1
|
Basilio AV, Zeng D, Pichay LA, Ateshian GA, Xu P, Maas SA, Morrison B. Simulating Cerebral Edema and Ischemia After Traumatic Acute Subdural Hematoma Using Triphasic Swelling Biomechanics. Ann Biomed Eng 2024; 52:2818-2830. [PMID: 38532172 DOI: 10.1007/s10439-024-03496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Poor outcome following traumatic acute subdural hematoma (ASDH) is associated with the severity of the primary injury and secondary injury including cerebral edema and ischemia. However, the underlying secondary injury mechanism contributing to elevated intracranial pressure (ICP) and high mortality rate remains unclear. Cerebral edema occurs in response to the exposure of the intracellular fixed charge density (FCD) after cell death, causing ICP to increase. The increased ICP from swollen tissue compresses blood vessels in adjacent tissue, restricting blood flow and leading to ischemic damage. We hypothesize that the mass occupying effect of ASDH exacerbates the ischemic injury, leading to ICP elevation, which is an indicator of high mortality rate in the clinic. Using FEBio (febio.org) and triphasic swelling biomechanics, this study modeled clinically relevant ASDHs and simulated post-traumatic brain swelling and ischemia to predict ICP. Results showed that common convexity ASDH significantly increased ICP by exacerbating ischemic injury, and surgical removal of the convexity ASDH may control ICP by preventing ischemia progression. However, in cases where the primary injury is very severe, surgical intervention alone may not effectively decrease ICP, as the contribution of the hematoma to the elevated ICP is insignificant. In addition, interhemispheric ASDH, located between the cerebral hemispheres, does not significantly exacerbate ischemia, supporting the conservative surgical management generally recommended for interhemispheric ASDH. The joint effect of the mass occupying effect of the blood clot and resulting ischemia contributes to elevated ICP which may increase mortality. Our novel approach may improve the fidelity of predicting patient outcome after motor vehicle crashes and traumatic brain injuries due to other causes.
Collapse
Affiliation(s)
- Andrew V Basilio
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Delin Zeng
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Leanne A Pichay
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Mechanical Engineering, Columbia University, 220 S. W. Mudd Building, 500 West 120th Street, New York, NY, 10027, USA
| | - Peng Xu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Steve A Maas
- Department of Bioengineering, University of Utah, 36 S. Wasatch Drive, SMBB 3100, Salt Lake City, UT, 84112, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Masood T, Lakatos S, Kis G, Ignácz M, Domoki F, Rosta J. Subarachnoid Hemorrhage Depletes Calcitonin Gene-Related Peptide Levels of Trigeminal Neurons in Rat Dura Mater. Cells 2024; 13:653. [PMID: 38667268 PMCID: PMC11048922 DOI: 10.3390/cells13080653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) remains a major cause of cerebrovascular morbidity, eliciting severe headaches and vasospasms that have been shown to inversely correlate with vasodilator calcitonin gene-related peptide (CGRP) levels. Although dura mater trigeminal afferents are an important source of intracranial CGRP, little is known about the effects of SAH on these neurons in preclinical models. The present study evaluated changes in CGRP levels and expression in trigeminal primary afferents innervating the dura mater 72 h after experimentally induced SAH in adult rats. SAH, eliciting marked damage revealed by neurological examination, significantly reduced the density of CGRP-immunoreactive nerve fibers both in the dura mater and the trigeminal caudal nucleus in the medulla but did not affect the total dural nerve fiber density. SAH attenuated ex vivo dural CGRP release by ~40% and in the trigeminal ganglion, reduced both CGRP mRNA levels and the number of highly CGRP-immunoreactive cell bodies. In summary, we provide novel complementary evidence that SAH negatively affects the integrity of the CGRP-expressing rat trigeminal neurons. Reduced CGRP levels suggest likely impaired meningeal neurovascular functions contributing to SAH complications. Further studies are to be performed to reveal the importance of impaired CGRP synthesis and its consequences in central sensory processing.
Collapse
Affiliation(s)
- Thannoon Masood
- Department of Neurosurgery, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6., H-6725 Szeged, Hungary
| | - Szandra Lakatos
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| | - Gyöngyi Kis
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Melissza Ignácz
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| | - Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| | - Judit Rosta
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| |
Collapse
|
3
|
Jussen D, Saeed S, Jablonski T, Krenzlin H, Lucia K, Kraemer T, Kempski O, Czabanka M, Ringel F, Alessandri B. Influence of Blood Components on Neuroinflammation, Blood-Brain Barrier Breakdown, and Functional Damage After Acute Subdural Hematoma in Rats. Neurotrauma Rep 2024; 5:215-225. [PMID: 38463418 PMCID: PMC10924060 DOI: 10.1089/neur.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
A central component of injury development after acute subdural hematoma (ASDH) is the increased intracranial pressure and consecutive mechanical reduction of cerebral blood flow (CBF). However, the role of different blood constituents in ASDH as additional lesioning factors remains unclear. This study examines the influence of blood components on neuroinflammation, blood-brain barrier (BBB) breakdown, and functional deficits in a rat model of ASDH. We infused corpuscular (whole blood, whole blood lysate, and red cell blood) and plasmatic (blood plasma, anticoagulated blood plasma, and aqueous isotonic solution) blood components into the subdural space while CBF was monitored. Rats then underwent behavioral testing. Lesion analysis and immunohistochemistry were performed 2 days after ASDH. Inflammatory reaction was assessed using staining for ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein, interleukin-1ß, tumor necrosis factor-alpha, and membrane attack complex. Integrity of the BBB was evaluated with albumin and matrix metalloproteinase 9 (MMP9) staining. We observed a significant drop in CBF in the corpuscular group (75% ± 7.5% of baseline) with distinct post-operative deficits and larger lesion volume compared to the plasmatic group (13.6 ± 5.4 vs. 1.3 ± 0.4 mm3). Further, inflammation was significantly increased in the corpuscular group with stronger immunoreaction. After whole blood infusion, albumin and MMP9 immunoreaction were significantly increased, pointing toward a disrupted BBB. The interaction between corpuscular and plasmatic blood components seems to be a key factor in the detrimental impact of ASDH. This interaction results in neuroinflammation and BBB leakage. These findings underscore the importance of performing surgery as early as possible and also provide indications for potential pharmacological targets.
Collapse
Affiliation(s)
- Daniel Jussen
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Syamend Saeed
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Tatjana Jablonski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Harald Krenzlin
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Kristin Lucia
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Tobias Kraemer
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Oliver Kempski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
4
|
Xian L, Wang C, Wei L, Wang S. Cerebral Blood Flow Disorder in Acute Subdural Hematoma and Acute Intraoperative Brain Bulge. Front Neurol 2022; 13:815226. [PMID: 35463136 PMCID: PMC9022537 DOI: 10.3389/fneur.2022.815226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Context Acute subdural hematoma (ASDH) has a high incidence and high mortality. During surgery for ASDH, brain tissue sometimes rapidly swells and protrudes into the bone window during or after removal of the hematoma. This phenomenon, known as acute intraoperative brain bulge, progresses rapidly and can cause ischemic necrosis of brain tissue or even mortality. The mechanism of this phenomenon remains unclear. Objective To investigate the changes in cerebral surface blood flow during ASDH and acute intraoperative brain bulge in rats. Methods Adult male Sprague–Dawley rats were selected to establish an ASDH model, and acute intraoperative brain bulge was induced by late-onset intracranial hematoma. The changes in cerebral surface blood flow during ASDH and acute intraoperative brain bulge were observed with a laser speckle imaging system, and intracranial pressure (ICP) was monitored. Results ICP in rats increased significantly after ASDH (P < 0.05). The blood perfusion rate (BPR) values of the superior sagittal sinus, collateral vein and artery decreased significantly in rats with subdural hematomas (P < 0.05). There was no significant difference between the preoperative and 90-min postoperative BPR values of rats. ICP was significantly increased in rats with acute intraoperative brain bulge (P < 0.05) and decreased significantly after the removal of delayed hematomas (P < 0.05). The BPR of the superior sagittal sinus, collateral vein and artery decreased significantly during brain bulge (P < 0.05). After the removal of delayed hematomas, BPR increased significantly, but it remained significantly different from the values measured before brain bulge (P < 0.05). Conclusion ASDH may cause not only high intracranial pressure but also cerebral blood circulation disorders. Brain bulge resulting from late-onset intracranial hematoma may aggravate these circulation disorders. If the cause of brain bulge in a given patient is late-onset intracranial hematoma, clinicians should promptly perform surgery to remove the hematoma and relieve circulation disorders, thus preventing more serious complications.
Collapse
Affiliation(s)
- Liang Xian
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Cheng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Liangfeng Wei
- Department of Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou, China
- *Correspondence: Shousen Wang
| |
Collapse
|
5
|
García-Pérez D, Panero-Pérez I, Eiriz Fernández C, Moreno-Gomez LM, Esteban-Sinovas O, Navarro-Main B, Gómez López PA, Castaño-León AM, Lagares A. Densitometric analysis of brain computed tomography as a new prognostic factor in patients with acute subdural hematoma. J Neurosurg 2021; 134:1940-1950. [PMID: 32736362 DOI: 10.3171/2020.4.jns193445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/22/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Acute subdural hematoma (ASDH) is a major cause of mortality and morbidity after traumatic brain injury (TBI). Surgical evacuation is the mainstay of treatment in patients with altered neurological status or significant mass effect. Nevertheless, concerns regarding surgical indication still persist. Given that clinicians often make therapeutic decisions on the basis of their prognosis assessment, to accurately evaluate the prognosis is of great significance. Unfortunately, there is a lack of specific and reliable prognostic models. In addition, the interdependence of certain well-known predictive variables usually employed to guide surgical decision-making in ASDH has been proven. Because gray matter and white matter are highly susceptible to secondary insults during the early phase after TBI, the authors aimed to assess the extent of these secondary insults with a brain parenchyma densitometric quantitative CT analysis and to evaluate its prognostic capacity. METHODS The authors performed a retrospective analysis among their prospectively collected cohort of patients with moderate to severe TBI. Patients with surgically evacuated, isolated, unilateral ASDH admitted between 2010 and 2017 were selected. Thirty-nine patients were included. For each patient, brain parenchyma density in Hounsfield units (HUs) was measured in 10 selected slices from the supratentorial region. In each slice, different regions of interest (ROIs), including and excluding the cortical parenchyma, were defined. The injured hemisphere, the contralateral hemisphere, and the absolute differences between them were analyzed. The outcome was evaluated using the Glasgow Outcome Scale-Extended at 1 year after TBI. RESULTS Fifteen patients (38.5%) had a favorable outcome. Collected demographic, clinical, and radiographic data did not show significant differences between favorable and unfavorable outcomes. In contrast, the densitometric analysis demonstrated that greater absolute differences between both hemispheres were associated with poor outcome. These differences were detected along the supratentorial region, but were greater at the high convexity level. Moreover, these HU differences were far more marked at the cortical parenchyma. It was also detected that these differences were more prone to ischemic and/or edematous insults than to hyperemic changes. Age was significantly correlated with the side-to-side HU differences in patients with unfavorable outcome. CONCLUSIONS The densitometric analysis is a promising prognostic tool in patients diagnosed with ASDH. The supplementary prognostic information provided by the densitometric analysis should be evaluated in future studies.
Collapse
|
6
|
Xian L, Wang C, Wang W, Wei L, Zhang Y, Chen W, Wang S. The construction of an improved model of acute subdural hematoma in rats. J Neurosci Methods 2021; 351:109075. [PMID: 33450332 DOI: 10.1016/j.jneumeth.2021.109075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To construct a new and improved model of acute subdural hematoma in rats. NEW METHOD 30 male adult Sprague-Dawley rats(SD rats) were selected and randomly divided into two groups. The traditional model group was based on Miller's model construction method, and the improved model group was based on improved needle, injection site and operation method. The improved model was evaluated by comparing the physiological indicators, behavioral scores, magnetic resonance performance and HE staining results of the two groups of rats. RESULTS The physical signs of the rats in the two groups were similar. The survival rate of the improved group was higher than that of the traditional group. The hematoma in the improved model was thicker and concentrated in the ipsilateral side, as revealed by HE staining and MRI. The improved method has less intrusions on the cortex around the injection site and is more stable than the traditional model. COMPARISON WITH EXISTING METHOD(S) The operation difficulty of the improved model is reduced and easier. The survival rate of the improved group was higher than that of the traditional group. And the improved model will have more research possibilities. CONCLUSION The improved model is based on the traditional model. Although it has some shortcomings, it can also be used in different research fields of the traditional model. The operation for the improved model is easier to perform. And the improved model has more applications in research.
Collapse
Affiliation(s)
- Liang Xian
- Bengbu Medical College, Bengbu 233030, PR China
| | - Cheng Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Wei Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Liangfeng Wei
- Department of Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, PR China
| | | | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, PR China
| | - Shousen Wang
- Bengbu Medical College, Bengbu 233030, PR China; Department of Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, PR China.
| |
Collapse
|