1
|
do Nascimento RS, Brum Marques JL, Soares Santos AR, Freire Royes LF, da Silva Fiorin F. Development and Application of a Novel Pressure System for Evaluating Trauma Severities Using a Physiological Approach After Traumatic Brain Injury in Rats. World Neurosurg 2023; 177:e354-e360. [PMID: 37352920 DOI: 10.1016/j.wneu.2023.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE The fluid percussion injury (FPI) model is a surgical method for mimicking traumatic brain injury (TBI) models as it automatically and accurately measures peak impact pressure. Nevertheless, its elevated costs have led numerous researchers to develop more inexpensive alternative methods. Therefore, we used a copy of the classic FPI device to develop a novel method to evaluate the pressure pulse and determine injury severity with even more precision during the surgical procedure to induce an injury. METHODS The electronic components, algorithms, and hardware assembly were initially studied. Adult male Wistar rats received 2 different impact forces, and our novel system measured the pressure pulse in atmospheres to verify the differences between mild and moderate severity and the physiological alterations. RESULTS The newly developed system was capable of detecting differences between mild and moderate severity, and severity parameters (e.g., apnea and unconsciousness) were more significant in animals with more moderate FPI than those with mild FPI. Additionally, electrocardiographic signals were modified 1 day after TBI, and mild and moderate FPI decreased R-wave peak to R-wave peak intervals (increased heart rate) and high frequency (HF) index as well as increased low frequency (LF) and low frequency/high frequency ratio indices. All electrocardiographic parameters evaluated were more expressive in the more moderate FPI than in the mild one, corroborating clinical heart impairments after TBI. CONCLUSIONS The method developed to evaluate pressure pulse in an FPI model proved capable of precisely determining different degrees of injury.
Collapse
Affiliation(s)
- Raphael Santos do Nascimento
- Programa de Pós-graduação em Engenharia Elétrica, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jefferson Luiz Brum Marques
- Programa de Pós-graduação em Engenharia Elétrica, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica e Eletrônica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adair Roberto Soares Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fernando da Silva Fiorin
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Fronczak KM, Li Y, Henchir J, Dixon CE, Carlson SW. Reductions in Synaptic Vesicle Glycoprotein 2 Isoforms in the Cortex and Hippocampus in a Rat Model of Traumatic Brain Injury. Mol Neurobiol 2021; 58:6006-6019. [PMID: 34435329 PMCID: PMC8602666 DOI: 10.1007/s12035-021-02534-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) can produce lasting cognitive, emotional, and somatic difficulties that can impact quality of life for patients living with an injury. Impaired hippocampal function and synaptic alterations have been implicated in contributing to cognitive difficulties in experimental TBI models. In the synapse, neuronal communication is facilitated by the regulated release of neurotransmitters from docking presynaptic vesicles. The synaptic vesicle glycoprotein 2 (SV2) isoforms SV2A and SV2B play central roles in the maintenance of the readily releasable pool of vesicles and the coupling of calcium to the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex responsible for vesicle docking. Recently, we reported the findings of TBI-induced reductions in presynaptic vesicle density and SNARE complex formation; however, the effect of TBI on SV2 is unknown. To investigate this, rats were subjected to controlled cortical impact (CCI) or sham control surgery. Abundance of SV2A and SV2B were assessed at 1, 3, 7, and 14 days post-injury by immunoblot. SV2A and SV2B were reduced in the cortex at several time points and in the hippocampus at every time point assessed. Immunohistochemical staining and quantitative intensity measurements completed at 14 days post-injury revealed reduced SV2A immunoreactivity in all hippocampal subregions and reduced SV2B immunoreactivity in the molecular layer after CCI. Reductions in SV2A abundance and immunoreactivity occurred concomitantly with motor dysfunction and spatial learning and memory impairments in the 2 weeks post-injury. These findings provide novel evidence for the effect of TBI on SV2 with implications for impaired neurotransmission neurobehavioral dysfunction after TBI.
Collapse
Affiliation(s)
- Katherine M Fronczak
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Youming Li
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Shaun W Carlson
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
3
|
Welzel L, Bergin DH, Schidlitzki A, Twele F, Johne M, Klein P, Löscher W. Systematic evaluation of rationally chosen multitargeted drug combinations: a combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiol Dis 2020; 149:105227. [PMID: 33347976 DOI: 10.1016/j.nbd.2020.105227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
Epileptogenesis, the gradual process that leads to epilepsy after brain injury or genetic mutations, is a complex network phenomenon, involving a variety of morphological, biochemical and functional brain alterations. Although risk factors for developing epilepsy are known, there is currently no treatment available to prevent epilepsy. We recently proposed a multitargeted, network-based approach to prevent epileptogenesis by rationally combining clinically available drugs and provided first proof-of-concept that this strategy is effective. Here we evaluated eight novel rationally chosen combinations of 14 drugs with mechanisms that target different epileptogenic processes. The combinations consisted of 2-4 different drugs per combination and were administered systemically over 5 days during the latent epileptogenic period in the intrahippocampal kainate mouse model of acquired temporal lobe epilepsy, starting 6 h after kainate. Doses and dosing intervals were based on previous pharmacokinetic and tolerability studies in mice. The incidence and frequency of spontaneous electrographic and electroclinical seizures were recorded by continuous (24/7) video linked EEG monitoring done for seven days at 4 and 12 weeks post-kainate, i.e., long after termination of drug treatment. Compared to vehicle controls, the most effective drug combination consisted of low doses of levetiracetam, atorvastatin and ceftriaxone, which markedly reduced the incidence of electrographic seizures (by 60%; p<0.05) and electroclinical seizures (by 100%; p<0.05) recorded at 12 weeks after kainate. This effect was lost when higher doses of the three drugs were administered, indicating a synergistic drug-drug interaction at the low doses. The potential mechanisms underlying this interaction are discussed. We have discovered a promising novel multitargeted combination treatment for modifying the development of acquired epilepsy.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - David H Bergin
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
4
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
5
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
6
|
Profound deficits in hippocampal synaptic plasticity after traumatic brain injury and seizure is ameliorated by prophylactic levetiracetam. Oncotarget 2018; 9:11515-11527. [PMID: 29545916 PMCID: PMC5837755 DOI: 10.18632/oncotarget.23923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022] Open
Abstract
Aim To determine the precise effects of post-traumatic seizure activity on hippocampal processes, we induced seizures at various intervals after traumatic brain injury (TBI) and analyzed plasticity at CA1 Schaffer collateral synapses. Material and Methods Rats were initially separated into two groups; one exposed solely to fluid percussion injury (FPI) at 2 Psi and the other only receiving kainic acid (KA)-induced seizures without FPI. Electrophysiological (ePhys) studies including paired-pulse stimulation for short-term presynaptic plasticity and long-term potentiation (LTP) of CA1 Schaffer collateral synapses of the hippocampus for post-synaptic function survey were followed at post-event 1 hour, 3 and 7 days respectively. Additional rats were exposed to three seizures at weekly intervals starting 1 week or 2 weeks after TBI and compared with seizures without TBI, TBI without seizures, and uninjured animals. An additional group placed under the same control variables were treated with levetiracetam prior to seizure induction. The ePhys studies related to post-TBI induced seizures were also followed in these additional groups. Results Seizures affected the short- and long-term synaptic plasticity of the hippocampal CA3-CA1 pathway. FPI itself suppressed LTP and field excitatory post synaptic potentials (fEPSP) in the CA1 Schaffer collateral synapses; KA-induced seizures that followed FPI further suppressed synaptic plasticity. The impairments in both short-term presynaptic and long-term plasticity were worse in the rats in which early post-TBI seizures were induced than those in which later post-TBI seizures were induced. Finally, prophylactic infusion of levetiracetam for one week after FPI reduced the synaptic plasticity deficits in early post-TBI seizure animals. Conclusion Our data indicates that synaptic plasticity (i.e., both presynaptic and postsynaptic) suppression occurs in TBI followed by a seizure and that the interval between the TBI and seizure is an important factor in the severity of the resulting deficits. Furthermore, the infusion of prophylactic levetiracetam could partially reverse the suppression of synaptic plasticity.
Collapse
|