1
|
Hou X, Jiang J, Deng M. Exploring epigenetic modifications as potential biomarkers and therapeutic targets in amyotrophic lateral sclerosis. J Neurol 2025; 272:304. [PMID: 40169452 DOI: 10.1007/s00415-025-13028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder and the most common motor neuron disease. Whole-genome sequencing has identified many novel ALS-associated genes, but genetics alone cannot fully explain the onset of ALS and an effective treatment is still lacking. Moreover, we need more biomarkers for accurate diagnosis and assessment of disease prognosis. Epigenetics, which includes DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs, influences gene transcription and expression by affecting chromatin accessibility and transcription factor binding without altering genetic information. These processes play a role in the onset and progression of ALS. Epigenetic targets can serve as potential biomarkers and more importantly, the reversibility of epigenetic changes supports their potential role as versatile therapeutic targets in ALS. This review summarized the alterations in different epigenetic modulations in ALS. Additionally, given the close association between aberrant metabolic profiles characterized by hypoxia and high glycolytic metabolism in ALS and epigenetic changes, we also integrate epigenetics with metabolomics. Finally, we discuss the application of therapies based on epigenetic mechanisms in ALS. Our data integration helps to identify potential diagnostic and prognostic biomarkers and support the development of new effective therapies.
Collapse
Affiliation(s)
- XiaoTong Hou
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China
| | - JingSi Jiang
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, No. 49, North Garden Road, HaiDian District, Beijing, China.
| |
Collapse
|
2
|
Shi Q, Zheng K, Li H, Wang B, Liang X, Li X, Wang J. LKLPDA: A Low-Rank Fast Kernel Learning Approach for Predicting piRNA-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2179-2187. [PMID: 39213276 DOI: 10.1109/tcbb.2024.3452055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper the effectiveness of the network-based ideal kernel. The conventional FKL method does not address this issue. In this study, we propose a low-rank fast kernel learning (LRFKL) algorithm, which consists of low-rank representation (LRR) and the FKL algorithm. The LRFKL algorithm is designed to mitigate the effects of noise on the network-based ideal kernel. Using LRFKL, we propose a novel approach for predicting piRNA-disease associations called LKLPDA. Specifically, we first compute the similarity matrices for piRNAs and diseases. Then we use the LRFKL to fuse the similarity matrices for piRNAs and diseases separately. Finally, the LKLPDA employs AutoGluon-Tabular for predictive analysis. Computational results show that LKLPDA effectively predicts piRNA-disease associations with higher accuracy compared to previous methods. In addition, case studies confirm the reliability of the model in predicting piRNA-disease associations.
Collapse
|
3
|
Pan X, Dai W, Wang Z, Li S, Sun T, Miao N. PIWI-Interacting RNAs: A Pivotal Regulator in Neurological Development and Disease. Genes (Basel) 2024; 15:653. [PMID: 38927589 PMCID: PMC11202748 DOI: 10.3390/genes15060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), a class of small non-coding RNAs (sncRNAs) with 24-32 nucleotides (nt), were initially identified in the reproductive system. Unlike microRNAs (miRNAs) or small interfering RNAs (siRNAs), piRNAs normally guide P-element-induced wimpy testis protein (PIWI) families to slice extensively complementary transposon transcripts without the seed pairing. Numerous studies have shown that piRNAs are abundantly expressed in the brain, and many of them are aberrantly regulated in central neural system (CNS) disorders. However, the role of piRNAs in the related developmental and pathological processes is unclear. The elucidation of piRNAs/PIWI would greatly improve the understanding of CNS development and ultimately lead to novel strategies to treat neural diseases. In this review, we summarized the relevant structure, properties, and databases of piRNAs and their functional roles in neural development and degenerative disorders. We hope that future studies of these piRNAs will facilitate the development of RNA-based therapeutics for CNS disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (X.P.); (W.D.); (Z.W.); (S.L.); (T.S.)
| |
Collapse
|
4
|
Zhu L, Li S, Li XJ, Yin P. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges. Transl Neurodegener 2023; 12:46. [PMID: 37730668 PMCID: PMC10510301 DOI: 10.1186/s40035-023-00377-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
In order to dissect amyotrophic lateral sclerosis (ALS), a multigenic, multifactorial, and progressive neurodegenerative disease with heterogeneous clinical presentations, researchers have generated numerous animal models to mimic the genetic defects. Concurrent and comparative analysis of these various models allows identification of the causes and mechanisms of ALS in order to finally obtain effective therapeutics. However, most genetically modified rodent models lack overt pathological features, imposing challenges and limitations in utilizing them to rigorously test the potential mechanisms. Recent studies using large animals, including pigs and non-human primates, have uncovered important events that resemble neurodegeneration in patients' brains but could not be produced in small animals. Here we describe common features as well as discrepancies among these models, highlighting new insights from these models. Furthermore, we will discuss how to make rodent models more capable of recapitulating important pathological features based on the important pathogenic insights from large animal models.
Collapse
Affiliation(s)
- Longhong Zhu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Sato K, Takayama KI, Inoue S. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front Aging Neurosci 2023; 15:1157818. [PMID: 37207075 PMCID: PMC10191213 DOI: 10.3389/fnagi.2023.1157818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by neuronal loss and dysfunction. Despite remarkable improvements in our understanding of these pathogeneses, serious worldwide problems with significant public health burdens are remained. Therefore, new efficient diagnostic and therapeutic strategies are urgently required. PIWI-interacting RNAs (piRNAs) are a major class of small non-coding RNAs that silence gene expression through transcriptional and post-transcriptional processes. Recent studies have demonstrated that piRNAs, originally found in the germ line, are also produced in non-gonadal somatic cells, including neurons, and further revealed the emerging roles of piRNAs, including their roles in neurodevelopment, aging, and neurodegenerative diseases. In this review, we aimed to summarize the current knowledge regarding the piRNA roles in the pathophysiology of neurodegenerative diseases. In this context, we first reviewed on recent updates on neuronal piRNA functions, including biogenesis, axon regeneration, behavior, and memory formation, in humans and mice. We also discuss the aberrant expression and dysregulation of neuronal piRNAs in neurodegenerative diseases, such as AD, PD, and ALS. Moreover, we review pioneering preclinical studies on piRNAs as biomarkers and therapeutic targets. Elucidation of the mechanisms underlying piRNA biogenesis and their functions in the brain would provide new perspectives for the clinical diagnosis and treatment of AD and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
6
|
Dysregulation of Human Somatic piRNA Expression in Parkinson's Disease Subtypes and Stages. Int J Mol Sci 2022; 23:ijms23052469. [PMID: 35269612 PMCID: PMC8910154 DOI: 10.3390/ijms23052469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Piwi interacting RNAs (piRNAs) are small non-coding single-stranded RNA species 20–31 nucleotides in size generated from distinct loci. In germline tissues, piRNAs are amplified via a “ping-pong cycle” to produce secondary piRNAs, which act in transposon silencing. In contrast, the role of somatic-derived piRNAs remains obscure. Here, we investigated the identity and distribution of piRNAs in human somatic tissues to determine their function and potential role in Parkinson’s disease (PD). Human datasets were curated from the Gene Expression Omnibus (GEO) database and a workflow was developed to identify piRNAs, which revealed 902 somatic piRNAs of which 527 were expressed in the brain. These were mainly derived from chromosomes 1, 11, and 19 compared to the germline tissues, which were from 15 and 19. Approximately 20% of somatic piRNAs mapped to transposon 3′ untranslated regions (UTRs), but a large proportion were sensed to the transcript in contrast to germline piRNAs. Gene set enrichment analysis suggested that somatic piRNAs function in neurodegenerative disease. piRNAs undergo dysregulation in different PD subtypes (PD and Parkinson’s disease dementia (PDD)) and stages (premotor and motor). piR-has-92056, piR-hsa-150797, piR-hsa-347751, piR-hsa-1909905, piR-hsa-2476630, and piR-hsa-2834636 from blood small extracellular vesicles were identified as novel biomarkers for PD diagnosis using a sparse partial least square discriminant analysis (sPLS-DA) (accuracy: 92%, AUC = 0.89). This study highlights a role for piRNAs in PD and provides tools for novel biomarker development.
Collapse
|
7
|
Ow MC, Hall SE. piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochem Int 2021; 148:105086. [PMID: 34082061 PMCID: PMC8286337 DOI: 10.1016/j.neuint.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Since their discovery, small non-coding RNAs have emerged as powerhouses in the regulation of numerous cellular processes. In addition to guarding the integrity of the reproductive system, small non-coding RNAs play critical roles in the maintenance of the soma. Accumulating evidence indicates that small non-coding RNAs perform vital functions in the animal nervous system such as restricting the activity of deleterious transposable elements, regulating nerve regeneration, and mediating learning and memory. In this review, we provide an overview of the current understanding of the contribution of two major classes of small non-coding RNAs, piRNAs and endo-siRNAs, to the nervous system development and function, and present highlights on how the dysregulation of small non-coding RNA pathways can assist in understanding the neuropathology of human neurological disorders.
Collapse
Affiliation(s)
- Maria C Ow
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Sarah E Hall
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
8
|
Chavda V, Madhwani K, Chaurasia B. PiWi RNA in Neurodevelopment and Neurodegenerative disorders. Curr Mol Pharmacol 2021; 15:517-531. [PMID: 34212832 DOI: 10.2174/1874467214666210629164535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Shedding light on the mysterious dark matter of the genome gears up the knowledge of modern biology. Beyond the genome, epigenome layers an untraveled path of fundamental biological and functional roles of gene regulation. Extraordinary character- P element wimpy testis-induced (PiWi)-interacting RNA (piRNA) is a type of small non-coding RNA that serves as a defender that imposes genomic and cellular defense by silencing nucleic and structural invaders. PIWI proteins and piRNAs appear in both reproductive and somatic cells, though germ line richness is partially unraveled more as it was originally discovered. The foremost function is to suppress invasive DNA sequences, which move within genomic DNA referred to as transposon elements (TEs) and downstream target genes via Transcriptional gene silencing (TGS) and Post-translational gene silencing (PTGS). Germline piRNAs maintain genomic integrity, stability, sternness, and impact imprinting expression. Somatic tissue-specific piRNAs have been surprised by their novel roles. piRNA regulates neurodevelopmental processes in metazoans, including humans. Neural heterogeneity, neurogenesis, neural plasticity, and transgenerational inheritance of adaptive and long-term memory are governed by the PIWI pathway. Neuro-developmental, neurodegenerative or psychiatric illness are the outcome of dysregulated piRNA. Aberrant piRNA signature causes inappropriate switching on or off genes by activation of TEs, incorrect epigenetic tags on DNA, and or histones. Defective piRNA regulation leads to abnormal brain development and neurodegenerative etiology, promoting life-threatening disorders. Exemplification of exciting roles of piRNA is in infancy, so future investigation may expand on these observations using innovative techniques and launch them as impending biomarkers for diagnostics and therapeutics. In this current review, we have summarized the possible gene molecular role of piRNAs regulating neurobiology and contributing as uncharted biomarkers and therapeutic targets for life-threatening diseases.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
9
|
Liguori F, Amadio S, Volonté C. Where and Why Modeling Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22083977. [PMID: 33921446 PMCID: PMC8070525 DOI: 10.3390/ijms22083977] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Over the years, researchers have leveraged a host of different in vivo models in order to dissect amyotrophic lateral sclerosis (ALS), a neurodegenerative/neuroinflammatory disease that is heterogeneous in its clinical presentation and is multigenic, multifactorial and non-cell autonomous. These models include both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs and, more recently, non-human primates. Despite their obvious differences and peculiarities, only the concurrent and comparative analysis of these various systems will allow the untangling of the causes and mechanisms of ALS for finally obtaining new efficacious therapeutics. However, harnessing these powerful organisms poses numerous challenges. In this context, we present here an updated and comprehensive review of how eukaryotic unicellular and multicellular organisms that reproduce a few of the main clinical features of the disease have helped in ALS research to dissect the pathological pathways of the disease insurgence and progression. We describe common features as well as discrepancies among these models, highlighting new insights and emerging roles for experimental organisms in ALS.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, 00143 Rome, Italy; (F.L.); (S.A.)
- Institute for Systems Analysis and Computer Science “A. Ruberti”, National Research Council (IASI—CNR), 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3084
| |
Collapse
|
10
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
11
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
12
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
13
|
Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic Regulation of ALS and CMT: A Lesson from Drosophila Models. Int J Mol Sci 2021; 22:ijms22020491. [PMID: 33419039 PMCID: PMC7825332 DOI: 10.3390/ijms22020491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disorder and is sometimes associated with frontotemporal dementia. Charcot–Marie–Tooth disease (CMT) is one of the most commonly inherited peripheral neuropathies causing the slow progression of sensory and distal muscle defects. Of note, the severity and progression of CMT symptoms markedly vary. The phenotypic heterogeneity of ALS and CMT suggests the existence of modifiers that determine disease characteristics. Epigenetic regulation of biological functions via gene expression without alterations in the DNA sequence may be an important factor. The methylation of DNA, noncoding RNA, and post-translational modification of histones are the major epigenetic mechanisms. Currently, Drosophila is emerging as a useful ALS and CMT model. In this review, we summarize recent studies linking ALS and CMT to epigenetic regulation with a strong emphasis on approaches using Drosophila models.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto 619-0237, Japan
- Correspondence: (M.Y.); (H.Y.)
| | - Kentaro Omori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Satoshi Asada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
14
|
Kim KW. PIWI Proteins and piRNAs in the Nervous System. Mol Cells 2019; 42:828-835. [PMID: 31838836 PMCID: PMC6939654 DOI: 10.14348/molcells.2019.0241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.
Collapse
Affiliation(s)
- Kyung Won Kim
- Convergence Program of Material Science for Medicine and Pharmaceutics, Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252,
Korea
| |
Collapse
|
15
|
Drosophila Alpha-ketoglutarate-dependent dioxygenase AlkB is involved in repair from neuronal disorders induced by ultraviolet damage. Neuroreport 2019; 30:1039-1047. [PMID: 31503204 DOI: 10.1097/wnr.0000000000001323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AlkB family proteins are enzymes that repair alkylated DNA and RNA by oxidative demethylation. Nine homologs have been identified and characterized in mammals. ALKBH1 is conserved among metazoans including Drosophila. Although the ALKBH1 mouse homolog, Alkbh1 functions in neurogenesis, it currently remains unclear whether ALKBH1 plays a role in neuronal disorders induced by ultraviolet-induced DNA damage. We herein demonstrated that the Drosophila ALKBH1 homolog, AlkB contributed to recovery from neuronal disorders induced by ultraviolet damage. The knockdown of AlkB resulted in not only learning defects but also altered crawling behavior in Drosophila larvae after ultraviolet irradiation. A molecular analysis revealed that AlkB contributed to the repair of ultraviolet-induced DNA damage in the central nervous system of larvae. Therefore, we propose that ALKBH1 plays a role in the repair of ultraviolet-induced DNA damage in central nervous system. Ultraviolet-induced DNA damage is involved in the pathogenesis of xeroderma pigmentosum, and has recently been implicated in Parkinson's disease. The present results will contribute to our understanding of neuronal diseases induced by ultraviolet-induced DNA damage.
Collapse
|
16
|
Ichiyanagi K, Saito K. TE studies in Japan: the fourth Japanese meeting on host-transposon interactions. Mob DNA 2019; 10:11. [PMID: 30923579 PMCID: PMC6419827 DOI: 10.1186/s13100-019-0154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
The fourth Japanese meeting entitled “Biological Function and Evolution through Interactions between Hosts and Transposable Elements (TEs)” was held on August 20–21, 2018 at the National Institute of Genetics (NIG), Mishima, Japan. The meeting was supported by NIG, and its objective was to bring together researchers who study the diverse roles of TEs in genome evolution, as well as host defense systems against TE mobility, such as chromatin modifications, small RNAs, and others. Here, we present the highlights of the talks given by 14 invited speakers. Organizers: Kenji Ichiyanagi (chief), Kuniaki Saito, and Tetsuji Kakutani.
Collapse
Affiliation(s)
- Kenji Ichiyanagi
- 1Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Kuniaki Saito
- 2Invertebrate Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| |
Collapse
|