1
|
Zhao Y, Zhao M, Li Q, Li H, Yang R, Yin N, Faiola F. Development of a TBXT-EGFP iPS cell model for screening the early developmental toxicity of typical environmental pollutants. Food Chem Toxicol 2024; 193:115039. [PMID: 39389444 DOI: 10.1016/j.fct.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
In our daily lives, we are inevitably exposed to a variety of environmental pollutants in numerous ways. Fortunately, recent years have witnessed significant advancements in the field of stem cell toxicology, which have provided new opportunities for research in environmental toxicology. Applying stem cell technology to environmental toxicology, overcomes some of the limitations of traditional screening methods and we can more accurately predict the toxicity of environmental pollutants. However, there are still several aspects of stem cell toxicology models that require improvement, such as increasing the throughput of detection and simplifying detection methods. Consequently, we developed an environmental pollutant toxicity detection model based on TBXT-EGFP iPS cells and screened the developmental toxicity of 38 typical environmental pollutants. Our results indicate that TBBPA-BDBPE, TBBPA-BHEE, DG, and AO2246 may interfere with the expression of TBXT, a critical marker gene for early human embryo development, implying that these environmental pollutants could lead to developmental abnormalities.
Collapse
Affiliation(s)
- Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qingyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanyue Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wang X, Sui X, Sun Y, Cui Z, Ma N, Wang S, Yang J, Liu F, Yang W, Xiao Z, Zhu T, Luo Y, Wang Y. Potential Common Mechanisms of Cytotoxicity Induced by Organophosphorus Pesticides via NLRP3 Inflammasome Activation. GEOHEALTH 2024; 8:e2023GH000888. [PMID: 38638206 PMCID: PMC11024795 DOI: 10.1029/2023gh000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024]
Abstract
The Multi-Threat Medical Countermeasure (MTMC) technique is crucial for developing common biochemical signaling pathways, molecular mediators, and cellular processes. This study revealed that the Nod-like receptor 3 (NLRP3) inflammasome pathway may be a significant contributor to the cytotoxicity induced by various organophosphorus pesticides (OPPs). The study demonstrated that exposure to six different types of OPPs (paraoxon, dichlorvos, fenthion, dipterex, dibrom, and dimethoate) led to significant cytotoxicity in BV2 cells, which was accompanied by increased expression of NLRP3 inflammasome complexes (NLRP3, ASC, Caspase-1) and downstream inflammatory cytokines (IL-1β, IL-18), in which the order of cytotoxicity was dichlorvos > dipterex > dibrom > paraoxon > fenthion > dimethoate, based on the IC50 values of 274, 410, 551, 585, 2,158, and 1,527,566 μM, respectively. The findings suggest that targeting the NLRP3 inflammasome pathway could be a potential approach for developing broad-spectrum antitoxic drugs to combat multi-OPPs-induced toxicity. Moreover, inhibition of NLRP3 efficiently protected the cells against cytotoxicity induced by these six OPPs, and the expression of NLRP3, ASC, Caspase-1, IL-1β, and IL-18 decreased accordingly. The order of NLRP3 affinity for OPPs was dimethoate > paraoxon > dichlorvos > dibrom > (fenthion and dipterex) based on K D values of 89.8, 325, 1,460, and 2,690 μM, respectively. Furthermore, the common molecular mechanism of NLRP3-OPPs was clarified by the presence of toxicity effector groups (benzene ring, nitrogen/oxygen-containing functional group); =O, -O-, or =S (active) groups; and combination residues (Gly271, Asp272). This finding provided valuable insights into exploring the common mechanisms of multiple threats and developing effective therapeutic strategies to prevent OPPs poisoning.
Collapse
Affiliation(s)
- Xiaoning Wang
- School of Mechanical Engineering and AutomationInstitute of Process Equipment and Environmental EngineeringNortheastern UniversityShenyangChina
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Ning Ma
- 900TH Hospital of Joint Logistics Support ForceFuzhouChina
| | - Shuai Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Tong Zhu
- School of Mechanical Engineering and AutomationInstitute of Process Equipment and Environmental EngineeringNortheastern UniversityShenyangChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
3
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Septyaningtrias DE, Zulfa HA, Ramadhani MF, Sumaryati, Sulistyawati D, Paramita DK, Sumiwi YAA, Susilowati R. Colonic Myenteric Plexus Neurodegeneration and Minor Colon Inflammation in Trimethyltin-induced Rat Model of Neurodegeneration. J Histochem Cytochem 2023; 71:333-344. [PMID: 37322890 PMCID: PMC10315991 DOI: 10.1369/00221554231182195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Gastrointestinal symptoms are common health problems found during aging and neurodegenerative diseases. Trimethyltin-induced rat is known as an animal model of hippocampal degeneration with no data on enteric neurodegeneration. This study aimed to investigate the effect of trimethyltin (TMT) induction on the gastrointestinal tract. A 28-day animal study with male Sprague-Dawley rats (3 months old, 150-200 g) given a single TMT injection (8 mg/kg body weight, intraperitoneal) was conducted. The number of neurons in the colonic myenteric plexus was measured using stereological estimation. Histological scoring of colon inflammation, immunohistochemistry of tumor necrosis factor-α (TNF-α), and quantitative PCR were conducted. This study showed neuronal loss in the colonic myenteric plexus of TMT-induced rat model of neurodegeneration. Minor colon inflammation characterized by inflammatory cell infiltration and slightly higher expression of TNF-α in the colon mucosa were observed in the TMT-induced rat. However, the gut microbiota composition of the TMT-induced rat was not different from that of the control rats. This study demonstrates that TMT induces colonic myenteric plexus neurodegeneration and minor colon inflammation, which suggests the potential of this animal model to elucidate the communication between the gastrointestinal tract and central nervous system in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hilizza Awalina Zulfa
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mahayu Firsty Ramadhani
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sumaryati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Sulistyawati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Kartikawati Paramita
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yustina Andwi Ari Sumiwi
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Dominguini D, Michels M, Wessler LB, Streck EL, Barichello T, Dal-Pizzol F. Mitochondrial protective effects caused by the administration of mefenamic acid in sepsis. J Neuroinflammation 2022; 19:268. [PMID: 36333747 PMCID: PMC9636698 DOI: 10.1186/s12974-022-02616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1β, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
6
|
Candadai AA, Liu F, Verma A, Adil MS, Alfarhan M, Fagan SC, Somanath PR, Narayanan SP. Neuroprotective Effects of Fingolimod in a Cellular Model of Optic Neuritis. Cells 2021; 10:cells10112938. [PMID: 34831161 PMCID: PMC8616192 DOI: 10.3390/cells10112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Visual dysfunction resulting from optic neuritis (ON) is one of the most common clinical manifestations of multiple sclerosis (MS), characterized by loss of retinal ganglion cells, thinning of the nerve fiber layer, and inflammation to the optic nerve. Current treatments available for ON or MS are only partially effective, specifically target the inflammatory phase, and have limited effects on long-term disability. Fingolimod (FTY) is an FDA-approved immunomodulatory agent for MS therapy. The objective of the current study was to evaluate the neuroprotective properties of FTY in the cellular model of ON-associated neuronal damage. R28 retinal neuronal cell damage was induced through treatment with tumor necrosis factor-α (TNFα). In our cell viability analysis, FTY treatment showed significantly reduced TNFα-induced neuronal death. Treatment with FTY attenuated the TNFα-induced changes in cell survival and cell stress signaling molecules. Furthermore, immunofluorescence studies performed using various markers indicated that FTY treatment protects the R28 cells against the TNFα-induced neurodegenerative changes by suppressing reactive oxygen species generation and promoting the expression of neuronal markers. In conclusion, our study suggests neuroprotective effects of FTY in an in vitro model of optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Susan C. Fagan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA; (A.A.C.); (F.L.); (A.V.); (M.S.A.); (M.A.); (S.C.F.); (P.R.S.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
7
|
Childers GM, Perry CA, Blachut B, Martin N, Bortner CD, Sieber S, Li JL, Fessler MB, Harry GJ. Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47015. [PMID: 33929904 PMCID: PMC8086801 DOI: 10.1289/ehp8314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mitochondrial function is implicated as a target of environmental toxicants and found in disease or injury models, contributing to acute and chronic inflammation. One mechanism by which mitochondrial damage can propagate inflammation is via activation of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing receptor (NLRP)3 inflammasome, a protein complex that processes mature interleukin (IL)-1β. IL-1β plays an important role in the innate immune response and dysregulation is associated with autoinflammatory disorders. OBJECTIVE The objective was to evaluate whether mitochondrial toxicants recruit inflammasome activation and IL-1β processing. METHOD Murine macrophages (RAW 264.7) exposed to tri-organotins (triethyltin bromide (TETBr), trimethyltin hydroxide (TMTOH), triphenyltin hydroxide (TPTOH), bis(tributyltin)oxide) [Bis(TBT)Ox] were examined for pro-inflammatory cytokine induction. TMTOH and TETBr were examined in RAW 264.7 and bone marrow-derived macrophages for mitochondrial bioenergetics, reactive oxygen species (ROS) production, and inflammasome activation via visualization of aggregate formation, caspase-1 flow cytometry, IL-1β enzyme-linked immunosorbent assay and Western blots, and microRNA (miRNA) and mRNA arrays. RESULTS TETBr and TMTOH induced inflammasome aggregate formation and IL-1β release in lipopolysaccharide (LPS)-primed macrophages. Mitochondrial bioenergetics and mitochondrial ROS were suppressed. Il1a and Il1b induction with LPS or LPS+ATP challenge was diminished. Differential miRNA and mRNA profiles were observed. Lower miR-151-3p targeted cyclic adenosine monophosphate (cAMP)-mediated and AMP-activated protein kinase signaling pathways; higher miR-6909-5p, miR-7044-5p, and miR-7686-5p targeted Wnt beta-catenin signaling, retinoic acid receptor activation, apoptosis, signal transducer and activator of transcription 3, IL-22, IL-12, and IL-10 signaling. Functional enrichment analysis identified apoptosis and cell survival canonical pathways. CONCLUSION Select mitotoxic tri-organotins disrupted murine macrophage transcriptional response to LPS, yet triggered inflammasome activation. The differential response pattern suggested unique functional changes in the inflammatory response that may translate to suppressed host defense or prolong inflammation. We posit a framework to examine immune cell effects of environmental mitotoxic compounds for adverse health outcomes. https://doi.org/10.1289/EHP8314.
Collapse
Affiliation(s)
- Gabrielle M. Childers
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Caroline A. Perry
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Barbara Blachut
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Negin Martin
- Laboratory of Neurobiology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Carl D. Bortner
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Stella Sieber
- Molecular Genomics Core Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Michael B. Fessler
- Immunity, Inflammation, and Disease Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - G. Jean Harry
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Iqubal A, Ahmed M, Ahmad S, Sahoo CR, Iqubal MK, Haque SE. Environmental neurotoxic pollutants: review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41175-41198. [PMID: 32820440 DOI: 10.1007/s11356-020-10539-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/16/2020] [Indexed: 05/23/2023]
Abstract
Environmental pollutants are recognized as one of the major concerns for public health and responsible for various forms of neurological disorders. Some of the common sources of environmental pollutants related to neurotoxic manifestations are industrial waste, pesticides, automobile exhaust, laboratory waste, and burning of terrestrial waste. Among various environmental pollutants, particulate matter, ultrafine particulate matter, nanoparticles, and lipophilic vaporized toxicant (acrolein) easily cross the blood-brain barrier, activate innate immune responses in the astrocytes, microglia, and neurons, and exert neurotoxicity. Growing shreds of evidence from human epidemiological studies have correlated the environmental pollutants with neuroinflammation, oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, myelin sheath disruption, and alterations in the blood-brain barrier anatomy leading to cognitive dysfunction and poor quality of life. These environmental pollutants also considerably cause developmental neurotoxicity, exhibit teratogenic effect and mental growth retardance, and reduce IQ level. Until now, the exact mechanism of pollutant-induced neurotoxicity is not known, but studies have shown interference of pollutants with the endogenous antioxidant defense system, inflammatory pathway (Nrf2/NF-kB, MAPKs/PI3K, and Akt/GSK3β), modulation of neurotransmitters, and reduction in long-term potentiation. In the current review, various sources of pollutants and exposure to the human population, developmental neurotoxicity, and molecular mechanism of different pollutants involved in the pathogenesis of different neurological disorders have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
9
|
Liquiritigenin Decreases Aβ Levels and Ameliorates Cognitive Decline by Regulating Microglia M1/M2 Transformation in AD Mice. Neurotox Res 2020; 39:349-358. [PMID: 32990912 DOI: 10.1007/s12640-020-00284-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and is currently incurable. Amyloid β protein (Aβ) deposition is the main pathogenesis of AD, and many studies have shown that Aβ accumulation is toxic to neurons, leading to the inflammatory reaction, neuronal apoptosis, and neurofibrillary tangles. Thus, reducing Aβ levels might be a potential therapeutic strategy for AD. Liquiritigenin (LG), a dihydroflavone monomer compound extracted from natural plant licorice, has a variety of biological activities such as antioxidant, anti-tumor, anti-inflammatory and anti-virus. However, the exact function of LG in the pathogenesis of AD is elusive. Here, we reported that LG could significantly attenuate neuronal apoptosis in Aβ-induced N2A cells and APP/PS1 transgenic mice. Our in vivo and in vitro studies revealed that LG could alleviate the inflammation response, reflected by the reduction of NLRP3 and cleaved caspase-1. Meanwhile, we also found that LG was able to shift M1 type microglia towards M2 type microglia in Aβ-induced BV2 cells and AD mice. Furthermore, LG could reduce the Aβ levels by decreasing APP processing and accelerating Aβ clearance in AD mice. More importantly, daily treatment of LG (30 mg/kg day) for 90 days dramatically ameliorated the spatial learning and memory of AD mice. Taken together, these results suggest that LG can reduce the Aβ levels by regulating the M1/M2 transformation of microglia, thereby reversing memory decline during AD development, suggesting that LG may be a potential therapeutic agent for treating AD.
Collapse
|
10
|
Huang R, Hou L, Ruan Z, Zhang D, Sun W, Wang Q. NLRP3 inflammasome mediates 2,5-hexanedione-induced neurotoxicity through regulation of macrophage infiltration in rats. Chem Biol Interact 2020; 330:109232. [PMID: 32860822 DOI: 10.1016/j.cbi.2020.109232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 01/20/2023]
Abstract
Currently, whether nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation contributes to neuropathy induced by 2,5-Hexanedione (HD), the toxic metabolite of n-hexane, remains unknown. In this study, we found that HD intoxication elevated NLRP3 expression, caspase-1 activation and interleukin-1β production in sciatic nerve of rats, indicating activation of NLRP3 inflammasome. The increased cleavage of gasdermin D (GSDMD) protein, an important mediator of pyroptosis, and axon degeneration were also observed in sciatic nerves of HD-intoxicated rats. Interestingly, glybenclamide, a widely used inhibitor of NLRP3 inflammasome, significantly reduced NLRP3 inflammasome activation, which was associated with decreased GSDMD cleavage and axon degeneration as well as improved motor performance of HD-intoxicated rats. Subsequently, we found that inhibition of NLRP3 inflammasome by glybenclamide attenuated macrophage infiltration, activation and M1 polarization in sciatic nerves of HD-intoxicated rats. Furthermore, decreased malondialdehyde (MDA) contents and increased glutathione (GSH) level and total anti-oxidative capacity were also observed in sciatic nerves of rats treated with combined glybenclamide and HD compared with HD alone group. Altogether, our findings suggest that NLRP3 inflammasome activation contributes to HD-induced neurotoxicity by enhancing macrophage infiltration and activation as well as oxidative stress, providing a novel mechanism of neuropathy induced by this neurotoxicant.
Collapse
Affiliation(s)
- Ruixue Huang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Ruan
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dongdong Zhang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei Sun
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
11
|
Hou L, Qu X, Qiu X, Huang R, Zhao X, Wang Q. Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson's disease model. J Neuroinflammation 2020; 17:148. [PMID: 32375810 PMCID: PMC7201626 DOI: 10.1186/s12974-020-01823-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The loss of locus coeruleus noradrenergic (LC/NE) neurons in the brainstem is reported in multiple neurodegenerative disorders, including Parkinson's disease (PD). However, the mechanisms remain unclear. Strong evidence suggested that microglia-mediated neuroinflammation contributes to neurodegeneration in PD. We recently recognized integrin CD11b, the α-chain of macrophage antigen complex-1 (Mac-1, also called CR3), as a key regulator for microglial activation. However, whether CD11b is involved in LC/NE neurodegeneration in PD remains to be investigated. METHODS LC/NE neurodegeneration and microglial activation were compared between wild type (WT) and CD11b KO mice after treated with paraquat and maneb, two pesticides that widely used to create PD model. The role of NLRP3 inflammasome in CD11b-mediated microglial dysfunction and LC/NE neurodegeneration was further explored. LC/NE neurodegeneration, microglial phenotype, and NLRP3 inflammasome activation were determined by using Western blot, immunohistochemistry, and RT-PCR technologies. RESULTS Paraquat and maneb co-exposure elevated the expressions of CD11b in the brainstem of mice, and CD11b knockout significantly reduced LC/NE neurodegeneration induced by paraquat and maneb. Mitigated microglial activation and gene expressions of proinflammatory cytokines were also observed in paraquat and maneb-treated CD11b-/- mice. Mechanistically, CD11b-mediated NLRP3 inflammasome activation contributes to paraquat and maneb-induced LC/NE neurodegeneration. Compared with WT controls, CD11b deficiency reduced paraquat and maneb-induced NLRP3 expression, caspase-1 activation, and interleukin-1β production in mice. Furthermore, inhibition of NLRP3 inflammasome by glybenclamide, a sulfonylurea inhibitor of NLRP3 inflammasome, was found to be able to suppress microglial proinflammatory activation and nuclear factor-κB activation induced by paraquat and maneb. Moreover, reduced reactive oxygen species production, NADPH oxidase, and inducible nitric oxide synthase expressions as well as 4-hydroxynonenal and malondialdehyde levels were detected in combined glybenclamide and paraquat and maneb-treated mice compared with paraquat and maneb alone group. Finally, we found that glybenclamide treatment ameliorated LC/NE neurodegeneration and α-synuclein aggregation in paraquat and maneb-treated mice. CONCLUSION Our findings suggested that CD11b mediates LC/NE neurodegeneration through NLRP3 inflammation-dependent microglial proinflammatory activation in a two pesticide-induced mouse PD model, providing a novel insight into the immune pathogenesis of LC/NE neuronal damage in related disorders.
Collapse
Affiliation(s)
- Liyan Hou
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xingyue Qu
- Department of Clinical Nutrition, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaofei Qiu
- Qingdao Municipal Center for Disease Control & Prevention/Qingdao Institute of Preventive Medicine, Qingdao, 266033, China.,School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ruixue Huang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiulan Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China. .,National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
An BH, Zhang RF, Du XM, Li QL, Cheng S, Huang HL, Ma CL. Novel triorganotin complexes based on phosphonic acid ligands: Syntheses, structures and in vitro cytostatic activity. J Inorg Biochem 2020; 206:111022. [PMID: 32070916 DOI: 10.1016/j.jinorgbio.2020.111022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Six novel organotin phosphonate complexes, [(Me3Sn)4(HL1)4]n1, [(Me3Sn)2(HL2)2]n2, [(Me3Sn)2L3(H2O)]n3, [(Ph3Sn)(HL1)]64, [(Ph3Sn)2L2]n5 and [(Ph3Sn)2L3]66, derived from phosphonic acid ligands [NaHL1 = 1-C10H7OPO2(OH)Na, H2L2 = 1-C10H7PO(OH)2, H2L3 = 2-C10H7PO(OH)2], have been synthesized and characterized by elemental analysis, FT-IR, NMR (1H, 13C, 31P and 119Sn) spectroscopy and X-ray crystallography. The structural analysis reveals that complexes 1 and 5 display 1D infinite zig-zag chain structures, and complex 2 shows 1D right-handed helical chain structure, while complex 3 displays 1D left-handed helical chain structure. Complexes 4 and 6 are 24-membered macrocyclic rings interconnected by P, O and Sn atoms. Additionally, the molecules of complexes 1 and 3 are further linked through intermolecular π···π and O-H···O interaction into supramolecular structures, respectively. Furthermore, we preliminarily estimated in vitro cytostatic activity of complexes 1-6 against the human cervix tumor cells (HeLa), human hepatocellular carcinoma cells (HepG-2) and human normal breast cells (HBL-100). Importantly, the anti-proliferative properties and possible pathway of complex 6 are investigated, and the results demonstrate that complex 6 could induce apoptotic cell death via an overload of intracellular reactive oxygen species (ROS) levels and the dysfunctional depolarization of mitochondrial membranes.
Collapse
Affiliation(s)
- Bo-Hang An
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ru-Fen Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Xiu-Mei Du
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Shuang Cheng
- School of Agriculture, Liaocheng University, Liaocheng 252059, China
| | - Hong-Li Huang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
13
|
The HO-1 Signal Prevents HMGB1-Mediated Activation of NLRP3 Inflammasomes in Lipopolysaccharide-Induced Acute Lung Injury In Vitro. J Surg Res 2020; 247:335-343. [DOI: 10.1016/j.jss.2019.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/08/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
|