1
|
Arar T, Hirsch GV, Chamberlain TA, Malone M, Wakeland-Hart CD, Snarskis M, Lauderdale DS, Schumm LP, Gallo DA. Prefrontal tDCS fails to modulate memory retrieval in younger and older adults. Curr Biol 2025; 35:50-58.e4. [PMID: 39644890 PMCID: PMC11759060 DOI: 10.1016/j.cub.2024.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Previous research shows that a single session of anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (dlPFC) can improve the accuracy of episodic memory retrieval, but stimulation effects are not always found and may be moderated by time of day. Here, we report the results from a rigorous clinical trial (NCT03723850) designed to replicate these tDCS findings in younger adults and extend them to cognitively normal older adults. We conducted the largest double-blind, between-subjects tDCS study on memory retrieval in younger and older adults to date. 150 younger adults and 91 older adults received anodal tDCS or sham stimulation to the left dlPFC prior to episodic memory retrieval and working memory tasks. We also manipulated when tDCS was administered (time of day: morning vs. afternoon), task difficulty (easy vs. hard), and stimulus format (verbal vs. visual/pictorial) to test the extent that these variables are important for identifying tDCS effects. Contrary to our preregistered predictions, we did not find any effect of tDCS or time of day on younger or older adults' episodic or working memory performance. This outcome was not due to insensitivity of our cognitive tasks, given that we found expected effects of task difficulty and age-related effects on our memory measures. Based on these and prior tDCS results, we conclude that a single dose of tDCS using the typical and often recommended parameters does not reliably improve episodic memory retrieval in either age group.
Collapse
Affiliation(s)
- Tesnim Arar
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | - Miranda Malone
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | | | - Martynas Snarskis
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
| | - Diane S Lauderdale
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - David A Gallo
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Shtoots L, Nadler A, Partouche R, Sharir D, Rothstein A, Shati L, Levy DA. Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory. NPJ SCIENCE OF LEARNING 2024; 9:8. [PMID: 38365886 PMCID: PMC10873319 DOI: 10.1038/s41539-024-00222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Evidence implicating theta rhythms in declarative memory encoding and retrieval, together with the notion that both retrieval and consolidation involve memory reinstatement or replay, suggests that post-learning theta rhythm modulation can promote early consolidation of newly formed memories. Building on earlier work employing theta neurofeedback, we examined whether theta-frequency transcranial alternating stimulation (tACS) can engender effective consolidation of newly formed episodic memories, compared with beta frequency stimulation or sham control conditions. We compared midline frontal and posterior parietal theta stimulation montages and examined whether benefits to memory of theta upregulation are attributable to consolidation rather than to retrieval processes by using a washout period to eliminate tACS after-effects between stimulation and memory assessment. Four groups of participants viewed object pictures followed by a free recall test during three study-test cycles. They then engaged in tACS (frontal theta montage/parietal theta montage/frontal beta montage/sham) for a period of 20 min, followed by a 2-h break. Free recall assessments were conducted after the break, 24 h later, and 7 days later. Frontal midline theta-tACS induced significant off-line retrieval gains at all assessment time points relative to all other conditions. This indicates that theta upregulation provides optimal conditions for the consolidation of episodic memory, independent of mental-state strategies.
Collapse
Affiliation(s)
- Limor Shtoots
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Asher Nadler
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Roni Partouche
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Dorin Sharir
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Aryeh Rothstein
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Liran Shati
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel.
- Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Nydam AS, Sewell DK, Dux PE. Effects of tDCS on visual statistical learning. Neuropsychologia 2020; 148:107652. [PMID: 33069791 DOI: 10.1016/j.neuropsychologia.2020.107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 11/25/2022]
Abstract
Visual statistical learning describes the encoding of structure in sensory input, and it has important consequences for cognition and behaviour. Higher-order brain regions in the prefrontal and posterior parietal cortices have been associated with statistical learning behaviours. Yet causal evidence of a cortical contribution remains limited. In a recent study, the modulation of cortical activity by transcranial direct current stimulation (tDCS) disrupted statistical learning in a spatial contextual cueing phenomenon; supporting a cortical role. Here, we examined whether the same tDCS protocol would influence statistical learning assessed by the Visual Statistical Learning phenomenon (i.e., Fiser and Aslin, 2001), which uses identity-based regularities while controlling for spatial location. In Experiment 1, we employed the popular exposure-test design to tap the learning of structure after passive viewing. Using a large sample (N = 150), we found no effect of the tDCS protocol when compared to a sham control nor to an active control region. In Experiment 2 (N = 80), we developed an online task that was sensitive to the timecourse of learning. Under these task conditions, we did observe a stimulation effect on learning, consistent with the previous work. The way tDCS affected learning appeared to be task-specific; expediting statistical learning in this case. Together with the existing evidence, these findings support the hypothesis that cortical areas are involved in the visual statistical learning process, and suggest the mechanisms of cortical involvement may be task-dependent and dynamic across time.
Collapse
Affiliation(s)
- Abbey S Nydam
- School of Psychology, The University of Queensland, Brisbane, Australia.
| | - David K Sewell
- School of Psychology, The University of Queensland, Brisbane, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Theta band high definition transcranial alternating current stimulation, but not transcranial direct current stimulation, improves associative memory performance. Sci Rep 2019; 9:8562. [PMID: 31189985 PMCID: PMC6561937 DOI: 10.1038/s41598-019-44680-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/22/2019] [Indexed: 11/08/2022] Open
Abstract
Associative memory (AM) deficits are common in neurodegenerative disease and novel therapies aimed at improving these faculties are needed. Theta band oscillations within AM networks have been shown to be important for successful memory encoding and modulating these rhythms represents a promising strategy for cognitive enhancement. Transcranial alternating current stimulation (TACS) has been hypothesized to entrain and increase power of endogenous brain rhythms. For this reason, we hypothesized that focal delivery of theta band electrical current, using high-definition TACS, would result in improved AM performance compared to sham stimulation or transcranial direct current stimulation (TDCS). In this pilot study, 60 healthy subjects were randomized to receive high definition TACS, high definition TDCS, or sham stimulation delivered to the right fusiform cortex during encoding of visual associations. Consistent with our hypothesis, improved AM performance was observed in the TACS group, while TDCS had no effect. However, TACS also resulted in improved correct rejection of never seen items, reduced false memory, and reduced forgetting, suggesting the effect may not be specific for AM processes. Overall, this work informs strategies for improving associative memory and suggests alternating current is more effective than direct current stimulation in some contexts.
Collapse
|
5
|
Wong LYX, Gray SJ, Gallo DA. Does tDCS over prefrontal cortex improve episodic memory retrieval? Potential importance of time of day. Cogn Neurosci 2018; 9:167-180. [DOI: 10.1080/17588928.2018.1504014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lidia Y. X. Wong
- Department of Psychology, University of Chicago, Chicago, IL, United States of America
| | - Stephen J. Gray
- Department of Psychology, University of Chicago, Chicago, IL, United States of America
| | - David A. Gallo
- Department of Psychology, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
6
|
Westwood SJ, Romani C. Null Effects on Working Memory and Verbal Fluency Tasks When Applying Anodal tDCS to the Inferior Frontal Gyrus of Healthy Participants. Front Neurosci 2018; 12:166. [PMID: 29615855 PMCID: PMC5867342 DOI: 10.3389/fnins.2018.00166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/01/2018] [Indexed: 01/22/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a technique used to modify cognition by modulating underlying cortical excitability via weak electric current applied through the scalp. Although many studies have reported positive effects with tDCS, a number of recent studies highlight that tDCS effects can be small and difficult to reproduce. This is especially the case when attempting to modulate performance using single applications of tDCS in healthy participants. Possible reasons may be that optimal stimulation parameters have yet to be identified, and that individual variation in cortical activity and/or level of ability confound outcomes. To address these points, we carried out a series of experiments in which we attempted to modulate performance in fluency and working memory probe tasks using stimulation parameters which have been associated with positive outcomes: we targeted the left inferior frontal gyrus (LIFG) and compared performance when applying a 1.5 mA anodal current for 25 min and with sham stimulation. There is evidence that LIFG plays a role in these tasks and previous studies have found positive effects of stimulation. We also compared our experimental group (N = 19–20) with a control group receiving no stimulation (n = 24). More importantly, we also considered effects on subgroups subdivided according to memory span as well as to more direct measures of executive function abilities and motivational levels. We found no systematic effect of stimulation. Our findings are in line with a growing body of evidence that tDCS produces unreliable effects. We acknowledge that our findings speak to the conditions we investigated, and that alternative protocols (e.g., multiple sessions, clinical samples, and different stimulation polarities) may be more effective. We encourage further research to explore optimal conditions for tDCS efficacy, given the potential benefits that this technique poses for understanding and enhancing cognition.
Collapse
Affiliation(s)
- Samuel J Westwood
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| | - Cristina Romani
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|