1
|
Li X, Wang Q, Zhang D, Wu D, Liu N, Chen T. Effects of long-term administration of Q808 on hippocampal transcriptome in healthy rats. Chem Pharm Bull (Tokyo) 2022; 70:642-649. [PMID: 35831127 DOI: 10.1248/cpb.c22-00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epilepsy treatment with antiepileptic drugs (AEDs) is usually requires for many years. Q808 is an innovative antiepileptic chemical. It exerts effective antiepileptic effect against various epilepsy models. Exploring the gene transcriptomic profile of long-term treatment of Q808 is necessary. In the present study, hippocampus RNA-sequencing was performed to reveal the transcriptome profile of rats before and after treatment of Q808 for 28 days. Results confirmed 51 differentially expressed genes (DEGs) between Q808 and healthy control groups. Gene cluster analysis showed that most upregulated DEGs linked to response to drug and nucleus, most downregulated DEGs linked to locomotory, neuronal cell body, and drug binding. Most of DEGs were enriched in the signaling transduction, substance dependence, nervous system, and neurodegenerative disease pathways. Furthermore, quantitative real-time PCR analysis confirmed that Q808 significantly increased the expression of neuroprotective genes, such as Mdk, and decreased the mRNA levels of Penk, Drd1, and Adora2a, which are highly expressed in epilepsy models. In addition, Q808 decreased the mRNA expression of Pde10A and Drd2, which are known to be closely associated with schizophrenia. Our study may provide a theoretical basis to explore the effect of Q808 on the susceptibility to epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University
| | - Qing Wang
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Dianwen Zhang
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Di Wu
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Ning Liu
- Jilin Provincial Academy of Traditional Chinese Medicine
| | - Tianli Chen
- School of Pharmacy, Changchun University of Chinese Medicine
| |
Collapse
|
2
|
Silkis IG. Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Yang H, Shan W, Zhu F, Yu T, Fan J, Guo A, Li F, Yang X, Wang Q. C-Fos mapping and EEG characteristics of multiple mice brain regions in pentylenetetrazol-induced seizure mice model. Neurol Res 2019; 41:749-761. [PMID: 31038018 DOI: 10.1080/01616412.2019.1610839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: To confirm different local brain activities characterized in pentylenetetrazol (PTZ)-induced seizure model. Methods: we induced seizure response by a single dose of PTZ injection (45 mg/kg, i.p.). Local activity was recorded in different brain regions by EEG in time and c-Fos staining at different time points (0.5 h, 1 h, 2 h, 4 h) after PTZ treatment. Results: EEG recordings showed distinctive features of activation in different brain areas. With the aggravation of behavioral manifestations of seizures, the frequency and amplitude of the discharges on EEG were increasing gradually. The epileptic response on EEG immediately ended after reaching the maximum stage of seizures, followed by a short period of suppression. The labeling of c-Fos was enhanced in the medial prefrontal cortex, the piriform cortex, the amygdala, hippocampal CA1, CA3 and dentate gyrus, but inapparent in the striatum. The most potent changes in c-Fos were observed in cortex, amygdala nuclei, and dentate gyrus. EEG and c-Fos immunolabeling in neuronal activation showed discrepancies in the striatum. For each brain region, the maximum c-Fos labeling was observed at 2 h after injection and diminished at 4 h. The level of c-Fos immunoreactivity was even lower than the control group, which was accompanied by increased labeling of parvalbumin neurons (PVNs). Conclusions: These findings validated PTZ-induced seizure as a seizure model with a specific spatial-temporal profile. Neuronal activity was enhanced and then subsequently inhibited during seizure evolution. Abbreviations: AEDs: anti-epileptic drugs; AF: Alexa Fluor; CA1: Cornu Ammonis area 1; CA3: Cornu Ammonis area 3; DAB, 3: 3P-diaminobenzidine; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; EEG: electroencephalogram; GABA: gamma-aminobutyric acid; IEG: immediate early gene; mPFC: medial prefrontal cortex; NAc: nucleus accumbens; PB: phosphate buffer; PBS: phosphate buffered saline; PBST: phosphate buffered saline with Tween; PFA, paraformaldehyde; PTZ: pentylenetetrazol; PVN: parvalbumin neuron; ROI: regions of interest; SE: status epilepticus.
Collapse
Affiliation(s)
- Huajun Yang
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Wei Shan
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Fei Zhu
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Tingting Yu
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Jingjing Fan
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Anchen Guo
- b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| | - Fei Li
- d Beijing institute of pharmacology and toxicology , Beijing , P.R.China
| | - Xiaofeng Yang
- b Beijing Institute for Brain Disorders , Beijing , P.R.China
| | - Qun Wang
- a Department of Neurology, Beijing Tiantan Hospital, Capital Medical University , Beijing , P.R.China.,b Beijing Institute for Brain Disorders , Beijing , P.R.China.,c National Center for Clinical Medicine of Neurological Diseases , Beijing , P.R.China
| |
Collapse
|