prick stimulation on the dominant and non-dominant hand. EEG was recorded in a second session with rest intervals of 1 week. For EEG electrodes Fz, Cz, and Pz peak amplitude, latency and frequency spectra for pin-prick evoked potentials was determined and test-retest reliability was assessed. Substantial reliability ICC scores (0.76-0.79) were identified for evoked potential negative-positive amplitude from the left hand at C4 channel and positive peak latency when stimulating the right hand at Cz channel. Frequency spectra showed consistent increase of low-frequency band activity (< 5 Hz) and also in theta and alpha bands in first 0.25 s. Almost perfect reliability scores were found for activity at both low-frequency and theta bands (ICC scores: 0.81-0.98). Sources were identified in the primary somatosensory and motor cortices in relation to the positive peak using s-LORETA analysis. Measuring the frequency response from the pin-prick evoked potentials may allow the reliable assessment of central somatosensory impairment in the clinical setting.
Collapse
Affiliation(s)
- Lisa Tedesco Triccas
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Kenneth P. Camilleri
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Camilleri Tracey
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Fahimi Hnazaee Mansoureh
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
- The Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, London, United Kingdom
| | | | - Muscat Francesca
- Department of Systems and Control Engineering, University of Malta, Msida, Malta
- Centre for Biomedical Cybernetics, University of Malta, Msida, Malta
| | - Boccuni Leonardo
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Mantini Dante
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Verheyden Geert
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Pei D, Olikkal P, Adali T, Vinjamuri R. Reconstructing Synergy-Based Hand Grasp Kinematics from Electroencephalographic Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:5349. [PMID: 35891029 PMCID: PMC9318424 DOI: 10.3390/s22145349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed.
Collapse
|
15
|
Chen S, Shu X, Jia J, Wang H, Ding L, He Z, Brauer S, Zhu X. Relation Between Sensorimotor Rhythm During Motor Attempt/Imagery and Upper-Limb Motor Impairment in Stroke. Clin EEG Neurosci 2022; 53:238-247. [PMID: 34028306 DOI: 10.1177/15500594211019917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Motor attempt (MA)/motor imagery (MI)-based brain-computer interface (BCI) is a newly developing rehabilitation technology for motor impairment. This study aims to explore the relationship between electroencephalography sensorimotor rhythm and motor impairment to provide reference for a BCI design. Twenty-eight stroke survivors with varying levels of motor dysfunction and spasticity status in the subacute or chronic stage were enrolled in the study to perform MA and MI tasks. Event-related desynchronization (ERD)/event-related synchronization (ERS) during and immediately after motor tasks were calculated. The Fugl-Meyer assessment scale (FMA) and the modified Ashworth scale (MAS) were applied to characterize upper-limb motor dysfunction and spasticity. There was a positive correlation between FMA total scores and ERS in the contralesional hemisphere in the MI task (P < .05) and negative correlations between FMA total scores and ERD in both hemispheres in the MA task (P < .05). Negative correlations were found between MAS scores of wrist flexors and ERD in the ipsilesional hemisphere (P < .05) in the MA task. It suggests that motor dysfunction may be more correlated to ERS in the MI task and to ERD in the MA task while spasticity may be more correlated to ERD in the MA task.
Collapse
Affiliation(s)
- Shugeng Chen
- 159397Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaokang Shu
- 12474Shanghai Jiaotong University, Shanghai, China
| | - Jie Jia
- 159397Huashan Hospital, Fudan University, Shanghai, China
| | - Hewei Wang
- 159397Huashan Hospital, Fudan University, Shanghai, China
| | - Li Ding
- 159397Huashan Hospital, Fudan University, Shanghai, China
| | - Zhijie He
- 159397Huashan Hospital, Fudan University, Shanghai, China
| | - Sandra Brauer
- 1974The University of Queensland, Saint Lucia, Australia
| | | |
Collapse
|
16
|
Kulasingham JP, Brodbeck C, Khan S, Marsh EB, Simon JZ. Bilaterally Reduced Rolandic Beta Band Activity in Minor Stroke Patients. Front Neurol 2022; 13:819603. [PMID: 35418932 PMCID: PMC8996122 DOI: 10.3389/fneur.2022.819603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.
Collapse
Affiliation(s)
- Joshua P. Kulasingham
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Christian Brodbeck
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Sheena Khan
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elisabeth B. Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
- Department of Biology, University of Maryland, College Park, MD, United States
- Institute for Systems Research, University of Maryland, College Park, MD, United States
| |
Collapse
|
17
|
Veldema J, Nowak DA, Gharabaghi A. Resting motor threshold in the course of hand motor recovery after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:158. [PMID: 34732203 PMCID: PMC8564987 DOI: 10.1186/s12984-021-00947-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Resting motor threshold is an objective measure of cortical excitability. Numerous studies indicate that the success of motor recovery after stroke is significantly determined by the direction and extent of cortical excitability changes. A better understanding of this topic (particularly with regard to the level of motor impairment and the contribution of either cortical hemisphere) may contribute to the development of effective therapeutical strategies in this cohort. Objectives This systematic review collects and analyses the available evidence on resting motor threshold and hand motor recovery in stroke patients. Methods PubMed was searched from its inception through to 31/10/2020 on studies investigating resting motor threshold of the affected and/or the non-affected hemisphere and motor function of the affected hand in stroke cohorts. Results Overall, 92 appropriate studies (including 1978 stroke patients and 377 healthy controls) were identified. The analysis of the data indicates that severe hand impairment is associated with suppressed cortical excitability within both hemispheres and with great between-hemispheric imbalance of cortical excitability. Favorable motor recovery is associated with an increase of ipsilesional motor cortex excitability and reduction of between-hemispheric imbalance. The direction of change of contralesional motor cortex excitability depends on the amount of hand motor impairment. Severely disabled patients show an increase of contralesional motor cortex excitability during motor recovery. In contrast, recovery of moderate to mild hand motor impairment is associated with a decrease of contralesional motor cortex excitability. Conclusions This data encourages a differential use of rehabilitation strategies to modulate cortical excitability. Facilitation of the ipsilesional hemisphere may support recovery in general, whereas facilitation and inhibition of the contralesional hemisphere may enhance recovery in severe and less severely impaired patients, respectively.
Collapse
Affiliation(s)
- Jitka Veldema
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076, Tübingen, Germany.
| | - Dennis Alexander Nowak
- Department of Neurology, VAMED Hospital Kipfenberg, Konrad-Regler-Straße 1, 85110, Kipfenberg, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076, Tübingen, Germany
| |
Collapse
|
18
|
Gamma frequency activation of inhibitory neurons in the acute phase after stroke attenuates vascular and behavioral dysfunction. Cell Rep 2021; 34:108696. [PMID: 33535035 DOI: 10.1016/j.celrep.2021.108696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
Alterations in gamma oscillations occur in several neurological disorders, and the entrainment of gamma oscillations has been recently proposed as a treatment for neurodegenerative disease. Optogenetic stimulation enhances recovery in models of stroke when applied weeks after injury; however, the benefits of acute brain stimulation have not been investigated. Here, we report beneficial effects of gamma-frequency modulation in the acute phase, within 1 h, after stroke. Transgenic VGAT-ChR2 mice are subject to awake photothrombotic stroke in an area encompassing the forelimb sensory and motor cortex. Optogenetic stimulation at 40 Hz in the peri-infarct zone recovers neuronal activity 24 h after stroke in motor and parietal association areas, as well as blood flow over the first week after stroke. Stimulation significantly reduces lesion volume and improves motor function. Our results suggest that acute-phase modulation of cortical oscillatory dynamics may serve as a target for neuroprotection against stroke.
Collapse
|
19
|
Espenhahn S, Rossiter HE, van Wijk BCM, Redman N, Rondina JM, Diedrichsen J, Ward NS. Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. Brain Commun 2020; 2:fcaa161. [PMID: 33215085 PMCID: PMC7660041 DOI: 10.1093/braincomms/fcaa161] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50–74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Svenja Espenhahn
- Correspondence to:Svenja Espenhahn, PhD, Department of Radiology, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Canada AB T2N 4N1 E-mail:
| | - Holly E Rossiter
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| | - Nell Redman
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jane M Rondina
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Joern Diedrichsen
- Department of Computer Science, Department of Statistical and Actuarial Sciences, Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
20
|
Guggenberger R, Heringhaus M, Gharabaghi A. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation? Front Bioeng Biotechnol 2020; 8:639. [PMID: 32733860 PMCID: PMC7358603 DOI: 10.3389/fbioe.2020.00639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17–21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = −0.027 to −0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.
Collapse
Affiliation(s)
- Robert Guggenberger
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Monika Heringhaus
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Johari K, Behroozmand R. Event-related desynchronization of alpha and beta band neural oscillations predicts speech and limb motor timing deficits in normal aging. Behav Brain Res 2020; 393:112763. [PMID: 32540134 DOI: 10.1016/j.bbr.2020.112763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Normal aging is associated with decline of motor timing mechanisms implicated in planning and execution of movement. Evidence from previous studies has highlighted the relationship between neural oscillatory activities and motor timing processing in neurotypical younger adults; however, it remains unclear how normal aging affects the underlying neural mechanisms of movement in older populations. In the present study, we recorded EEG activities in two groups of younger and older adults while they performed randomized speech and limb motor reaction time tasks cued by temporally predictable and unpredictable sensory stimuli. Our data showed that older adults were significantly slower than their younger counterparts during speech production and limb movement, especially in response to temporally unpredictable sensory stimuli. This behavioral effect was accompanied by significant desynchronization of alpha (7-12 Hz) and beta (13-25 Hz) band neural oscillatory activities in older compared with younger adults, primarily during the preparatory pre-motor phase of responses for speech production and limb movement. In addition, we found that faster motor reaction times in younger adults were significantly correlated with weaker desynchronization of pre-motor alpha and beta band neural activities irrespective of stimulus timing and response modality. However, the pre-motor components of alpha and beta activities were timing-specific in older adults and were more strongly desynchronized in response to temporally predictable sensory stimuli. These findings highlight the role of alpha and beta band neural oscillations in motor timing processing mechanisms and reflect their functional deficits during the planning phase of speech production and limb movement in normal aging.
Collapse
Affiliation(s)
- Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States; Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
22
|
Kuo IJ, Tang CW, Tsai YA, Tang SC, Lin CJ, Hsu SP, Liang WK, Juan CH, Zich C, Stagg CJ, Lee IH. Neurophysiological signatures of hand motor response to dual-transcranial direct current stimulation in subacute stroke: a TMS and MEG study. J Neuroeng Rehabil 2020; 17:72. [PMID: 32527268 PMCID: PMC7291576 DOI: 10.1186/s12984-020-00706-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 11/11/2022] Open
Abstract
Background Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors. Methods We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2–4 weeks after stroke onset and 14 matched healthy controls. Participants had real dual-tDCS (with an ipsilesional [right for controls] M1 anode and a contralesional M1 [left for controls] cathode; 2 mA for 20mins) and sham dual-tDCS on separate days, with concurrent paretic [left for controls] hand exercise. Using transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), we recorded motor evoked potentials (MEPs), the ipsilateral silent period (iSP), short-interval intracortical inhibition, and finger movement-related cortical oscillations before and immediately after tDCS. Results Stroke survivors had decreased excitability in ipsilesional M1 with a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline compared with controls, as quantified by decreased MEPs and increased iSP duration. Dual-tDCS led to increased MEPs and decreased iSP duration in ipsilesional M1. The magnitude of the tDCS-induced MEP increase in stroke survivors was predicted by baseline contralesional-to-ipsilesional transcallosal inhibition (iSP) ratio. Baseline post-movement synchronization in α-band activity in ipsilesional M1 was decreased after stroke compared with controls, and its tDCS-induced increase correlated with upper limb score in stroke survivors. No significant adverse effects were observed during or after dual-tDCS. Conclusions Task-concurrent dual-tDCS in subacute stroke can safely and effectively modulate bilateral M1 excitability and inter-hemispheric imbalance and also movement-related α-activity.
Collapse
Affiliation(s)
- I-Ju Kuo
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Chih-Wei Tang
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Department of Neurology, Far Eastern Memorial Hospital, No.21, Sec. 2, Nanya S. Rd., Banqiao Dist, New Taipei City, 220, Taiwan
| | - Yun-An Tsai
- Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Shuen-Chang Tang
- Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Chun-Jen Lin
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan.,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan
| | - Shih-Pin Hsu
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City, 320, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City, 320, Taiwan
| | - Catharina Zich
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, UK
| | - I-Hui Lee
- Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou Dist, Taipei City, 112, Taiwan. .,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou Dist, Taipei City, 112, Taiwan.
| |
Collapse
|
23
|
Tang CW, Hsiao FJ, Lee PL, Tsai YA, Hsu YF, Chen WT, Lin YY, Stagg CJ, Lee IH. β-Oscillations Reflect Recovery of the Paretic Upper Limb in Subacute Stroke. Neurorehabil Neural Repair 2020; 34:450-462. [PMID: 32321366 PMCID: PMC7250642 DOI: 10.1177/1545968320913502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background. Recovery of upper limb function post-stroke can be partly predicted by initial motor function, but the mechanisms underpinning these improvements have yet to be determined. Here, we sought to identify neural correlates of post-stroke recovery using longitudinal magnetoencephalography (MEG) assessments in subacute stroke survivors. Methods. First-ever, subcortical ischemic stroke survivors with unilateral mild to moderate hand paresis were evaluated at 3, 5, and 12 weeks after stroke using a finger-lifting task in the MEG. Cortical activity patterns in the β-band (16-30 Hz) were compared with matched healthy controls. Results. All stroke survivors (n=22; 17 males) had improvements in action research arm test (ARAT) and Fugl-Meyer upper extremity (FM-UE) scores between 3 and 12 weeks. At 3 weeks post-stroke the peak amplitudes of the movement-related ipsilesional β-band event-related desynchronization (β-ERD) and synchronization (β-ERS) in primary motor cortex (M1) were significantly lower than the healthy controls (p<0.001) and were correlated with both the FM-UE and ARAT scores (r=0.51-0.69, p<0.017). The decreased β-ERS peak amplitudes were observed both in paretic and non-paretic hand movement particularly at 3 weeks post-stroke, suggesting a generalized disinhibition status. The peak amplitudes of ipsilesional β-ERS at week 3 post-stroke correlated with the FM-UE score at 12 weeks (r=0.54, p=0.03) but no longer significant when controlling for the FM-UE score at 3 weeks post-stroke.Conclusions. Although early β-band activity does not independently predict outcome at 3 months after stroke, it mirrors functional changes, giving a potential insight into the mechanisms underpinning recovery of motor function in subacute stroke.
Collapse
Affiliation(s)
- Chih-Wei Tang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Fu-Jung Hsiao
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Po-Lei Lee
- National Central University, Taoyuan County, Taiwan
| | - Yun-An Tsai
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Wei-Ta Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - I-Hui Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Bulubas L, Sardesh N, Traut T, Findlay A, Mizuiri D, Honma SM, Krieg SM, Berger MS, Nagarajan SS, Tarapore PE. Motor Cortical Network Plasticity in Patients With Recurrent Brain Tumors. Front Hum Neurosci 2020; 14:118. [PMID: 32317952 PMCID: PMC7146050 DOI: 10.3389/fnhum.2020.00118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: The adult brain’s potential for plastic reorganization is an important mechanism for the preservation and restoration of function in patients with primary glial neoplasm. Patients with recurrent brain tumors requiring multiple interventions over time present an opportunity to examine brain reorganization. Magnetoencephalography (MEG) is a noninvasive imaging modality that can be used for motor cortical network mapping which, when performed at regular intervals, offers insight into this process of reorganization. Utilizing MEG-based motor mapping, we sought to characterize the reorganization of motor cortical networks over time in a cohort of 78 patients with recurrent glioma. Methods: MEG-based motor cortical maps were obtained by measuring event-related desynchronization (ERD) in ß-band frequency during unilateral index finger flexion. Each patient presented at our Department at least on two occasions for tumor resection due to tumor recurrence, and MEG-based motor mapping was performed as part of preoperative assessment before each surgical resection. Whole-brain activation patterns from first to second MEG scan (obtained before first and second surgery) were compared. Additionally, we calculated distances of activation peaks, which represent the location of the primary motor cortex (MC), to determine the magnitude of movement in motor eloquent areas between the first and second MEG scan. We also explored which demographic, anatomic, and pathological factors influence these shifts. Results: The whole-brain activation motor maps showed a subtle movement of the primary MC from first to second timepoint, as was confirmed by the determination of motor activation peaks. The shift of ipsilesional MC was directly correlated with a frontal-parietal tumor location (p < 0.001), presence of motor deficits (p = 0.021), and with a longer period between MEG scans (p = 0.048). Also, a disengagement of wide areas in the contralesional (ipsilateral to finger movement) hemisphere at the second time point was observed. Conclusions: MEG imaging is a sensitive method for depicting the plasticity of the motor cortical network. Although the location of the primary MC undergoes only subtle changes, appreciable shifts can occur in the setting of a stronger and longer impairment of the tumor on the MC. The ipsilateral hemisphere may serve as a reservoir for functional recovery.
Collapse
Affiliation(s)
- Lucia Bulubas
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurosurgery and TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität (TU), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians Universität (LMU), Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Nina Sardesh
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Tavish Traut
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Anne Findlay
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Danielle Mizuiri
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Susanne M Honma
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Sandro M Krieg
- Department of Neurosurgery and TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität (TU), Munich, Germany
| | - Mitchel S Berger
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Phiroz E Tarapore
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
25
|
Zhang JJ, Fong KNK. Effects of priming intermittent theta burst stimulation on upper limb motor recovery after stroke: study protocol for a proof-of-concept randomised controlled trial. BMJ Open 2020; 10:e035348. [PMID: 32152174 PMCID: PMC7064082 DOI: 10.1136/bmjopen-2019-035348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Intermittent theta burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation (rTMS), delivered to the ipsilesional primary motor cortex (M1), appears to enhance the brain's response to rehabilitative training in patients with stroke. However, its clinical utility is highly subject to variability in different protocols. New evidence has reported that preceding iTBS, with continuous theta burst stimulation (cTBS) may stabilise and even boost the facilitatory effect of iTBS on the stimulated M1, via metaplasticity. The aim of this study is to investigate the effects of iTBS primed with cTBS (ie, priming iTBS), in addition to robot-assisted training (RAT), on the improvement of the hemiparetic upper limb functions of stroke patients and to explore potential sensorimotor neuroplasticity using electroencephalography (EEG). METHODS AND ANALYSIS A three-arm, subjects and assessors-blinded, randomised controlled trial will be performed with patients with chronic stroke. An estimated sample of 36 patients will be needed based on the prior sample size calculation. All participants will be randomly allocated to receive 10 sessions of rTMS with different TBS protocols (cTBS+iTBS, sham cTBS+iTBS and sham cTBS+sham iTBS), three to five sessions per week, for 2-3 weeks. All participants will receive 60 min of RAT after each stimulation session. Primary outcomes will be assessed using Fugl-Meyer Assessment-Upper Extremity scores and Action Research Arm Test. Secondary outcomes will be assessed using kinematic outcomes generated during RAT and EEG. ETHICS AND DISSEMINATION Ethical approval has been obtained from The Human Subjects Ethics Sub-committee, University Research Committee of The Hong Kong Polytechnic University (reference number: HSEARS20190718003). The results yielded from this study will be presented at international conferences and sent to a peer-review journal to be considered for publication. TRIAL REGISTRATION NUMBER NCT04034069.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
26
|
Bönstrup M, Krawinkel L, Schulz R, Cheng B, Feldheim J, Thomalla G, Cohen LG, Gerloff C. Low-Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Ann Neurol 2019; 86:853-865. [PMID: 31604371 DOI: 10.1002/ana.25615] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The majority of patients with stroke survive the acute episode and live with enduring disability. Effective therapies to support recovery of motor function after stroke are yet to be developed. Key to this development is the identification of neurophysiologic signals that mark recovery and are suitable and susceptible to interventional therapies. Movement preparatory low-frequency oscillations (LFOs) play a key role in cortical control of movement. Recent animal data point to a mechanistic role of motor cortical LFOs in stroke motor deficits and demonstrate neuromodulation intervention with therapeutic benefit. Their relevance in human stroke pathophysiology is unknown. METHODS We studied the relationship between movement-preparatory LFOs during the performance of a visuomotor grip task and motor function in a longitudinal (<5 days, 1 and 3 months) cohort study of 33 patients with motor stroke and in 19 healthy volunteers. RESULTS Acute stroke-lesioned brains fail to generate the LFO signal. Whereas in healthy humans, a transient occurrence of LFOs preceded movement onset at predominantly contralateral frontoparietal motor regions, recordings in patients revealed that movement-preparatory LFOs were substantially diminished to a level of 38% after acute stroke. LFOs progressively increased at 1 and 3 months. This re-emergence closely tracked the recovery of motor function across several movement qualities including grip strength, fine motor skills, and synergies and was frequency band specific. INTERPRETATION Our results provide the first human evidence for a link between movement-preparatory LFOs and functional recovery after stroke, promoting their relevance for movement control. These results suggest that it may be interesting to explore targeted, LFOs-restorative brain stimulation therapy in human stroke patients. ANN NEUROL 2019;86:853-865.
Collapse
Affiliation(s)
- Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Krawinkel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Bartur G, Pratt H, Soroker N. Changes in mu and beta amplitude of the EEG during upper limb movement correlate with motor impairment and structural damage in subacute stroke. Clin Neurophysiol 2019; 130:1644-1651. [DOI: 10.1016/j.clinph.2019.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 01/15/2023]
|
28
|
Vukelić M, Belardinelli P, Guggenberger R, Royter V, Gharabaghi A. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. Neuroimage 2019; 195:190-202. [PMID: 30951847 DOI: 10.1016/j.neuroimage.2019.03.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
Volitional modulation and neurofeedback of sensorimotor oscillatory activity is currently being evaluated as a strategy to facilitate motor restoration following stroke. Knowledge on the interplay between this regional brain self-regulation, distributed network entrainment and handedness is, however, limited. In a randomized cross-over design, twenty-one healthy subjects (twelve right-handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 trials) and right finger extension (48 trials). A brain-machine interface turned event-related desynchronization in the beta frequency-band (16-22 Hz) during motor imagery into passive hand opening by a robotic orthosis. Thereby, every participant subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) to control contralateral hand opening. The task-related cortical networks were studied with electroencephalography. The magnitude of the induced oscillatory modulation range in the sensorimotor cortex was independent of both handedness (RH, LH) and hemispheric specialization (DH, NDH). However, the regional beta-band modulation was associated with different alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, these distinct network entrainments were independent of hemispheric specialization. In healthy subjects, sensorimotor beta-band activity can be robustly modulated by motor imagery and proprioceptive feedback in both hemispheres independent of handedness. However, right and left handers show different oscillatory entrainment of cortical alpha-band networks during neurofeedback. This finding may inform neurofeedback interventions in future to align them more precisely with the underlying physiology.
Collapse
Affiliation(s)
- Mathias Vukelić
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Paolo Belardinelli
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Vladislav Royter
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
29
|
Carino-Escobar RI, Carrillo-Mora P, Valdés-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, Galicia-Alvarado MA, Cantillo-Negrete J. Longitudinal Analysis of Stroke Patients' Brain Rhythms during an Intervention with a Brain-Computer Interface. Neural Plast 2019; 2019:7084618. [PMID: 31110515 PMCID: PMC6487113 DOI: 10.1155/2019/7084618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of motor disability worldwide. Upper limb rehabilitation is particularly challenging since approximately 35% of patients recover significant hand function after 6 months of the stroke's onset. Therefore, new therapies, especially those based on brain-computer interfaces (BCI) and robotic assistive devices, are currently under research. Electroencephalography (EEG) acquired brain rhythms in alpha and beta bands, during motor tasks, such as motor imagery/intention (MI), could provide insight of motor-related neural plasticity occurring during a BCI intervention. Hence, a longitudinal analysis of subacute stroke patients' brain rhythms during a BCI coupled to robotic device intervention was performed in this study. Data of 9 stroke patients were acquired across 12 sessions of the BCI intervention. Alpha and beta event-related desynchronization/synchronization (ERD/ERS) trends across sessions and their association with time since stroke onset and clinical upper extremity recovery were analyzed, using correlation and linear stepwise regression, respectively. More EEG channels presented significant ERD/ERS trends across sessions related with time since stroke onset, in beta, compared to alpha. Linear models implied a moderate relationship between alpha rhythms in frontal, temporal, and parietal areas with upper limb motor recovery and suggested a strong association between beta activity in frontal, central, and parietal regions with upper limb motor recovery. Higher association of beta with both time since stroke onset and upper limb motor recovery could be explained by beta relation with closed-loop communication between the sensorimotor cortex and the paralyzed upper limb, and alpha being probably more associated with motor learning mechanisms. The association between upper limb motor recovery and beta activations reinforces the hypothesis that broader regions of the cortex activate during movement tasks as a compensatory mechanism in stroke patients with severe motor impairment. Therefore, EEG across BCI interventions could provide valuable information for prognosis and BCI cortical activity targets.
Collapse
Affiliation(s)
- Ruben I. Carino-Escobar
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
- Division of Research in Medical Engineering, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Paul Carrillo-Mora
- Neuroscience Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Raquel Valdés-Cristerna
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Marlene A. Rodriguez-Barragan
- Division of Neurological Rehabilitation, “Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Claudia Hernandez-Arenas
- Division of Neurological Rehabilitation, “Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Jimena Quinzaños-Fresnedo
- Division of Neurological Rehabilitation, “Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Marlene A. Galicia-Alvarado
- Department of Electrodiagnostic, .
National Institute of Rehabilitation, “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Jessica Cantillo-Negrete
- Division of Research in Medical Engineering, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| |
Collapse
|
30
|
Rosso C, Lamy JC. Does Resting Motor Threshold Predict Motor Hand Recovery After Stroke? Front Neurol 2018; 9:1020. [PMID: 30555404 PMCID: PMC6281982 DOI: 10.3389/fneur.2018.01020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Resting Motor threshold (rMT) is one of the measurement obtained by Transcranial Magnetic Stimulation (TMS) that reflects corticospinal excitability. As a functional marker of the corticospinal pathway, the question arises whether rMT is a suitable biomarker for predicting post-stroke upper limb function. To that aim, we conducted a systematic review of relevant studies that investigated the clinical significance of rMT in stroke survivors by using correlations between upper limb motor scores and rMT. Methods: Studies that reported correlations between upper limb motor function and rMT as a measure of corticospinal excitability in distal arm muscle were identified via a literature search in stroke patients. Two authors extracted the data using a home-made specific form. Subgroup analyses were carried out with patients classified with respect to time post-stroke onset (early vs. chronic stage) and stroke location (cortical, subcortical, or cortico-subcortical). Methodological quality of the study was also evaluated by a published checklist. Results: Eighteen studies with 22 groups (n = 508 stroke patients) were included in this systematic review. Mean methodological quality score was 14.75/24. rMT was often correlated with motor function or hand dexterity (n = 15/22, 68%), explaining on average 31% of the variance of the motor score. Moreover, the results did not seem impacted if patients were examined at the early or chronic stages of stroke. Two findings could not be properly interpreted: (i) the fact that the rMT is an independent predictor of motor function as several confounding factors are well-established, and, (ii) whether the stroke location impacts this prediction. Conclusion: Most of the studies found a correlation between rMT and upper limb motor function after stroke. However, it is still unclear if rMT is an independent predictor of upper limb motor function when taking into account for age, time post stroke onset and level of corticospinal tract damage as confounding factors. Clear-cut conclusions could not be drawn at that time but our results suggest that rMT could be a suitable candidate although future investigations are needed. Systematic Review Registration Number: (https://www.crd.york.ac.uk/prospero/): ID 114317.
Collapse
Affiliation(s)
- Charlotte Rosso
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.,APHP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Charles Lamy
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
31
|
A systematic review investigating the relationship of electroencephalography and magnetoencephalography measurements with sensorimotor upper limb impairments after stroke. J Neurosci Methods 2018; 311:318-330. [PMID: 30118725 DOI: 10.1016/j.jneumeth.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Predicting sensorimotor upper limb outcome receives continued attention in stroke. Neurophysiological measures by electroencephalography (EEG) and magnetoencephalography (MEG) could increase the accuracy of predicting sensorimotor upper limb recovery. NEW METHOD The aim of this systematic review was to summarize the current evidence for EEG/MEG-based measures to index neural activity after stroke and the relationship between abnormal neural activity and sensorimotor upper limb impairment. Relevant papers from databases EMBASE, CINHAL, MEDLINE and pubMED were identified. Methodological quality of selected studies was assessed with the Modified Downs and Black form. Data collected was reported descriptively. RESULTS Seventeen papers were included; 13 used EEG and 4 used MEG applications. Findings showed that: (a) the presence of somatosensory evoked potentials in the acute stage are related to better outcome of upper limb motor impairment from 10 weeks to 6 months post-stroke; (b) an interhemispheric imbalance of cortical oscillatory signals associated with upper limb impairment; and (c) predictive models including beta oscillatory cortical signal factors with corticospinal integrity and clinical measures could enhance upper limb motor prognosis. COMPARING WITH EXISTING METHOD The combination of neurological biomarkers with clinical measures results in higher statistical power than using neurological biomarkers alone when predicting motor recovery in stroke. CONCLUSIONS Alterations in neural activity by means of EEG and MEG are demonstrated from the early post-stroke stage onwards, and related to sensorimotor upper limb impairment. Future work exploring cortical oscillatory signals in the acute stage could provide further insight about prediction of upper limb sensorimotor recovery.
Collapse
|
32
|
Hesam-Shariati N, Trinh T, Thompson-Butel AG, Shiner CT, McNulty PA. A Longitudinal Electromyography Study of Complex Movements in Poststroke Therapy. 1: Heterogeneous Changes Despite Consistent Improvements in Clinical Assessments. Front Neurol 2017; 8:340. [PMID: 28804474 PMCID: PMC5532386 DOI: 10.3389/fneur.2017.00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022] Open
Abstract
Poststroke weakness on the more-affected side may arise from reduced corticospinal drive, disuse muscle atrophy, spasticity, and abnormal coordination. This study investigated changes in muscle activation patterns to understand therapy-induced improvements in motor-function in chronic stroke compared to clinical assessments and to identify the effect of motor-function level on muscle activation changes. Electromyography (EMG) was recorded from five upper limb muscles on the more-affected side of 24 patients during early and late therapy sessions of an intensive 14-day program of Wii-based Movement Therapy (WMT) and for a subset of 13 patients at 6-month follow-up. Patients were classified according to residual voluntary motor capacity with low, moderate, or high motor-function levels. The area under the curve was calculated from EMG amplitude and movement duration. Clinical assessments of upper limb motor-function pre- and post-therapy included the Wolf Motor Function Test, Fugl-Meyer Assessment and Motor Activity Log Quality of Movement scale. Clinical assessments improved over time (p < 0.01) with an effect of motor-function level (p < 0.001). The pattern of EMG change by late therapy was complex and variable, with differences between patients with low compared to moderate or high motor-function levels. The area under the curve (p = 0.028) and peak amplitude (p = 0.043) during Wii-tennis backhand increased for patients with low motor-function, whereas EMG decreased for patients with moderate and high motor-function levels. The reductions included movement duration during Wii-golf (p = 0.048, moderate; p = 0.026, high) and Wii-tennis backhand (p = 0.046, moderate; p = 0.023, high) and forehand (p = 0.009, high) and the area under the curve during Wii-golf (p = 0.018, moderate) and Wii-baseball (p = 0.036, moderate). For the pooled data over time, there was an effect of motor-function (p = 0.016) and an interaction between time and motor-function (p = 0.009) for Wii-golf movement duration. Wii-baseball movement duration decreased as a function of time (p = 0.022). There was an effect on Wii-tennis forehand duration for time (p = 0.002), an interaction of time and motor-function (p = 0.005) and an effect of motor-function level on the area under the curve (p = 0.034) for Wii-golf. This study demonstrated different patterns of EMG changes according to residual voluntary motor-function levels, despite heterogeneity within each level that was not evident following clinical assessments alone. Thus, rehabilitation efficacy might be underestimated by analyses of pooled data.
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Terry Trinh
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Angelica G. Thompson-Butel
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Christine T. Shiner
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Penelope A. McNulty
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
33
|
Piai V, Meyer L, Dronkers NF, Knight RT. Neuroplasticity of language in left-hemisphere stroke: Evidence linking subsecond electrophysiology and structural connections. Hum Brain Mapp 2017; 38:3151-3162. [PMID: 28345282 DOI: 10.1002/hbm.23581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 12/27/2022] Open
Abstract
The understanding of neuroplasticity following stroke is predominantly based on neuroimaging measures that cannot address the subsecond neurodynamics of impaired language processing. We combined behavioral and electrophysiological measures and structural-connectivity estimates to characterize neuroplasticity underlying successful compensation of language abilities after left-hemispheric stroke. We recorded the electroencephalogram from patients with stroke lesions to the left temporal lobe and from matched controls during context-driven word retrieval. Participants heard lead-in sentences that either constrained the final word ("He locked the door with the") or not ("She walked in here with the"). The last word was shown as a picture to be named. Individual-participant analyses were conducted, focusing on oscillatory power as a subsecond indicator of a brain region's functional neurophysiological computations. All participants named pictures faster following constrained than unconstrained sentences, except for two patients, who had extensive damage to the left temporal lobe. Left-lateralized alpha-beta oscillatory power decreased in controls pre-picture presentation for constrained relative to unconstrained contexts. In patients, the alpha-beta power decreases were observed with the same time course as in controls but were lateralized to the intact right hemisphere. The right lateralization depended on the probability of white-matter connections between the bilateral temporal lobes. The two patients who performed poorly behaviorally showed no alpha-beta power decreases. Our findings suggest that incorporating direct measures of neural activity into investigations of neuroplasticity can provide important neural markers to help predict language recovery, assess the progress of neurorehabilitation, and delineate targets for therapeutic neuromodulation. Hum Brain Mapp 38:3151-3162, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vitória Piai
- Radboud University, Donders Centre for Cognition, Nijmegen, the Netherlands.,Radboudumc, Department of Medical Psychology, Nijmegen, the Netherlands.,Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Center for Aphasia and Related Disorders, Veterans Affairs Northern California Health Care System, Martinez, California
| | - Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nina F Dronkers
- Center for Aphasia and Related Disorders, Veterans Affairs Northern California Health Care System, Martinez, California.,Department of Neurology, University of California, Davis, California.,Neurolinguistics Laboratory, National Research University Higher School of Economics, Moscow, Russia
| | - Robert T Knight
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California
| |
Collapse
|
34
|
Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging. Neuroimage 2016; 134:514-521. [PMID: 27090351 DOI: 10.1016/j.neuroimage.2016.04.032] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an absolute threshold of beta power that must be reached in order to move, and that an inability to suppress beta power to this threshold results in an increase in movement duration.
Collapse
|