1
|
Chau DDL, Yu Z, Chan WWR, Yuqi Z, Chang RCC, Ngo JCK, Chan HYE, Lau KF. The cellular adaptor GULP1 interacts with ATG14 to potentiate autophagy and APP processing. Cell Mol Life Sci 2024; 81:323. [PMID: 39080084 PMCID: PMC11335243 DOI: 10.1007/s00018-024-05351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
Autophagy is a highly conserved catabolic mechanism by which unnecessary or dysfunctional cellular components are removed. The dysregulation of autophagy has been implicated in various neurodegenerative diseases, including Alzheimer's disease (AD). Understanding the molecular mechanism(s)/molecules that influence autophagy may provide important insights into developing therapeutic strategies against AD and other neurodegenerative disorders. Engulfment adaptor phosphotyrosine-binding domain-containing protein 1 (GULP1) is an adaptor that interacts with amyloid precursor protein (APP) to promote amyloid-β peptide production via an unidentified mechanism. Emerging evidence suggests that GULP1 has a role in autophagy. Here, we show that GULP1 is involved in autophagy through an interaction with autophagy-related 14 (ATG14), which is a regulator of autophagosome formation. GULP1 potentiated the stimulatory effect of ATG14 on autophagy by modulating class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1) activity. The effect of GULP1 is attenuated by a GULP1 mutation (GULP1m) that disrupts the GULP1-ATG14 interaction. Conversely, PI3KC3-C1 activity is enhanced in cells expressing APP but not in those expressing an APP mutant that does not bind GULP1, which suggests a role of GULP1-APP in regulating PI3KC3-C1 activity. Notably, GULP1 facilitates the targeting of ATG14 to the endoplasmic reticulum (ER). Moreover, the levels of both ATG14 and APP are elevated in the autophagic vacuoles (AVs) of cells expressing GULP1, but not in those expressing GULP1m. APP processing is markedly enhanced in cells co-expressing GULP1 and ATG14. Hence, GULP1 alters APP processing by promoting the entry of APP into AVs. In summary, we unveil a novel role of GULP1 in enhancing the targeting of ATG14 to the ER to stimulate autophagy and, consequently, APP processing.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhicheng Yu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Wa Ray Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhai Yuqi
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Umeda T, Sakai A, Shigemori K, Nakata K, Nakajima R, Yamana K, Tomiyama T. New Value of Acorus tatarinowii/ gramineus Leaves as a Dietary Source for Dementia Prevention. Nutrients 2024; 16:1589. [PMID: 38892521 PMCID: PMC11175135 DOI: 10.3390/nu16111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizomes of Acorus tatarinowii Schott and Acorus gramineus Solander are widely used for treating amnesia in traditional Chinese medicine. In contrast, their leaves are usually discarded without their medicinal properties being known. Here, we found that the hot water extract of leaves improved cognition and tau pathology in model mice of frontotemporal dementia, similar to or even better than that of rhizomes. To explore the optimal method of processing, we made three preparations from dried leaves: hot water extract, extraction residue, and non-extracted simple crush powder. Among them, the simple crush powder had the strongest effect on tauopathy in mice. The crush powder also ameliorated Aβ and α-synuclein pathologies and restored cognition in mouse models of Alzheimer's disease and dementia with Lewy bodies. These findings suggest the potential of Acorus tatarinowii/gramineus leaves as a dietary source for dementia prevention and reveal that simple crushing is a better way to maximize their efficacy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
| | - Kunio Nakata
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Ryota Nakajima
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Kei Yamana
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| |
Collapse
|
3
|
Hu M, Ying X, Zheng M, Wang C, Li Q, Gu L, Zhang X. Therapeutic potential of natural products against Alzheimer's disease via autophagic removal of Aβ. Brain Res Bull 2024; 206:110835. [PMID: 38043648 DOI: 10.1016/j.brainresbull.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The pathological features of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include the deposition of extracellular amyloid beta (Aβ) plaques and intracellular tau neurofibrillary tangles. A decline in cognitive ability is related to the accumulation of Aβ in patients with AD. Autophagy, which is a primary intracellular mechanism for degrading aggregated proteins and damaged organelles, plays a crucial role in AD. In this review, we summarize the most recent research progress regarding the process of autophagy and the effect of autophagy on Aβ. We further discuss some typical monomers of natural products that contribute to the clearance of Aβ by autophagy, which can alleviate AD. This provides a new perspective for the application of autophagy modulation in natural product therapy for AD.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Xinyi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
4
|
Ning Z, Zhong X, Wu Y, Wang Y, Hu D, Wang K, Deng M. β-asarone improves cognitive impairment and alleviates autophagy in mice with vascular dementia via the cAMP/PKA/CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155215. [PMID: 38039902 DOI: 10.1016/j.phymed.2023.155215] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Vascular dementia (VD) is the second most common type of dementia after Alzheimer's disease. β-asarone, a major component of Acorus tatarinowii Schott, is important in neurodegenerative and neurovascular diseases. Studies have confirmed that β-asarone can mitigate autophagy and reduce damage in hypoxic cells. We also reported that β-asarone improves learning and memory. This study further clarifies whether β-asarone attenuates cerebral ischaemic injury by acting through the cAMP/PKA/CREB pathway in VD model mice. METHODS Here, genes and potential pathways that may be targeted by β-asarone for the treatment of transient cerebral ischaemia (TCI) and cognitive impairment (CI) were obtained using network pharmacology. The two-vessel occlusion method was used to establish the VD model. The Morris water maze test was used to evaluate the effects on memory. Then, the protein levels of mitofusin-2 (Mfn2), brain-derived neurotrophic factor (BDNF), optic atrophy 1 (OPA1), cyclic adenosine monophosphate (cAMP), myelin basic protein (MBP), matrix metalloproteinase-9 (MMP9) and neuron specific enolase (NSE) were determined by ELISA. The levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were measured using commercial kits. Then, qRT-PCR was employed to investigate the expression of the candidate genes screened from the protein-protein interaction (PPI) network. Furthermore, the expression of the autophagy-related proteins Beclin-1, (microtubule-associated protein light chain 3) LC3, p62, postsynaptic density protein 95 (PSD95), protein kinase A (PKA), pPKA, cyclic-AMP response binding protein (CREB), and pCREB was determined by western blotting. The expression of autophagy-related proteins, PSD95 and translocase of outer mitochondrial membrane 20 (TOM20) was determined by immunofluorescence analyses. RESULTS The network pharmacological analysis showed 234 targets related to β-asarone, 1,118 genes related to TCI and 2,039 genes associated with CI. Our results confirm that β-asarone treatment not only alleviated brain damage in the VD model by improving mitochondrial and synaptic function, reducing neuronal injury and upregulating the expression of antioxidants but also effectively improved the cognitive behaviour of VD model mice. Moreover, β-asarone downregulated VD-induced RELA and CCND1 mRNA expression. In addition, we validated that β-asarone increased the phosphorylation of PKA and CREB and upregulated cAMP protein expression. The results showed that the cAMP/PKA/CREB signalling pathway was upregulated. Moreover, β-asarone administration decreased the protein expression levels of Beclin-1 and LC3 and increased the expression levels of p62 in VD model mice. CONCLUSIONS β-asarone inhibits Beclin-1-dependent autophagy and upregulates the cAMP/PKA/CREB signalling pathway to attenuate mitochondrial and synaptic damage from cerebral ischaemia and improve learning and cognitive abilities in VD model mice.
Collapse
Affiliation(s)
- Zhenqiu Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaoqin Zhong
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanan Wu
- Department of Anaesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Dafeng Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Kai Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Minzhen Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, PR China.
| |
Collapse
|
5
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. PHYTOCHEMISTRY 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
6
|
Ma Y, Li Y, Yin R, Guo P, Lei N, Li G, Xiong L, Xie Y. Therapeutic potential of aromatic plant extracts in Alzheimer's disease: Comprehensive review of their underlying mechanisms. CNS Neurosci Ther 2023. [PMID: 37122144 DOI: 10.1111/cns.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
AIMS The aim of this review is to outline recent advancements in the application and mechanistic studies of aromatic plant extracts in Alzhermer`s disease (AD) to demonstrate their value in the management of this disease. BACKGROUND AD is a neurodegenerative disease with a complex pathogenesis characterized by severe cognitive impairment. Currently, there are very few drugs available for the treatment of AD, and treatments are primarily focused on symptom relief. Aromatherapy is a traditional complementary alternative therapy that focuses on the prevention and treatment of the disease through the inhalation or transdermal administration of aromatic plant extracts. Over the past few years, studies on the use of aromatic plant extracts for the treatment of AD have been increasing and have demonstrated a definitive therapeutic effect. METHODS We systematically summarized in vitro, in vivo, and clinical studies focusing on the potential use of aromatic plant extracts in the treatment of AD in PubMed, ScienceDirect, Google Scholar, and the Chinese National Knowledge Infrastructure from 2000 to 2022. RESULTS Our literature survey indicates that aromatic plant extracts exert anti-AD effects by modulating pathological changes through anti-amyloid, anti-tau phosphorylation, anti-cholinesterase, anti-inflammation, and anti-oxidative stress mechanisms (Figure 1). CONCLUSION This review provides a future strategy for the research of novel anti-AD drugs from aromatic plant extracts.
Collapse
Affiliation(s)
- Yue Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingming Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Run Yin
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
| | - Nai Lei
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
| | - Lei Xiong
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yuhuan Xie
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| |
Collapse
|
7
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
8
|
Shi A, Long Y, Ma Y, Yu S, Li D, Deng J, Wen J, Li X, Wu Y, He X, Hu Y, Li N, Hu Y. Natural essential oils derived from herbal medicines: A promising therapy strategy for treating cognitive impairment. Front Aging Neurosci 2023; 15:1104269. [PMID: 37009463 PMCID: PMC10060871 DOI: 10.3389/fnagi.2023.1104269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Cognitive impairment (CI), mainly Alzheimer’s disease (AD), continues to increase in prevalence and is emerging as one of the major health problems in society. However, until now, there are no first-line therapeutic agents for the allopathic treatment or reversal of the disease course. Therefore, the development of therapeutic modalities or drugs that are effective, easy to use, and suitable for long-term administration is important for the treatment of CI such as AD. Essential oils (EOs) extracted from natural herbs have a wide range of pharmacological components, low toxicity, and wide sources, In this review, we list the history of using volatile oils against cognitive disorders in several countries, summarize EOs and monomeric components with cognitive improvement effects, and find that they mainly act by attenuating the neurotoxicity of amyloid beta, anti-oxidative stress, modulating the central cholinergic system, and improving microglia-mediated neuroinflammation. And combined with aromatherapy, the unique advantages and potential of natural EOs in the treatment of AD and other disorders were discussed. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in the treatment of CI.
Collapse
Affiliation(s)
- Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Nan Li,
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yuan Hu,
| |
Collapse
|
9
|
Xiao QH, Sun XH, Cui ZQ, Hu XY, Yang T, Guan JW, Gu Y, Li HY, Zhang HY. TMEM16F may be a new therapeutic target for Alzheimer’s disease. Neural Regen Res 2023; 18:643-651. [DOI: 10.4103/1673-5374.350211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
11
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Ukkirapandian K, E K, Udaykumar KP, Kandhi S, R M. The Neuroprotective Role of Acorus calamus in Developmental and Histopathological Changes in Autism-Induced Wistar Rats. Cureus 2022; 14:e29717. [PMID: 36340563 PMCID: PMC9621743 DOI: 10.7759/cureus.29717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder, and a tremendous increase in the incidence of autism poses challenges in identifying the different treatment modalities. Since the defined etiology, pathophysiology, and treatment of autism are unavailable, translational research is being done by creating animal models of autism. This study aimed to assess the effects of Acorus calamus on developmental and histopathological changes in autism-induced Wistar rats. Materials and methods A rat model of autism was created by administering sodium valproate on the 12th day of pregnancy, and rat pups of this group were considered autism-induced. Rat pups of pregnant rats who had received normal saline on the 12th day of pregnancy were considered group I (negative control group). Neural reflexes were assessed in early postnatal days (PND) to confirm the development of autism. Autism-induced rat pups were divided into the following two groups: group II, autism (positive control group), and group III, autism + A. calamus (drug-treated group). On the 21st postnatal day (PND), group III was given an ethanolic extract of A. calamus (200 mg/kg), and group I and group II were given normal saline orally for 15 days. After 15 days of drug exposure, at 36thPND, the rats were sacrificed, and brain tissue was collected for histopathological analysis. Results When compared to the negative control group, autism-induced rat pups showed delayed appearance of neurological reflexes. Neurodegenerative changes were well appreciated in group II (autism-induced rats) than in group III (autism + A. calamus). In the histomorphometric analysis, group II showed a significant reduction in the number of neurons in the frontal cortex and Purkinje cells in the cerebellum. However, when compared to group II, group III (autism treated with A. calamus) did not show significant alteration. Conclusion Valproate exposure at mid-pregnancy creates autism by disturbing neural structures among rat pups. This was clinically represented as the delayed appearance of neural reflexes. Acorus calamus in the early postnatal period protects rat pups’ brain morphology against autism pathology.
Collapse
|
13
|
Du XY, Cao YS, Yang J, Guo LC, Zhang T, Yuan Q, Chen X, Hu LM. Preclinical evidence and possible mechanisms of β-asarone for rats and mice with Alzheimer’s disease: A systematic review and meta-analysis. Front Pharmacol 2022; 13:956746. [PMID: 36120381 PMCID: PMC9471869 DOI: 10.3389/fphar.2022.956746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Currently, there are many different drugs to improve Alzheimer’s disease (AD) from different pathways. As a supplement and alternative medicine, traditional Chinese medicine (TCM) targets multiple pathways which may be different from classical Western medicine, which may be orchestrated with Western medicine to materialize multiplying efficacy in AD patients.Objective: To investigate the therapeutic effect and assess the available preclinical evidence and possible mechanisms of β-asarone which was extracted from Acorus gramineus Soland (Araceae, AGS) for AD based on rat and mouse animal models.Methods: PubMed, Embase, Scopus, Cochrane Library, BIOSIS Previews, Web of Science, EBSCO, and Google Scholar were searched from inception to 5 May 2022. Rat and mouse experiments assessing the therapeutic effects of β-asarone for AD were included. Primary outcomes were neuroethology, including escape latency and times of crossing platform. Second outcomes were cell apoptosis, including Bax and Bcl-2. The weighted mean difference (WMD) was generated for continuous variables. The relative outcomes were analyzed with the aid of Get Data Graph Digitizer 2.26 and software STATA version 16.0 MP.Results: For the primary endpoint, compared with the modeling group, β-asarone significantly decreased the escape latency (WMD = -12.61, 95% CI: -18.66 to -6.57) and increased the times of crossing platform (WMD = 1.50, 95% CI: 0.31–2.70). For the secondary endpoint, β-asarone remarkably reduced the relative expression of the amyloid precursor protein (APP) (WMD = −2.25, 95% CI: −2.49 to −2.01), decreased the expression of the apoptosis-related protein, associated X protein (Bax) (WMD = −2.40, 95% CI: −3.51 to −1.29), lowered the expression of apoptosis-related protein, B-cell lymphoma-2 (Bcl-2) (WMD = 0.42, 95% CI: 0.38–0.46), and decreased the signal pathway-related proteins, phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) (WMD = −0.70, 95% CI: −0.93 to −0.47) over the control group.Conclusion: β-asarone spectacularly improved the learning ability and memory in rats and mice, which might be correlated with its potential neuroprotective effect through multiple signaling pathways.
Collapse
Affiliation(s)
- Xin-Yuan Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Shuang Cao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Juan Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Chen Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tong Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Health, Brooks College (Sunnyvale), Milpitas, CA, United States
- Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, China
| | - Li-min Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Pharmacology, State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Li-min Hu,
| |
Collapse
|
14
|
Wang T, Zhang X, Wang Y, Liu W, Wang L, Hao L, Ju M, Xiao R. High cholesterol and 27-hydroxycholesterol contribute to phosphorylation of tau protein by impairing autophagy causing learning and memory impairment in C57BL/6J mice. J Nutr Biochem 2022; 106:109016. [DOI: 10.1016/j.jnutbio.2022.109016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
15
|
Study on the Mechanism of Acori Graminei Rhizoma in the Treatment of Alzheimer's Disease Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2021:5418142. [PMID: 34977242 PMCID: PMC8720003 DOI: 10.1155/2021/5418142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer's disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of "drug-active ingredient-ingredient target." A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer's disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer's signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.
Collapse
|
16
|
Deng Z, Dong Y, Zhou X, Lu JH, Yue Z. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm Sin B 2021; 12:1688-1706. [PMID: 35847516 PMCID: PMC9279633 DOI: 10.1016/j.apsb.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation. Emerging evidence suggests dysfunctional autophagy clearance pathway as a potential cellular mechanism underlying the pathogenesis of AD in affected neurons. Here we summarize the current evidence for autophagy dysfunction in the pathophysiology of AD and discuss the role of autophagy in the regulation of AD-related protein degradation and neuroinflammation in neurons and glial cells. Finally, we review the autophagy modulators reported in the treatment of AD models and discuss the obstacles and opportunities for potential clinical application of the novel autophagy activators for AD therapy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Xiaoting Zhou
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
- Corresponding authors.
| | - Zhenyu Yue
- Department of Neurology, the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding authors.
| |
Collapse
|
17
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
18
|
Wang N, Wang H, Pan Q, Kang J, Liang Z, Zhang R. The Combination of β-Asarone and Icariin Inhibits Amyloid- β and Reverses Cognitive Deficits by Promoting Mitophagy in Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7158444. [PMID: 34887998 PMCID: PMC8651403 DOI: 10.1155/2021/7158444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
β-Asarone is the main constituent of Acorus tatarinowii Schott and exhibits important effects in diseases such as neurodegenerative and neurovascular diseases. Icariin (ICA) is a major active ingredient of Epimedium that has attracted increasing attention because of its unique pharmacological effects in degenerative disease. In this paper, we primarily explored the effects of the combination of β-asarone and ICA in clearing noxious proteins and reversing cognitive deficits. The accumulation of damaged mitochondria and mitophagy are hallmarks of aging and age-related neurodegeneration, including Alzheimer's disease (AD). Here, we provide evidence that autophagy/mitophagy is impaired in the hippocampus of APP/PS1 mice and in Aβ1-42-induced PC12 cell models. Enhanced mitophagic activity has been reported to promote Aβ and tau clearance in in vitro and in vivo models. Meanwhile, there is growing evidence that treatment of AD should be preceded by intervention before the formation of pathological products. The efficacy of the combination therapy was better than that of the individual therapies applied separately. Then, we found that the combination therapy also inhibited cell and mitochondrial damage by inducing autophagy/mitophagy. These findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis, and that combination treatment with mitophagy inducers represents a potential strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Nanbu Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qi Pan
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jian Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwen Liang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ronghua Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer's disease: a valuable target to stimulate or suppress? Cell Stress Chaperones 2021; 26:871-887. [PMID: 34386944 PMCID: PMC8578535 DOI: 10.1007/s12192-021-01231-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Among the long list of age-related complications, Alzheimer's disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.
Collapse
Affiliation(s)
- Elham Razani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Department of Neurology, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Shanaki-Bavarsad
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
21
|
Ma M, Liu Z, Gao N, Dong K, Pi Z, Kang L, Du X, Ren J, Qu X. Near-infrared target enhanced peripheral clearance of amyloid-β in Alzheimer's disease model. Biomaterials 2021; 276:121065. [PMID: 34391018 DOI: 10.1016/j.biomaterials.2021.121065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 12/29/2022]
Abstract
Clearance of peripheral amyloid-β (Aβ) has been demonstrated particularly promising for overcoming the blood-brain barrier (BBB) hurdle to remove brain-derived Aβ associated with Alzheimer's disease (AD). However, currently used therapeutic agents targeting peripheral Aβ cannot simultaneously achieve plasma Aβ enrichment and enhanced clearance, which may result in poor bioavailability and rather low efficacy. Moreover, most of therapeutic agents usually promote the unfavorable aggregation of Aβ. Herein, we construct a near-infrared (NIR) regulated surface-transformable and target peptide-guided upconversion platform (UCNP/ONA-P/K), serving as a safe and effective way for Aβ clearance. Taking advantage of extended blood circulation, high selectivity toward Aβ, and surface-transformable property, such UCNP/ONA-P/K can address the challenges of peripheral Aβ clearance by a combination of enhancing the enrichment of plasma Aβ, preventing the unfavorable aggregation of Aβ and simultaneously facilitating the hepatic clearance of the captured Aβ. After verified by a series of systematic toxicity evaluation, cell uptake, deep tissue penetration, and hemolytic experiments, in vivo studies demonstrate that UCNP/ONA-P/K can efficiently decrease brain Aβ burden and reverse memory deficits in 3xTg-AD mice. Overall, this NIR multi-functional design provides a new biocompatible and efficient way for Aβ removal, which will promote the application of peripheral clearance of Aβ for AD treatment.
Collapse
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Lihua Kang
- Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin, 130061, PR China.
| |
Collapse
|
22
|
Nikbakhtzadeh M, Shaerzadeh F, Ashabi G. Highlighting the protective or degenerative role of AMPK activators in dementia experimental models. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:786-801. [PMID: 34042039 DOI: 10.2174/1871527320666210526160214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a driving or deterrent factor in the development of neurodegenerative diseases and dementia. AMPK affects intracellular proteins like the mammalian target of rapamycin (mTOR). Peroxisome proliferator-activated receptor-γ coactivator 1-α (among others) contributes to a wide range of intracellular activities based on its downstream molecules such as energy balancing (ATP synthesis), extracellular inflammation, cell growth, and neuronal cell death (such as apoptosis, necrosis, and necroptosis). Several studies have looked at the dual role of AMPK in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington disease (HD) but the exact effect of this enzyme on dementia, stroke, and motor neuron dysfunction disorders has not been elucidated yet. In this article, we review current research on the effects of AMPK on the brain to give an overview of the relationship. More specifically, we review the neuroprotective or neurodegenerative effects of AMPK or AMPK activators like metformin, resveratrol, and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside on neurological diseases and dementia, which exert through the intracellular molecules involved in neuronal survival or death.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, United States
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Modulatory Effects of Autophagy on APP Processing as a Potential Treatment Target for Alzheimer's Disease. Biomedicines 2020; 9:biomedicines9010005. [PMID: 33374126 PMCID: PMC7824196 DOI: 10.3390/biomedicines9010005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the formation of intracellular aggregate composed of heavily phosphorylated tau protein and extracellular deposit of amyloid-β (Aβ) plaques derived from proteolysis cleavage of amyloid precursor protein (APP). Autophagy refers to the lysosomal-mediated degradation of cytoplasmic constituents, which plays a critical role in maintaining cellular homeostasis. Importantly, recent studies reported that dysregulation of autophagy is associated in the pathogenesis of AD, and therefore, autophagy modulation has gained attention as a promising approach to treat AD pathogenesis. In AD, both the maturation of autolysosomes and its retrograde transports have been obstructed, which causes the accumulation of autophagic vacuoles and eventually leads to degenerating and dystrophic neurites function. However, the mechanism of autophagy modulation in APP processing and its pathogenesis have not yet been fully elucidated in AD. In the early stage of AD, APP processing and Aβ accumulation-mediated autophagy facilitate the removal of toxic protein aggregates via mTOR-dependent and -independent pathways. In addition, a number of autophagy-related genes (Atg) and APP are thought to influence the development of AD, providing a bidirectional link between autophagy and AD pathology. In this review, we summarized the current observations related to autophagy regulation and APP processing in AD, focusing on their modulation associated with the AD progression. Moreover, we emphasizes the application of small molecules and natural compounds to modulate autophagy for the removal and clearance of APP and Aβ deposits in the pathological condition of AD.
Collapse
|
25
|
Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed Pharmacother 2020; 133:110968. [PMID: 33189067 DOI: 10.1016/j.biopha.2020.110968] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Jia Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Cheng-Fu Su
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | | | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Gang Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
26
|
Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020; 8:555409. [PMID: 33072744 PMCID: PMC7536349 DOI: 10.3389/fcell.2020.555409] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
27
|
Hei X, Xie M, Xu J, Li J, Liu T. β-Asarone Exerts Antioxidative Effects on H 2O 2-Stimulated PC12 Cells by Activating Nrf2/HO-1 Pathway. Neurochem Res 2020; 45:1953-1961. [PMID: 32623664 DOI: 10.1007/s11064-020-03060-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress-mediated neuron damage is considered an important contributor to the pathogenesis and development of neurodegenerative diseases. Although β-asarone is widely known for its neuroprotective pharmacological properties, the exact mechanism of β-asarone against oxidative stress has not been fully elucidated. The aim of the present study was to investigate underlying mechanisms of β-asarone against oxidative damage in PC12 cells. Our results demonstrated that the treatment of β-asarone significantly alleviated the reduction in cell viability and the excessive accumulation of lactate dehydrogenase (LDH), malondialdehyde (MDA) and reactive oxygen species (ROS) by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). Moreover, β-asarone pretreatment also activated nuclear factor 2 erythroid-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1), which was involved in quenching reactive oxygen to inhibit oxidative stress. Furthermore, when silenced by Nrf2 siRNA, the protective effect of β-asarone was reduced and the oxidative stress induced by H2O2 was enhanced. In conclusion, our findings revealed that β-asarone could reduce oxidative stress via activating Nrf2/HO-1 pathway in PC12 cells, highlighting the potential therapeutic role of β-asarone in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinxin Hei
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Liyang City Hospital of TCM, Changzhou, China
| | - Miao Xie
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingqian Xu
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjin Li
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Liu
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
28
|
Dynamic Changes of Beclin-1 in the Hippocampus of Male Mice with Vascular Dementia at Different Time Points. J Mol Neurosci 2020; 70:1611-1618. [DOI: 10.1007/s12031-020-01591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
|
29
|
Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of Vacha ( Acorus calamus Linn.) in Neurological and Metabolic Disorders: Evidence from Ethnopharmacology, Phytochemistry, Pharmacology and Clinical Study. J Clin Med 2020; 9:E1176. [PMID: 32325895 PMCID: PMC7230970 DOI: 10.3390/jcm9041176] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Vacha (Acorus calamus Linn. (Acoraceae)) is a traditional Indian medicinal herb, which is practiced to treat a wide range of health ailments, including neurological, gastrointestinal, respiratory, metabolic, kidney, and liver disorders. The purpose of this paper is to provide a comprehensive up-to-date report on its ethnomedicinal use, phytochemistry, and pharmacotherapeutic potential, while identifying potential areas for further research. To date, 145 constituents have been isolated from this herb and identified, including phenylpropanoids, sesquiterpenoids, and monoterpenes. Compelling evidence is suggestive of the biopotential of its various extracts and active constituents in several metabolic and neurological disorders, such as anticonvulsant, antidepressant, antihypertensive, anti-inflammatory, immunomodulatory, neuroprotective, cardioprotective, and anti-obesity effects. The present extensive literature survey is expected to provide insights into the involvement of several signaling pathways and oxidative mechanisms that can mitigate oxidative stress, and other indirect mechanisms modulated by active biomolecules of A. calamus to improve neurological and metabolic disorders.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - DevNath Singh Gautam
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
- Institute for research and Innovation in Heath (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|
30
|
Liu Y, Huang X, Chen W, Chen Y, Wang N, Wu X. The Effects of Yuan-Zhi Decoction and Its Active Ingredients in Both In Vivo and In Vitro Models of Chronic Cerebral Hypoperfusion by Regulating the Levels of A β and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6807879. [PMID: 32184897 PMCID: PMC7060441 DOI: 10.1155/2020/6807879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is closely related to the occurrence of Alzheimer's disease (AD) in the elderly. CCH can induce overactivation of autophagy, which increases the deposition of amyloid-β (Aβ) plaques in the brain, eventually impairing the cognitive function. Yuan-Zhi decoction (YZD) is a traditional Chinese medicine (TCM) formulation that is used to treat cognitive dysfunction in the elderly, but the specific mechanism is still unclear. In this study, we simulated CCH in a rat model through bilateral common carotid artery occlusion (BCCAO) and treated the animals with YZD. Standard neurological tests indicated that YZD significantly restored the impaired cognitive function after BCCAO in a dose-dependent manner. Furthermore, YZD also decreased the levels of Aβ aggregates and the autophagy-related proteins ATG5 and ATG12 in their hippocampus. An in vitro model of CCH was also established by exposing primary rat hippocampal neurons to hypoxia and hypoglycemia (H-H). YZD and its active ingredients increased the survival of these neurons and decreased the levels of Aβ1-40 and Aβ1-42, autophagy-related proteins Beclin-1 and LC3-II, and the APP secretases BACE1 and PS-1. Finally, both Aβ aggregates showed a positive statistical correlation with the expression levels of the above proteins. Taken together, YZD targets Aβ, autophagy, and APP-related secretases to protect the neurons from hypoxic-ischemic injury and restore cognitive function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenqiang Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yujing Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ningqun Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiling Wu
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
31
|
Wang N, Wang H, Li L, Li Y, Zhang R. β-Asarone Inhibits Amyloid-β by Promoting Autophagy in a Cell Model of Alzheimer's Disease. Front Pharmacol 2020; 10:1529. [PMID: 32009952 PMCID: PMC6979317 DOI: 10.3389/fphar.2019.01529] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia that causes memory, thinking, and behavior problems. The most important feature of AD is the gradual irreversible loss of cognitive ability through the formation of amyloid β (Aβ) plaques and neurofibrillary tangles composed of tau protein. The metabolism of Aβ and tau proteins is closely related to and is affected by autophagy. Current research speculates that autophagy dysfunction leads to an increase in harmful proteins in AD. β-Asarone is the main constituent of Acorus tatarinowii Schott and has important effects on the central nervous system. In this paper, we primarily explored the effects of β-asarone on the clearance of noxious proteins and the associated potential mechanisms via autophagy in a PC12 cell AD model. A CCK-8 assay and LDH experiments were used to assess cell viability/toxicity, and SPiDER-βGal was used to detect cellular senescence. The important proteins associated with the pathogenesis of AD including APP, PS1, Aβ, BACE1, and SYN1 were analyzed by immunofluorescence (IF) and Western blot analysis. Antimycin A (A3) and cyclosporine A (CSA) were selected as the activators and inhibitors of autophagy, respectively. LC3, BECN, P62, PINK1, and Parkin protein expression were also examined by IF and Western blot analysis. The data showed that β-asarone administration significantly dose-dependently increased cell proliferation and decreased cytotoxicity; moreover, β-asarone inhibited SA-βGal and improved cell senescence. The results further showed that, compared to the model, APP, PS1, Aβ, BACE1, and p62 were reduced, while SYN1, BECN1, and LC3 were increased after treatment with β-asarone. The results of Canonical Correlation Analysis (CCA) showed a highly significant relationship between the pathological factors of AD and the protein expression of autophagy. In conclusion, our study demonstrated that β-asarone can inhibit Aβ, and this effect may occur by promoting autophagy in a cell model of AD.
Collapse
Affiliation(s)
- Nanbu Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lingyu Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yunchuan Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ronghua Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Huang L, Zhong X, Qin S, Deng M. Protocatechuic acid attenuates β‑secretase activity and okadaic acid‑induced autophagy via the Akt/GSK‑3β/MEF2D pathway in PC12 cells. Mol Med Rep 2020; 21:1328-1335. [PMID: 31894327 DOI: 10.3892/mmr.2019.10905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2019] [Indexed: 11/06/2022] Open
Abstract
Okadaic acid (OA) can be used to induce an Alzheimer's disease (AD) model characterized by tau hyperphosphorylation, the formation of neurofibrillary tangles formation and β‑amyloid (Aβ) deposition. Previous studies have shown that the upregulation of Beclin‑1‑dependent autophagy may contribute to the elimination of aggregated Aβ. However, the effects of protocatechuic acid (PA) on the levels of Aβ42, phosphorylated (p)‑tau and β‑secretase in OA‑induced cell injury are unclear, and little is known concerning the role of the PA signaling pathway in the regulation of autophagy. The present study aimed to determine whether PA protects cells from OA‑induced cytotoxicity via the regulation of Beclin‑1‑dependent autophagy and its regulatory signaling pathway. PC12 cells were treated with OA with or without PA for 24 h. Enzymatic assays were performed to measure p‑tau, Aβ42 and β‑secretase activity. Western blotting was performed to detect p‑Akt, p‑glycogen synthase kinase‑3β (p‑GSK‑3β), Akt, GSK‑3β, myocyte enhancer factor 2D (MEF2D) and Beclin‑1 protein expression levels. Immunofluorescence and immunocytochemistry were used to measure Beclin‑1 expression levels. The results from this study showed that PA could increase cell viability and significantly decrease the levels of Aβ42, p‑tau, β‑secretase and Beclin‑1. PA can also promote the expression of p‑Akt and MEF2D while suppressing the expression of p‑GSK‑3β. These results indicated that PA protects PC12 cells from OA‑induced cytotoxicity, and attenuates autophagy via regulation of the Akt/GSK‑3β/MEF2D pathway, therefore potentially contributing to the neuroprotective effects of PA against OA toxicity. These findings suggested that PA may have potential as a drug candidate in preventative AD therapy.
Collapse
Affiliation(s)
- Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, P.R. China
| | - Xiaoqin Zhong
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Shaochen Qin
- Department of Neurology, The Affiliated Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| | - Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
33
|
Novel compounds for the modulation of mTOR and autophagy to treat neurodegenerative diseases. Cell Signal 2020; 65:109442. [DOI: 10.1016/j.cellsig.2019.109442] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
|
34
|
Lee JE, Kim N, Yeo JY, Seo DG, Kim S, Lee JS, Hwang KW, Park SY. Anti-Amyloidogenic Effects of Asarone Derivatives From Perilla frutescens Leaves against Beta-Amyloid Aggregation and Nitric Oxide Production. Molecules 2019; 24:molecules24234297. [PMID: 31775356 PMCID: PMC6930631 DOI: 10.3390/molecules24234297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder associated with loss of memory and cognitive function. Beta-amyloid (Aβ) aggregates, in particular, are known to be highly neurotoxic and lead to neurodegeneration. Therefore, blockade or reduction of Aβ aggregation is a promising therapeutic approach in AD. We have previously reported an inhibitory effect of the methanol extract of Perilla frutescens (L.) Britton (Lamiaceae) and its hexane fraction on Aβ aggregation. Here, the hexane fraction of P. frutescens was subjected to diverse column chromatography based on activity-guided isolation methodology. This approach identified five asarone derivatives including 2,3-dimethoxy-5-(1E)-1-propen-1-yl-phenol (1), β-asarone (2), 3-(2,4,5-trimethoxyphenyl)-(2E)-2-propen-1-ol (3), asaronealdehyde (4), and α-asarone (5). All five asarone derivatives efficiently reduced the aggregation of Aβ and disaggregated preformed Aβ aggregates in a dose-dependent manner as determined by a Thioflavin T (ThT) fluorescence assay. Furthermore, asarone derivatives protected PC12 cells from Aβ aggregate-induced toxicity by reducing the aggregation of Aβ, and significantly reduced NO production from LPS-stimulated BV2 microglial cells. Taken together, these results suggest that asarone derivatives derived from P. frutescens are neuroprotective and have the prophylactic and therapeutic potential in AD.
Collapse
Affiliation(s)
- Jae Eun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Nayeon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Ji Yun Yeo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Dae-Gun Seo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Sunggun Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Jae-Sun Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - So-Young Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea; (J.E.L.); (N.K.); (J.Y.Y.); (D.-G.S.); (S.K.); (J.-S.L.)
- Correspondence: ; Tel.: +82-41-550-1434; Fax: +82-41-559-7899
| |
Collapse
|
35
|
Liu R, Li X, Huang N, Fan M, Sun R. Toxicity of traditional Chinese medicine herbal and mineral products. ADVANCES IN PHARMACOLOGY 2019; 87:301-346. [PMID: 32089237 DOI: 10.1016/bs.apha.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traditional Chinese medicine (TCM) has been used to treat numerous kinds of diseases for more than 2000 years in eastern Asian countries. A portion of the TCM herbal and mineral products are believed to be toxic according to modern standards, and are still widely prescribed in the clinic. However, some TCM products considered to be non-toxic or low-toxic have been reported to possess significant toxicological effects on different organs in both animal and human models. In this review, we define the term "toxic" in TCM, and then we summarize the advances in pharmacology and toxicology research of Toxic Traditional Chinese Medicine (TTCM), including Chinese aconite (Fu Zi), Arsenic Trioxide, Tripterygium wilfordii Hook f. (Thunder God Vine), herbal drugs derived from plants in the Aristolochiaceae Juss. family (Ma Dou Ling), and other TCM products. Finally, the compatibility art of TCM and modern pharmaceutical approaches to manage undesired toxicity of TTCM is discussed. Promoting pharmacology and toxicology studies of TTCM and non-toxic TCM is critical for the further development and safety of TCM in clinical practice.
Collapse
Affiliation(s)
- Runping Liu
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Nana Huang
- The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Mengyue Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Sun
- The Second Hospital of Shandong University, Shandong University, Jinan, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China; Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
36
|
Zhu Y, Shi Y, Cao C, Han Z, Liu M, Qi M, Huang R, Zhu Z, Qian D, Duan JA. Jia-Wei-Kai-Xin-San, an Herbal Medicine Formula, Ameliorates Cognitive Deficits via Modulating Metabolism of Beta Amyloid Protein and Neurotrophic Factors in Hippocampus of Aβ 1-42 Induced Cognitive Deficit Mice. Front Pharmacol 2019; 10:258. [PMID: 30941041 PMCID: PMC6433786 DOI: 10.3389/fphar.2019.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Jia-Wei-Kai-Xin-San (JWKXS) is a Chinese medicine formula applied for treating morbid forgetfulness in ancient China. Today, this formula is frequently applied for Alzheimer's disease and vascular dementia (VD) in clinic. Here, we developed it as granules and aimed to evaluate its anti-AD effect on β amyloid protein 1-42 (Aβ1-42) induced cognitive deficit mice and reveal the possible molecular mechanisms. Firstly, daily intra-gastric administration of chemically standardized of JWKXS granules for 7 days significantly ameliorated the cognitive deficit symptoms and inhibited cell apoptosis in hippocampus on Aβ1-42 injection mice. JWKXS granules significantly decreased Aβ level, increased superoxide dismutase activity and decreased malondialdehyde level in hippocampus of model mice. It also restored acetylcholine amounts, inhibited acetylcholinesterase activities and increased choline acetyltransferase activities. In addition, JWKXS granules enabled the transformation of precursors of NGF and BDNF into mature forms. Furthermore, JWKXS granules could regulate gene expressions related to Aβ production, transportation, degradation and neurotrophic factor transformation, which led to down-regulation of Aβ and up-regulation of NGF and BDNF. These findings suggested that JWKXS granules ameliorated cognitive deficit via decreasing Aβ levels, protecting neuron from oxidation damages and nourishing neuron, which could serve as alternative medicine for patients suffering from AD.
Collapse
Affiliation(s)
- Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiwei Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengqiu Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingzhu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjie Huang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Abstract
The β-amyloid (Aβ) deposition is one of the major pathological hallmark of Alzheimer’s disease. Dysfunction in autophagy has been reported to lead to the Aβ deposition. The current study aimed to investigate the effects of treadmill exercise on autophagy activity and the Aβ deposition and to demonstrate whether exercise-induced reduction in the Aβ deposition was associated with changes in autophagy activity. APP/PS1 transgenic mice were divided into transgenic sedentary (TG-SED, n=12) and transgenic exercise (TG-EXE, n=12) groups. Wild-type mice were also divided into sedentary (WT-SED, n=12) and exercise (WT-EXE, n=12) groups. The WT-EXE and TG-EXE mice were subjected to treadmill exercise for 12 weeks. The levels of Aβ plaques and soluble forms of Aβ, autophagy markers light chain 3 and P62, and lysosomal marker lysosome-associated membrane protein 1 (Lamp1) were measured in the hippocampus. Both Aβ plaques and soluble forms of Aβ (Aβ40 and Aβ42) were significantly increased in TG-SED mice compared with WT-SED mice, whereas exercise reduced Aβ deposition in APP/PS1 transgenic mice. Coincidentally, TG-SED mice displayed a decrease in autophagy activity as evidenced by a significant increase in the levels of light chain 3-II and P62, as well as an accumulation of lysosome as evidenced by a significant over-expression of Lamp1. Interestingly, exercise increased autophagy activity as evidenced by a significant reduction in the levels of P62 and Lamp1 in TG-EXE mice. These findings suggest that treadmill exercise is efficient in decreasing Aβ deposition by enhancing autophagy–lysosomal activity in APP/PS1 transgenic mice, demonstrating a possible approach in Alzheimer’s disease prevention and treatment.
Collapse
|
38
|
Zeng Q, Siu W, Li L, Jin Y, Liang S, Cao M, Ma M, Wu Z. Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine. Exp Gerontol 2019; 119:100-110. [PMID: 30710681 DOI: 10.1016/j.exger.2019.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive and unremitting neurodegenerative disorder characterized by memory loss and cognitive impairment. It affects the quality of life of victims severely. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenesis of AD and find out effective therapeutic approaches. Autophagy, a primary intracellular way of degrading aggregated proteins and damaged organelles, has been discovered to be involved in the pathological changes of AD. In the last few years, much progress has been made in finding autophagy regulators from natural products, providing new insights to develop treatment strategy for AD by targeting autophagy. In the present review, we provided an overview of the recent research progress regarding the function role of autophagy in AD, the regulation mechanisms of autophagy-lysosomal pathway as well as therapeutic potential of herbal medicine on AD by targeting autophagy.
Collapse
Affiliation(s)
- Qiang Zeng
- Integrated Chinese and Western Medicine postdoctoral research station, Jinan University, Guangzhou 510632, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Wingsum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Limin Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Shaoyu Liang
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Zhengzhi Wu
- Integrated Chinese and Western Medicine postdoctoral research station, Jinan University, Guangzhou 510632, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
39
|
Wei M, Liu Z, Liu Y, Li S, Hu M, Yue K, Liu T, He Y, Pi Z, Liu Z, Song F. Urinary and plasmatic metabolomics strategy to explore the holistic mechanism of lignans in S. chinensis in treating Alzheimer's disease using UPLC-Q-TOF-MS. Food Funct 2019; 10:5656-5668. [DOI: 10.1039/c9fo00677j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Schisandra chinensis (Turcz.) Baill (S. chinensis), a functional food, is used as a tonic and sedative agent in traditional Chinese medicine.
Collapse
|
40
|
Li X, Huang X, Tang Y, Zhao F, Cao Y, Yin L, Li G. Assessing the Pharmacological and Therapeutic Efficacy of Traditional Chinese Medicine Liangxue Tongyu Prescription for Intracerebral Hemorrhagic Stroke in Neurological Disease Models. Front Pharmacol 2018; 9:1169. [PMID: 30459599 PMCID: PMC6232344 DOI: 10.3389/fphar.2018.01169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/26/2018] [Indexed: 01/17/2023] Open
Abstract
Intracerebral hemorrhage is a fatal subtype of stroke, with crucial impact on public health. Surgical removal of the hematoma as an early-stage treatment for ICH can't improve long-term prognosis remarkably. Liangxue tongyu prescription (LP), a Traditional Chinese Medicine (TCM) formula, includes eight ingredients and has been used to treat ICH in the clinical. In the study, we elucidated the pharmacological efficacy and therapeutic efficacy of LP to dissect the mechanism of LP against ICH via network analysis and experimental validation. First, we discovered 34 potential compounds and 146 corresponding targets in LP based on network prediction. 24 signal pathway were obtained by the Clue Go assay based on potential compounds in LP against ICH. Second, we found that LP can not only decreased the level of high sensitive C reactive protein (HS-CRP), tumor necrosis factor-α (TNF-α), NF-kβ, D-dimmer (D2D), estradiol (E2), S-100B, neuron specific enolase (NSE), and interleukin 1 (IL-1) in plasma on spontaneously hypertensive rats (SHRs), but also promoted cell proliferation and inhibited cell apoptosis on the glutamate-induced PC12 cell. The compounds including Taurine, Paeonol, and Ginsenoside Rb1 in LP can activate PI3K/AKT pathway. Third, from the three-factor two-level factorial design, compound combinations in LP, such as Taurine and Paeonol, Taurine and Geniposide, Ginsenoside Rg1, and Ginsenoside Rb1, had first-level interactions on cell proliferation. Compound combinations including Taurine and Paeonol, Ginsenoside Rg1 and Ginsenoside Rb1 had as significant increase in efficiency on inhibiting the apoptosis of PC12 cells at the low concentration and up-regulating of PI3K and AKT. Overall, our results suggested that LP had integrated therapeutic effect on ICH due to activities of anti-inflammatory, anti-coagulation, blood vessel protection, and protection neuron from excitotoxicity based on the way of "multi-component, multi-target, multi-pathway," and compound combination in LP can offer protection neuron from excitotoxicity at the low concentration by activation of the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Huang
- Jiangsu Wujin Vocational School, Changzhou, China
| | - Yuanlin Tang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangli Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanmei Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guochun Li
- College of Preclinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Wu Y, Wang L, Meng L, Cao GK, Zhao YL, Zhang Y. Biological effects of autophagy in mice with sepsis-induced acute kidney injury. Exp Ther Med 2018; 17:316-322. [PMID: 30651797 PMCID: PMC6307358 DOI: 10.3892/etm.2018.6899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
This study investigated whether autophagy is activated after sepsis-induced acute kidney injury (AKI) and explored its biological role. Seventy-two normal C57 mice were randomly divided into sham operation group, cecal ligation and puncture (CLP) group and CLP+3-MA (autophagy inhibitor) group; 24 mice in each group. Mice in CLP and CLP+3-MA group were treated with cecal ligation to establish sepsis, while mice in sham operation group were treated with the same surgical operations, but not cecal ligation. Blood samples were collected from 12 mice of each group and the levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. The pathological changes were observed. The remaining 12 mice in each group were kept and the survival rate was recorded. Changes in the expressions of autophagy-related proteins were detected by reverse transcription-semi-quantitative PCR and western blotting. The results revealed that the levels of Cr and BUN in CLP and CLP+3-MA group were significantly higher than those in sham operation group (P<0.05), and the levels of Cr and BUN in CLP+3-MA group were higher than those in CLP group (P<0.05). The pathological score of renal injury in CLP+3-MA group was significantly higher than that of CLP group (P<0.01). The expression levels of Beclin1 and LC3-II/I were significantly increased in CLP group compared to sham operation group (P<0.01), while the expression of p62 was decreased (P<0.01). After 3-MA treatment the expression levels of Beclin1 and LC3-II/I were decreased, compared with CLP group, but accumulation of p62 occurred, and the degree of renal injury was increased. In conclusion, AKI induced by sepsis in mice can induce apoptosis and activate autophagy. The activation of autophagy aggravates the renal injury in mice, which in turn inhibits AKI after sepsis.
Collapse
Affiliation(s)
- Yu Wu
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Ling Wang
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Lei Meng
- Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Guang-Ke Cao
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yu-Liang Zhao
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
42
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
43
|
Che H, Li Q, Zhang T, Wang D, Yang L, Xu J, Yanagita T, Xue C, Chang Y, Wang Y. Effects of Astaxanthin and Docosahexaenoic-Acid-Acylated Astaxanthin on Alzheimer's Disease in APP/PS1 Double-Transgenic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4948-4957. [PMID: 29695154 DOI: 10.1021/acs.jafc.8b00988] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with the characteristics of senile plaques, neuroinflammation, neurofibrillary tangles, and destruction of synapse structure stability. Previous studies have verified the protective effects of astaxanthin (AST). However, whether synthesized docosahexaenoic-acid-acylated AST diesters (AST-DHA) could delay AD pathogenesis remains unclear. In the present study, APP/PSEN1 (APP/PS1) double-transgenic mice were administrated with AST and AST-DHA for 2 months. The results of radial 8-arm maze and Morris water maze tests showed that AST-DHA exerted more significant effects than AST in enhancing learning and memory levels of APP/PS1 mice. Further mechanical studies suggested that AST-DHA was superior to AST in regulating the parameters of oxidative stress, reducing tau hyperphosphorylation, suppressing neuroinflammation, and regulating inflammasome expression and activation in APP/PS1 mice. The findings suggested that AST-DHA attenuated cognitive disorders by reducing pathological features in APP/PS1 mice, suggesting that AST-DHA might be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Qian Li
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Tiantian Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Dandan Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Lu Yang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science , Saga University , Saga 840-8502 , Japan
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs and Biological Products , Qingdao , Shandong 266237 , People's Republic of China
| | - Yaoguang Chang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Yuming Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs and Biological Products , Qingdao , Shandong 266237 , People's Republic of China
| |
Collapse
|
44
|
Shi Y, Cao C, Zhu Y, Gao T, Yang W, Liu Mingzhu Qi M, Huang R, Qian D, Duan JA. Comparative pharmacokinetic study of the components of Jia-Wei-Kai-Xin-San in normal and vascular dementia rats by ultra-fast liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2018; 41:2504-2516. [PMID: 29577615 DOI: 10.1002/jssc.201701144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
A fast, sensitive, and reliable ultra-high performance liquid chromatography coupled with tandem mass spectrometry method has been developed and validated for simultaneous quantification of geniposide, polygalaxanthone III, 3,6'-disinapoyl sucrose, α-asarone, β-asarone, poricoic acid A, poricoic acid B, dehydrotumulosic acid, deoxyschizandrin, schizandrin B, and kaempferide in plasma after oral administration of extracts of Jia-Wei-Kai-Xin-San in normal and vascular dementia rats. The developed method was precise and accurate within the linearity range of the analytes. The lower limits of quantification were 1.04-2.68 ng/mL for all the analytes. Both intra- and inter day precision and accuracy of the analytes were all within accepted criteria. The mean extraction recoveries of the analytes and the internal standard from rat plasma were all >60.0%. The validated method had been successfully applied to compare pharmacokinetic profiles of the analytes in plasma of normal and vascular dementia rat treated with herbal extracts. Results indicated that differences existed between normal and vascular dementia model rats except dehydrotumulosic acid and kaempferide, which might be due to the pathology of vascular dementia and pharmacological effect of the analytes. These pharmacokinetic studies might benefit for the mechanism exploration and clinical use of traditional Chinese medicine formulae.
Collapse
Affiliation(s)
- Yiwei Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Cheng Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Ting Gao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Wen Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Mengqiu Liu Mingzhu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Renjie Huang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nan Jing, Jiangsu Province, P. R. China
| |
Collapse
|
45
|
Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM, Stankiewicz AM. Autophagy and Alzheimer's Disease: From Molecular Mechanisms to Therapeutic Implications. Front Aging Neurosci 2018; 10:04. [PMID: 29441009 PMCID: PMC5797541 DOI: 10.3389/fnagi.2018.00004] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Anna Stachowiak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | | | - Nikolay T. Tzvetkov
- Department of Molecular Biology and Biochemical Pharmacology, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Shinya Takeda
- Department of Clinical Psychology, Tottori University Graduate School of Medical Sciences, Tottori, Japan
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | | | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Suez Canal University, Ismailia, Egypt
- Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| | - Adrian M. Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
46
|
Neuroprotective Effects and Mechanism of β-Asarone against A β1-42-Induced Injury in Astrocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8516518. [PMID: 29599803 PMCID: PMC5828282 DOI: 10.1155/2017/8516518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Emerging evidence suggests that activated astrocytes play important roles in AD, and β-asarone, a major component of Acorus tatarinowii Schott, was shown to be a potential therapeutic candidate for AD. While our previous study found that β-asarone could improve the cognitive function of rats hippocampally injected with Aβ, the effects of β-asarone on astrocytes remain unclear, and this study aimed to investigate these effects. A rat model of Aβ1-42 (10 μg) was established, and the rats were intragastrically treated with β-asarone at doses of 10, 20, and 30 mg/kg or donepezil at a dose of 0.75 mg/kg. The sham and model groups were intragastrically injected with an equal volume of saline. Animals were sacrificed on the 28th day after administration of the drugs. In addition, a cellular model of Aβ1-42 (1.1 μM, 6 h) was established, and cells were treated with β-asarone at doses of 0, 2.06, 6.17, 18.5, 55.6, and 166.7 μg/mL. β-Asarone improved cognitive impairment, alleviated Aβ deposition and hippocampal damage, and inhibited GFAP, AQP4, IL-1β, and TNF-α expression. These results suggested that β-asarone could alleviate the symptoms of AD by protecting astrocytes, possibly by inhibiting TNF-α and IL-1β secretion and then downregulating AQP4 expression.
Collapse
|
47
|
Autophagy Activation Alleviates Amyloid-β-Induced Oxidative Stress, Apoptosis and Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells. Neurotox Res 2017; 32:351-361. [PMID: 28484969 DOI: 10.1007/s12640-017-9746-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that ensures continuous removal of damaged cell organelles and long-lived protein aggregates to maintain cellular homeostasis. Although autophagy has been implicated in amyloid-β (Aβ) production and deposition, its role in pathogenesis of Alzheimer's disease remains elusive. Thus, the present study was undertaken to assess the cytoprotective and neuroprotective potential of autophagy on Aβ-induced oxidative stress, apoptosis and neurotoxicity in human neuroblastoma SH-SY5Y cells. The treatment of Aβ1-42 impaired the cell growth and redox balance, and induced apoptosis and neurotoxicity in SH-SY5Y cells. Next, the treatment of rapamycin (RAP) significantly elevated the expression of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), sequestosome-1/p62, Beclin-1, and unc-51-like kinase-1 (ULK1) in SH-SY5Y cells. RAP-induced activation of autophagy notably alleviated the Aβ1-42-induced impairment of redox balance by decreasing the levels of pro-oxidants such as reactive oxygen species, lipid peroxidation and Ca2+ influx, and concurrently increasing the levels of antioxidant enzymes such as superoxide dismutase and catalase. The RAP-induced autophagy also ameliorated Aβ1-42-induced loss of mitochondrial membrane potential and apoptosis. Additionally, the activated autophagy provided significant neuroprotection against Aβ1-42-induced neurotoxicity by elevating the expression of neuronal markers such as synapsin-I, PSD95, NCAM, and CREB. However, 3-methyladenine treatment significantly exacerbated the neurotoxic effects of Aβ1-42. Taken together, our study demonstrated that the activation of autophagy provided possible neuroprotection against Aβ-induced cytotoxicity, oxidative stress, apoptosis, and neurotoxicity in SH-SY5Y neuronal cells.
Collapse
|
48
|
Role of autophagy in advanced atherosclerosis. Mol Med Rep 2017; 15:2903-2908. [DOI: 10.3892/mmr.2017.6403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 02/15/2017] [Indexed: 11/05/2022] Open
|