1
|
Mustafin RN. Role of Retroelements in Frontotemporal Dementia Development. Front Biosci (Schol Ed) 2025; 17:25922. [PMID: 40150869 DOI: 10.31083/fbs25922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 03/29/2025]
Abstract
Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887).
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
2
|
Kour S, Fortuna T, Anderson EN, Mawrie D, Bilstein J, Sivasubramanian R, Ward C, Roy R, Rajasundaram D, Sterneckert J, Pandey UB. Drosha-dependent microRNAs modulate FUS-mediated neurodegeneration in vivo. Nucleic Acids Res 2023; 51:11258-11276. [PMID: 37791873 PMCID: PMC10639082 DOI: 10.1093/nar/gkad774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.
Collapse
Affiliation(s)
- Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Tyler Fortuna
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Jessica Bilstein
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Ramakrishnan Sivasubramanian
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
| | - Caroline Ward
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rishit Roy
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, 01307, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, 01307, Germany
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
3
|
Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain Res Bull 2023; 194:82-89. [PMID: 36681253 DOI: 10.1016/j.brainresbull.2023.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNAs) exhibit a crucial role in the pathogenesis and progress of neurodegenerative disorders. Recent studies have shown abnormal levels of miRNA expression in patients with amyotrophic lateral sclerosis (ALS). Clinical data also confirmed that miRNAs in these patients are inconsistent across studies. A comprehensive systematic review and meta-analysis of current studies can help recognize the important roles of miRNAs during ALS development. Therefore, we initially aimed to perform a systematic literature review on the muscle or serum miRNAs in patients with ALS and healthy individuals. Subsequently, we quantitatively summarized the clinical data of muscle or serum miRNA of patients with ALS and healthy individuals using a meta-analytical technique. 11 studies comprising 281 patients with ALS and 244 healthy control (HC) controls were identified from PubMed and Web of Science for meta-analysis. A systematic review revealed that miRNA levels are closely associated with the occurrence of ALS disease. The expression levels of the most relevant miRNAs were either increased or decreased. The random-effects meta-analysis indicated that the levels of miR-206, miR-133b, and miR-338-3p were significantly elevated in patients with ALS than in HC subjects. By contrast, there was no significant differences in the miR-133a levels between patients with ALS and HC subjects. Collectively, our outcomes demonstrated that serum miR-206, miR-133b, and miR-338-3p were significantly increased in patients with ALS. We speculated that the increased expression levels of miR-206, miR-133b and miR-338-3p are potential promising biomarkers for ALS.
Collapse
|
4
|
TDP-43 Proteinopathy Specific Biomarker Development. Cells 2023; 12:cells12040597. [PMID: 36831264 PMCID: PMC9954136 DOI: 10.3390/cells12040597] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
TDP-43 is the primary or secondary pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis, half of frontotemporal dementia cases, and limbic age-related TDP-43 encephalopathy, which clinically resembles Alzheimer's dementia. In such diseases, a biomarker that can detect TDP-43 proteinopathy in life would help to stratify patients according to their definite diagnosis of pathology, rather than in clinical subgroups of uncertain pathology. For therapies developed to target pathological proteins that cause the disease a biomarker to detect and track the underlying pathology would greatly enhance such undertakings. This article reviews the latest developments and outlooks of deriving TDP-43-specific biomarkers from the pathophysiological processes involved in the development of TDP-43 proteinopathy and studies using biosamples from clinical entities associated with TDP-43 pathology to investigate biomarker candidates.
Collapse
|
5
|
Pounders J, Hill EJ, Hooper D, Zhang X, Biesiada J, Kuhnell D, Greenland HL, Esfandiari L, Timmerman E, Foster F, Wang C, Walsh KB, Shatz R, Woo D, Medvedovic M, Langevin S, Sawyer RP. MicroRNA expression within neuronal-derived small extracellular vesicles in frontotemporal degeneration. Medicine (Baltimore) 2022; 101:e30854. [PMID: 36221381 PMCID: PMC9542922 DOI: 10.1097/md.0000000000030854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that are powerful regulators of gene expression and can affect the expression of hundreds of genes. miRNAs can be packed in small extracellular vesicles (SEV) and released into the extracellular space by neurons and microglia to act locally as well as pass through the blood-brain barrier and act systemically. We sought to understand the differences in neuronal SEV miRNA expression between frontotemporal dementia (FTD), Alzheimer's disease (AD), and healthy aging. Plasma was obtained from FTD, AD, and healthy aging participants that were matched based on age, sex, and race/ethnicity. Additionally, a subset of participants also provided paired cerebrospinal fluid samples to compare neuronal SEV miRNAs in plasma and cerebrospinal fluid. Neuronal SEV were isolated using differential ultracentrifugation and antibody conjugated Dynabeads® for the neuronal surface marker, L1CAM. RNA sequencing was performed. 12 FTD, 11 with AD, and 10 healthy aging participants were enrolled in the study. In FTD, SEV miRNA-181c was downregulated compared to healthy controls. In AD, miRNA-122 and miRNA-3591 were downregulated compared to those in healthy controls and FTD. Using an FDR <0.2, only miRNA-21-5p was found to have increased expression in the cerebrospinal fluid compared to plasma in a group of AD and FTD participants. SEV miRNA-181c is significantly downregulated in FTD compared to healthy controls and may mediate its effects through microglial-directed neuroinflammation and interaction with TAR DNA-binding protein 43 (TDP-43) based on pathway analysis. Additionally, the FOXO and Hippo pathways may be important mediators of FTD, based on pathway analysis. Lastly, because only one SEV miRNA was differentially expressed between the plasma and cerebrospinal fluid in paired samples, plasma represents an appropriate biofluid for studying neuronal SEV miRNA.
Collapse
Affiliation(s)
- Jonathan Pounders
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Emily J. Hill
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Destiny Hooper
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Xiang Zhang
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Jacek Biesiada
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Damaris Kuhnell
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Hannah L. Greenland
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Leyla Esfandiari
- University of Cincinnati, Department of Electrical Engineering and Computer Science, Cincinnati, OH, USA
- University of Cincinnati, Department of Biomedical Engineering, Cincinnati, OH, USA
| | - Emerlee Timmerman
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Forrest Foster
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- University of Cincinnati College of Medicine, Department of Cancer Biology, Cincinnati, OH, USA
| | - Kyle B. Walsh
- University of Cincinnati College of Medicine, Department of Emergency Medicine, Cincinnati, OH, USA
| | - Rhonna Shatz
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| | - Mario Medvedovic
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Scott Langevin
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Russell P. Sawyer
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Eitan C, Siany A, Barkan E, Olender T, van Eijk KR, Moisse M, Farhan SMK, Danino YM, Yanowski E, Marmor-Kollet H, Rivkin N, Yacovzada NS, Hung ST, Cooper-Knock J, Yu CH, Louis C, Masters SL, Kenna KP, van der Spek RAA, Sproviero W, Al Khleifat A, Iacoangeli A, Shatunov A, Jones AR, Elbaz-Alon Y, Cohen Y, Chapnik E, Rothschild D, Weissbrod O, Beck G, Ainbinder E, Ben-Dor S, Werneburg S, Schafer DP, Brown RH, Shaw PJ, Van Damme P, van den Berg LH, Phatnani H, Segal E, Ichida JK, Al-Chalabi A, Veldink JH, Hornstein E. Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3'UTR protect against ALS. Nat Neurosci 2022; 25:433-445. [PMID: 35361972 PMCID: PMC7614916 DOI: 10.1038/s41593-022-01040-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.
Collapse
Affiliation(s)
- Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Barkan
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kristel R van Eijk
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Marmor-Kollet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Sarah Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Shu-Ting Hung
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kevin P Kenna
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rick A A van der Spek
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - William Sproviero
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ahmad Al Khleifat
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Alfredo Iacoangeli
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Aleksey Shatunov
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ashley R Jones
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
| | - Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Elik Chapnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Daphna Rothschild
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Omer Weissbrod
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Beck
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sebastian Werneburg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Eran Segal
- Department of Computer Science And Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, United Kingdom
- King's College Hospital, Denmark Hill, London, United Kingdom
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Martinez B, Peplow PV. MicroRNA expression in animal models of amyotrophic lateral sclerosis and potential therapeutic approaches. Neural Regen Res 2022; 17:728-740. [PMID: 34472458 PMCID: PMC8530133 DOI: 10.4103/1673-5374.322431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
A review of recent animal models of amyotrophic lateral sclerosis showed a large number of miRNAs had altered levels of expression in the brain and spinal cord, motor neurons of spinal cord and brainstem, and hypoglossal, facial, and red motor nuclei and were mostly upregulated. Among the miRNAs found to be upregulated in two of the studies were miR-21, miR-155, miR-125b, miR-146a, miR-124, miR-9, and miR-19b, while those downregulated in two of the studies included miR-146a, miR-29, miR-9, and miR-125b. A change of direction in miRNA expression occurred in some tissues when compared (e.g., miR-29b-3p in cerebellum and spinal cord of wobbler mice at 40 days), or at different disease stages (e.g., miR-200a in spinal cord of SOD1(G93A) mice at 95 days vs. 108 and 112 days). In the animal models, suppression of miR-129-5p resulted in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and tended to improve motor neuron survival in the SOD1(G93A) mouse model. Suppression of miR-155 was also associated with increased lifespan, while lowering of miR-29a tended to improve lifespan in males and increase muscle strength in SOD1(G93A) mice. Overexpression of members of miR-17~92 cluster improved motor neuron survival in SOD1(G93A) mice. Treatment with an artificial miRNA designed to target hSOD1 increased lifespan and improved muscle strength in SOD1(G93A) animals. Further studies with animal models of amyotrophic lateral sclerosis are warranted to validate these findings and identify specific miRNAs whose suppression or directed against hSOD1 results in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and improved motor neuron survival in SOD1(G93A) animals.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Magen I, Yacovzada NS, Yanowski E, Coenen-Stass A, Grosskreutz J, Lu CH, Greensmith L, Malaspina A, Fratta P, Hornstein E. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat Neurosci 2021; 24:1534-1541. [PMID: 34711961 DOI: 10.1038/s41593-021-00936-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disease of the human motor neuron system, where variability in progression rate limits clinical trial efficacy. Therefore, better prognostication will facilitate therapeutic progress. In this study, we investigated the potential of plasma cell-free microRNAs (miRNAs) as ALS prognostication biomarkers in 252 patients with detailed clinical phenotyping. First, we identified, in a longitudinal cohort, miRNAs whose plasma levels remain stable over the course of disease. Next, we showed that high levels of miR-181, a miRNA enriched in neurons, predicts a greater than two-fold risk of death in independent discovery and replication cohorts (126 and 122 patients, respectively). miR-181 performance is similar to neurofilament light chain (NfL), and when combined together, miR-181 + NfL establish a novel RNA-protein biomarker pair with superior prognostication capacity. Therefore, plasma miR-181 alone and a novel miRNA-protein biomarker approach, based on miR-181 + NfL, boost precision of patient stratification. miR-181-based ALS biomarkers encourage additional validation and might enhance the power of clinical trials.
Collapse
Affiliation(s)
- Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Sarah Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Coenen-Stass
- Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany.,Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, London, UK
| | - Julian Grosskreutz
- Precision Neurology, Department of Neurology, University of Lübeck, Lübeck, Germany.,Center for Healthy Aging, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ching-Hua Lu
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, London, UK.,Neurology, School of Medicine, China Medical University and Hospital, Taichung, Taiwan.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,ALS Biomarkers Study, University College London, London, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, London, UK.,ALS Biomarkers Study, University College London, London, UK
| | - Andrea Malaspina
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, UK. .,UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, London, UK. .,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. .,ALS Biomarkers Study, University College London, London, UK.
| | - Pietro Fratta
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, UK. .,UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, London, UK. .,ALS Biomarkers Study, University College London, London, UK.
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. .,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
10
|
Chen TH. Circulating microRNAs as potential biomarkers and therapeutic targets in spinal muscular atrophy. Ther Adv Neurol Disord 2020; 13:1756286420979954. [PMID: 33488772 PMCID: PMC7768327 DOI: 10.1177/1756286420979954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterized by the selective loss of particular groups of motor neurons (MNs) in the anterior horn of the spinal cord with progressive muscle wasting. SMA is caused by a deficiency of the survival motor neuron (SMN) protein due to a homozygous deletion or mutation of the SMN1 gene. However, the molecular mechanisms whereby the SMN complex regulates MN functions are not fully elucidated. Emerging studies on SMA pathogenesis have turned the attention of researchers to RNA metabolism, given that increasingly identified SMN-associated modifiers are involved in both coding and non-coding RNA (ncRNA) processing. Among various ncRNAs, microRNAs (miRNAs) are the most studied in terms of regulation of posttranscriptional gene expression. Recently, the discovery that miRNAs are critical to MN function and survival led to the study of dysregulated miRNAs in SMA pathogenesis. Circulating miRNAs have drawn attention as a readily available biomarker due to their property of being clinically detectable in numerous human biofluids through non-invasive approaches. As there are recent promising findings from novel miRNA-based medicines, this article presents an extensive review of the most up-to-date studies connecting specific miRNAs to SMA pathogenesis and the potential applications of miRNAs as biomarkers and therapeutic targets for SMA.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Abstract
DICER1 is a highly conserved RNaseIII endoribonuclease that has a critical role in the biogenesis of microRNAs (miRNAs). miRNAs are small regulatory RNAs responsible for post-transcriptional gene silencing, controlling more than half of human protein-coding genes. This is achieved through the targeting and regulation of complementary RNA transcripts and has a well-documented role in post-transcriptional gene regulation and transposon repression. DICER1 deficiency results in dysregulation of miRNAs, changing the expression of many genes. DICER1 syndrome represents a collection of benign and malignant tumours arising from an autosomally inherited germline mutation leading to an inherited predisposition to cancer. The syndrome represents an unusual form of Knudson's two-hit hypothesis, where individuals with a pathogenic germline DICER1 variant acquire a second trans-somatic missense DICER1 mutation. This somatic mutation appears to have to occur in one of five hotspots codons and may contribute towards the incomplete penetrance observed within DICER1 syndrome families. In this case, DICER1 is haploinsuffcient with only one deletion required and partial loss of function being advantageous to tumours over complete loss of function. As increasing data emerge reaffirming the pivotal role of DICER1 in the maintenance of human physiology, DICER1 is likely to become an increasingly attractive target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Michelle Thunders
- Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - Brett Delahunt
- Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
12
|
Reichenstein I, Eitan C, Diaz-Garcia S, Haim G, Magen I, Siany A, Hoye ML, Rivkin N, Olender T, Toth B, Ravid R, Mandelbaum AD, Yanowski E, Liang J, Rymer JK, Levy R, Beck G, Ainbinder E, Farhan SMK, Lennox KA, Bode NM, Behlke MA, Möller T, Saxena S, Moreno CAM, Costaguta G, van Eijk KR, Phatnani H, Al-Chalabi A, Başak AN, van den Berg LH, Hardiman O, Landers JE, Mora JS, Morrison KE, Shaw PJ, Veldink JH, Pfaff SL, Yizhar O, Gross C, Brown RH, Ravits JM, Harms MB, Miller TM, Hornstein E. Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med 2020; 11:11/523/eaav5264. [PMID: 31852800 DOI: 10.1126/scitranslmed.aav5264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
Collapse
Affiliation(s)
- Irit Reichenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Project MinE ALS Sequencing Consortium
| | | | - Guy Haim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mariah L Hoye
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natali Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Revital Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amitai D Mandelbaum
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jing Liang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Beck
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly A Lennox
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Nicole M Bode
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 16, CH-3010 Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Murtenstrasse 40, CH-3008 Bern, Switzerland
| | | | - Giancarlo Costaguta
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kristel R van Eijk
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease (CGND) and New York Genome Center (NYGC) ALS Consortium, New York, NY 10013, USA
| | - Ammar Al-Chalabi
- Project MinE ALS Sequencing Consortium.,Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, Department of Basic and Clinical Neuroscience, Department of Neurology, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - A Nazli Başak
- Project MinE ALS Sequencing Consortium.,Koç University Translational Medicine Research Center, NDAL, Istanbul 34010, Turkey
| | - Leonard H van den Berg
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Orla Hardiman
- Project MinE ALS Sequencing Consortium.,Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin 2, Republic of Ireland
| | - John E Landers
- Project MinE ALS Sequencing Consortium.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jesus S Mora
- Project MinE ALS Sequencing Consortium.,ALS Unit, Hospital San Rafael, Madrid 28016, Spain
| | - Karen E Morrison
- Project MinE ALS Sequencing Consortium.,Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Project MinE ALS Sequencing Consortium.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Jan H Veldink
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John M Ravits
- Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA
| | - Matthew B Harms
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. .,Project MinE ALS Sequencing Consortium
| |
Collapse
|
13
|
Pham J, Keon M, Brennan S, Saksena N. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Int J Mol Sci 2020; 21:ijms21103464. [PMID: 32422969 PMCID: PMC7278980 DOI: 10.3390/ijms21103464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond traditional approaches in understanding amyotrophic lateral sclerosis (ALS), multiple recent studies in RNA-binding proteins (RBPs)-including transactive response DNA-binding protein (TDP-43) and fused in sarcoma (FUS)-have instigated an interest in their function and prion-like properties. Given their prominence as hallmarks of a highly heterogeneous disease, this prompts a re-examination of the specific functional interrelationships between these proteins, especially as pathological SOD1-a non-RBP commonly associated with familial ALS (fALS)-exhibits similar properties to these RBPs including potential RNA-regulatory capabilities. Moreover, the cytoplasmic mislocalization, aggregation, and co-aggregation of TDP-43, FUS, and SOD1 can be identified as proteinopathies akin to other neurodegenerative diseases (NDs), eliciting strong ties to disrupted RNA splicing, transport, and stability. In recent years, microRNAs (miRNAs) have also been increasingly implicated in the disease, and are of greater significance as they are the master regulators of RNA metabolism in disease pathology. However, little is known about the role of these proteins and how they are regulated by miRNA, which would provide mechanistic insights into ALS pathogenesis. This review seeks to discuss current developments across TDP-43, FUS, and SOD1 to build a detailed snapshot of the network pathophysiology underlying ALS while aiming to highlight possible novel therapeutic targets to guide future research.
Collapse
Affiliation(s)
- Jade Pham
- Faculty of Medicine, The University of New South Wales, Kensington, Sydney, NSW 2033, Australia;
| | - Matt Keon
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Samuel Brennan
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Nitin Saksena
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
- Correspondence:
| |
Collapse
|
14
|
Pourhaghighi R, Ash PEA, Phanse S, Goebels F, Hu LZM, Chen S, Zhang Y, Wierbowski SD, Boudeau S, Moutaoufik MT, Malty RH, Malolepsza E, Tsafou K, Nathan A, Cromar G, Guo H, Abdullatif AA, Apicco DJ, Becker LA, Gitler AD, Pulst SM, Youssef A, Hekman R, Havugimana PC, White CA, Blum BC, Ratti A, Bryant CD, Parkinson J, Lage K, Babu M, Yu H, Bader GD, Wolozin B, Emili A. BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst 2020; 10:333-350.e14. [PMID: 32325033 PMCID: PMC7938770 DOI: 10.1016/j.cels.2020.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
Collapse
Affiliation(s)
- Reza Pourhaghighi
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Regina, Regina, SK, Canada; Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Florian Goebels
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lucas Z M Hu
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Siwei Chen
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yingying Zhang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Shayne D Wierbowski
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | - Ramy H Malty
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Edyta Malolepsza
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Kalliopi Tsafou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Aparna Nathan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Graham Cromar
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Hongbo Guo
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ali Al Abdullatif
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Daniel J Apicco
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Ahmed Youssef
- Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA
| | - Carl A White
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS, Milan, Italy
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Gary D Bader
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Program in Neuroscience, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
15
|
Chen TH, Chen JA. Multifaceted roles of microRNAs: From motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife 2019; 8:e50848. [PMID: 31738166 PMCID: PMC6861003 DOI: 10.7554/elife.50848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.
Collapse
Affiliation(s)
- Tai-Heng Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical MedicineKaohsiung Medical University, Academia SinicaKaohsiungTaiwan
- Department of Pediatrics, Division of Pediatric EmergencyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
- Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jun-An Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical MedicineKaohsiung Medical University, Academia SinicaKaohsiungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
16
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Tung YT, Peng KC, Chen YC, Yen YP, Chang M, Thams S, Chen JA. Mir-17∼92 Confers Motor Neuron Subtype Differential Resistance to ALS-Associated Degeneration. Cell Stem Cell 2019; 25:193-209.e7. [PMID: 31155482 DOI: 10.1016/j.stem.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Progressive degeneration of motor neurons (MNs) is the hallmark of amyotrophic lateral sclerosis (ALS). Limb-innervating lateral motor column MNs (LMC-MNs) seem to be particularly vulnerable and are among the first MNs affected in ALS. Here, we report association of this differential susceptibility with reduced expression of the mir-17∼92 cluster in LMC-MNs prior to disease onset. Reduced mir-17∼92 is accompanied by elevated nuclear PTEN in spinal MNs of presymptomatic SOD1G93A mice. Selective dysregulation of the mir-17∼92/nuclear PTEN axis in degenerating SOD1G93A LMC-MNs was confirmed in a double-transgenic embryonic stem cell system and recapitulated in human SOD1+/L144F-induced pluripotent stem cell (iPSC)-derived MNs. We further show that overexpression of mir-17∼92 significantly rescues human SOD1+/L144F MNs, and intrathecal delivery of adeno-associated virus (AAV)9-mir-17∼92 improves motor deficits and survival in SOD1G93A mice. Thus, mir-17∼92 may have value as a prognostic marker of MN degeneration and is a candidate therapeutic target in SOD1-linked ALS. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ying-Tsen Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Chih Peng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
18
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
19
|
Shelkovnikova TA, Kukharsky MS, An H, Dimasi P, Alexeeva S, Shabir O, Heath PR, Buchman VL. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Mol Neurodegener 2018; 13:30. [PMID: 29859124 PMCID: PMC5984788 DOI: 10.1186/s13024-018-0263-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. METHODS Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. RESULTS We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. CONCLUSIONS Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA.
Collapse
Affiliation(s)
| | - Michail S Kukharsky
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
| | - Haiyan An
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Pasquale Dimasi
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Svetlana Alexeeva
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Osman Shabir
- The Sheffield Institute for Translational Neuroscience, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul R Heath
- The Sheffield Institute for Translational Neuroscience, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK.,Institute of Physiologically Active Compounds Russian Academy of Sciences, 1 Severniy proezd, Chernogolovka, Moscow Region, Russian Federation, 142432
| |
Collapse
|
20
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
21
|
Lehmkuhl EM, Zarnescu DC. Lost in Translation: Evidence for Protein Synthesis Deficits in ALS/FTD and Related Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:283-301. [PMID: 29916024 DOI: 10.1007/978-3-319-89689-2_11] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells utilize a complex network of proteins to regulate translation, involving post-transcriptional processing of RNA and assembly of the ribosomal unit. Although the complexity provides robust regulation of proteostasis, it also offers several opportunities for translational dysregulation, as has been observed in many neurodegenerative disorders. Defective mRNA localization, mRNA sequatration, inhibited ribogenesis, mutant tRNA synthetases, and translation of hexanucleotide expansions have all been associated with neurodegenerative disease. Here, we review dysregulation of translation in the context of age-related neurodegeneration and discuss novel methods to interrogate translation. This review primarily focuses on amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a spectrum disorder heavily associated with RNA metabolism, while also analyzing translational inhibition in the context of related neurodegenerative disorders such as Alzheimer's disease and Huntington's disease and the translation-related pathomechanisms common in neurodegenerative disease.
Collapse
Affiliation(s)
- Erik M Lehmkuhl
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA. .,Department of Neuroscience, University of Arizona, Tucson, AZ, USA. .,Department of Neurology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
22
|
A missense MT-ND5 mutation in differentiated Parkinson Disease cytoplasmic hybrid induces ROS-dependent DNA Damage Response amplified by DROSHA. Sci Rep 2017; 7:9528. [PMID: 28842646 PMCID: PMC5573376 DOI: 10.1038/s41598-017-09910-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Genome integrity is continuously threatened by endogenous sources of DNA damage including reactive oxygen species (ROS) produced by cell metabolism. Factors of the RNA interference (RNAi) machinery have been recently involved in the cellular response to DNA damage (DDR) in proliferating cells. To investigate the impact of component of RNAi machinery on DDR activation in terminally differentiated cells, we exploited cytoplasmic hybrid (cybrid) cell lines in which mitochondria of sporadic Parkinson’s disease patients repopulate neuroblastoma SH-SY5Y-Rho(0) cells. Upon differentiation into dopaminergic neuron-like cells, PD63 cybrid showed increased intracellular level of ROS and chronic DDR activation, compared to other cybrids with the same nuclear background. Importantly, DDR activation in these cells can be prevented by ROS scavenging treatment suggesting that ROS production is indeed causative of nuclear DNA damage. Sequence analysis of the mitogenomes identified a rare and heteroplasmic missense mutation affecting a highly conserved residue of the ND5-subunit of respiratory complex I, which accounts for ROS increase. We demonstrated that the assembly of nuclear DDR foci elicited by oxidative stress in these cells relies on DROSHA, providing the first evidence that components of RNAi machinery play a crucial role also in the mounting of ROS-induced DDR in non-replicating neuronal cells.
Collapse
|
23
|
Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017. [PMID: 28621768 DOI: 10.1038/nrneurol.2017.75] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities - such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling - in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.
Collapse
Affiliation(s)
- Lieke H Meeter
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative diseases, Institute of Neurology, Queen Square, University College London, London WC1N 3BG, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
24
|
Lange S, Gallagher M, Kholia S, Kosgodage US, Hristova M, Hardy J, Inal JM. Peptidylarginine Deiminases-Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release? Int J Mol Sci 2017; 18:ijms18061196. [PMID: 28587234 PMCID: PMC5486019 DOI: 10.3390/ijms18061196] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Exosomes and microvesicles (EMVs) are lipid bilayer-enclosed structures released from cells and participate in cell-to-cell communication via transport of biological molecules. EMVs play important roles in various pathologies, including cancer and neurodegeneration. The regulation of EMV biogenesis is thus of great importance and novel ways for manipulating their release from cells have recently been highlighted. One of the pathways involved in EMV shedding is driven by peptidylarginine deiminase (PAD) mediated post-translational protein deimination, which is calcium-dependent and affects cytoskeletal rearrangement amongst other things. Increased PAD expression is observed in various cancers and neurodegeneration and may contribute to increased EMV shedding and disease progression. Here, we review the roles of PADs and EMVs in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Biomedical Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK.
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark Gallagher
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Sharad Kholia
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Mariya Hristova
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1N 6HX, UK.
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
25
|
Jimenez-Pacheco A, Franco JM, Lopez S, Gomez-Zumaquero JM, Magdalena Leal-Lasarte M, Caballero-Hernandez DE, Cejudo-Guillén M, Pozo D. Epigenetic Mechanisms of Gene Regulation in Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:255-275. [DOI: 10.1007/978-3-319-53889-1_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a highly heterogeneous disease with no effective treatment. Drug development has been hampered by the lack of biomarkers that aid in early diagnosis, demonstrate target engagement, monitor disease progression, and can serve as surrogate endpoints to assess the efficacy of treatments. Fluid-based biomarkers may potentially address these issues. An ideal biomarker should exhibit high specificity and sensitivity for distinguishing ALS from control (appropriate disease mimics and other neurologic diseases) populations and monitor disease progression within individual patients. Significant progress has been made using cerebrospinal fluid, serum, and plasma in the search for ALS biomarkers, with urine and saliva biomarkers still in earlier stages of development. A few of these biomarker candidates have demonstrated use in patient stratification, predicting disease course (fast vs slow progression) and severity, or have been used in preclinical and clinical applications. However, while ALS biomarker discovery has seen tremendous advancements in the last decade, validating biomarkers and moving them towards the clinic remains more elusive. In this review, we highlight biomarkers that are moving towards clinical utility and the challenges that remain in order to implement biomarkers at all stages of the ALS drug development process.
Collapse
Affiliation(s)
- Lucas T Vu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
27
|
Benigni M, Ricci C, Jones AR, Giannini F, Al-Chalabi A, Battistini S. Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients. Neuromolecular Med 2016; 18:551-560. [PMID: 27119371 DOI: 10.1007/s12017-016-8396-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disorder. Since no diagnostic laboratory test exists, the identification of specific biomarkers could be fundamental in clinical practice. microRNAs (miRNAs) are considered promising biomarkers for neurodegenerative diseases. The aim of the study was to identify a CSF miRNA set that could differentiate ALS from non-ALS condition. miRNA profiling in CSF from ALS patients (n = 24; eight with C9orf72 expansion) and unaffected control subjects (n = 24) by quantitative reverse transcription PCR identified fourteen deregulated miRNAs. Validation experiments confirmed eight miRNAs as significantly deregulated in ALS. No significant differences were observed between ALS patients with or without C9orf72 expansion. The receiver operator characteristic (ROC) curve analyses revealed the highest diagnostic accuracy for the upregulated miR181a-5p and the downregulated miR21-5p and miR15b-5p. The miR181a-5p/miR21-5p and miR181a-5p/miR15b-5p ratios detected ALS with 90 and 85 % sensitivity and 87 and 91 % specificity, respectively, confirming the application potential as disease biomarkers. These deregulated miRNAs are implicated in apoptotic way and provide insight into processes responsible for motor neuron degeneration.
Collapse
Affiliation(s)
- Michele Benigni
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fabio Giannini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|