1
|
Rashki M, Ghasemzadeh Rahbardar M, Boskabady MH. Nutritional Advantages of Walnut ( Juglans regia L.) for Cardiovascular Diseases: A Comprehensive Review. Food Sci Nutr 2025; 13:e4526. [PMID: 39803290 PMCID: PMC11717060 DOI: 10.1002/fsn3.4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide. In recent years, the potential role of dietary interventions in preventing and managing CVDs has gained significant attention. Among these dietary components, walnuts (Juglans regia L.) have emerged as a promising candidate due to their unique nutrient profile and potential cardiovascular benefits. This review aims to provide a comprehensive analysis of the existing literature on the role of walnuts in cardiovascular health. Using databases from Scopus, Google Scholar, and PubMed, the most relevant in vitro, in vivo, and clinical trial research has been collected from the time of inception until 2024. Several studies have shown that walnut consumption has a positive effect on a variety of cardiovascular risk factors. Walnut bioactive ingredients, including omega-3 fatty acids, antioxidants, fiber, and polyphenols, have been demonstrated to improve lipid profiles, blood pressure, endothelial function, inflammation, oxidative stress, and thrombosis. These processes all contribute to the possible cardioprotective properties of walnuts. Epidemiological and clinical research indicates that daily walnut consumption can reduce the risk of CVDs like coronary heart disease and stroke. Walnuts may aid in managing CVDs through mechanisms such as enhancing lipid profiles, reducing inflammation, and improving overall cardiovascular function. This review highlights the potential role of walnuts as a dietary strategy for the prevention and management of CVDs. Further understanding of the mechanisms and long-term effects of walnut consumption is crucial for optimizing their therapeutic potential and integrating them into clinical practice. Future research should focus on elucidating specific dose-response relationships and exploring the synergistic effects of walnuts in combination with other dietary and lifestyle interventions.
Collapse
Affiliation(s)
- Mostafa Rashki
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Peltekian L, Gasparini S, Fazan FS, Karthik S, Iverson G, Resch JM, Geerling JC. Sodium appetite and thirst do not require angiotensinogen production in astrocytes or hepatocytes. J Physiol 2023; 601:3499-3532. [PMID: 37291801 DOI: 10.1113/jp283169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.
Collapse
Affiliation(s)
- Lila Peltekian
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Jon M Resch
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Yan F, Zhu H, He Y, Wu Q, Duan X. Combination of tolvaptan and valsartan improves cardiac and renal functions in doxorubicin-induced heart failure in mice. Eur J Histochem 2022; 66. [DOI: 10.4081/ejh.2022.3563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is often complicated by renal dysfunction. Tolvaptan and valsartan are two well-known agents for the treatment of HF. However, the role of tolvaptan/valsartan combination on HF with renal dysfunction remains unclear. To establish a mice model with HF with renal dysfunction, mice were intraperitoneally injected with doxorubicin (Dox). Echocardiogram was applied to assess the left ventricular function. Additionally, serum aldosterone (ALD) and angiotensin II (Ang II) level in mice were determined by ELISA. Meanwhile, western blot assay was used to evaluate the expressions of B cell lymphoma-2 (Bcl-2), Bcl-2 associated X (Bax) and cleaved caspase 3 in the heart and kidney tissues of mice. In this study, we found that compared to tolvaptan or valsartan alone treatment group, tolvaptan/valsartan combination obviously improved the left ventricular ejection fraction (LVEF) and the left ventricular fractional shortening (LVFS), and reduced serum ALD and Ang II level in Dox-treated mice. Additionally, tolvaptan/valsartan combination significantly prevented the inflammation and fibrosis of heart and kidney tissues in Dox-treated mice. Meanwhile, tolvaptan/valsartan combination notably inhibited the myocardial and renal cell apoptosis in Dox-treated mice via upregulation of Bcl-2 and downregulation of Bax and cleaved caspase 3, compared to the single drug treatment. Collectively, tolvaptan/valsartan combination could improve cardiac and renal functions, as well as prevent the fibrosis, inflammation and apoptosis of heart and kidney tissues in Dox-treated mice. Taken together, combining tolvaptan with valsartan might be a promising approach to achieve enhanced therapeutic effect for treatment of HF with renal dysfunction.
Collapse
|
4
|
Signal Transduction of Mineralocorticoid and Angiotensin II Receptors in the Central Control of Sodium Appetite: A Narrative Review. Int J Mol Sci 2021; 22:ijms222111735. [PMID: 34769164 PMCID: PMC8584094 DOI: 10.3390/ijms222111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite. Appropriate keywords and MeSH terms were identified and searched in PubMed. References to original articles and reviews were examined, selected, and discussed. Several brain areas control sodium appetite, including the nucleus of the solitary tract, which contains aldosterone-sensitive HSD2 neurons, and the organum vasculosum lamina terminalis (OVLT) that contains ANG II-sensitive neurons. Furthermore, sodium appetite is under the control of signaling proteins such as mitogen-activated protein kinase (MAPK) and inositol 1,4,5-thriphosphate (IP3). ANG II stimulates salt intake via MAPK, while combined ANG II and aldosterone action induce sodium intake via the IP3 signaling pathway. Finally, aldosterone and ANG II stimulate OVLT neurons and suppress oxytocin secretion inhibiting the neuronal activity of the paraventricular nucleus, thus disinhibiting the OVLT activity to aldosterone and ANG II stimulation.
Collapse
|
5
|
Lucera GM, Menani JV, Colombari E, Colombari DSA. ANG II and Aldosterone Acting Centrally Participate in the Enhanced Sodium Intake in Water-Deprived Renovascular Hypertensive Rats. Front Pharmacol 2021; 12:679985. [PMID: 34113255 PMCID: PMC8186501 DOI: 10.3389/fphar.2021.679985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Renovascular hypertension is a type of secondary hypertension caused by renal artery stenosis, leading to an increase in the renin–angiotensin–aldosterone system (RAAS). Two-kidney, 1-clip (2K1C) is a model of renovascular hypertension in which rats have an increased sodium intake induced by water deprivation (WD), a common situation found in the nature. In addition, a high-sodium diet in 2K1C rats induces glomerular lesion. Therefore, the purpose of this study was to investigate whether angiotensin II (ANG II) and/or aldosterone participates in the increased sodium intake in 2K1C rats under WD. In addition, we also verified if central AT1 and mineralocorticoid receptor blockade would change the high levels of arterial pressure in water-replete (WR) and WD 2K1C rats, because blood pressure changes can facilitate or inhibit water and sodium intake. Finally, possible central areas activated during WD or WD followed by partial rehydration (PR) in 2K1C rats were also investigated. Male Holtzman rats (150–180 g) received a silver clip around the left renal artery to induce renovascular hypertension. Six weeks after renal surgery, a stainless-steel cannula was implanted in the lateral ventricle, followed by 5–7 days of recovery before starting tests. Losartan (AT1 receptor antagonist) injected intracerebroventricularly attenuated water intake during the thirst test. Either icv losartan or RU28318 (mineralocorticoid receptor antagonist) reduced 0.3 M NaCl intake, whereas the combination of losartan and RU28318 icv totally blocked 0.3 M NaCl intake induced by WD in 2K1C rats. Losartan and RU28318 icv did not change hypertension levels of normohydrated 2K1C rats, but reduced the increase in mean arterial pressure (MAP) produced by WD. c-Fos expression increased in the lamina terminalis and in the NTS in WD condition, and increased even more after WD-PR. These results suggest the participation of ANG II and aldosterone acting centrally in the enhanced sodium intake in WD 2K1C rats, and not in the maintenance of hypertension in satiated and fluid-replete 2K1C rats.
Collapse
Affiliation(s)
- Gabriela Maria Lucera
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University, Araraquara, Brazil
| | | |
Collapse
|
6
|
Oliveira V, Kwitek AE, Sigmund CD, Morselli LL, Grobe JL. Recent Advances in Hypertension: Intersection of Metabolic and Blood Pressure Regulatory Circuits in the Central Nervous System. Hypertension 2021; 77:1061-1068. [PMID: 33611936 DOI: 10.1161/hypertensionaha.120.14513] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity represents the single greatest ongoing roadblock to improving cardiovascular health. Prolonged obesity is associated with fundamental changes in the integrative control of energy balance, including the development of selective leptin resistance, which is thought to contribute to obesity-associated hypertension, and adaptation of resting metabolic rate (RMR) when excess weight is reduced. Leptin and the melanocortin system within the hypothalamus contribute to the control of both energy balance and blood pressure. While the development of drugs to stimulate RMR and thereby reverse obesity through activation of the melanocortin system has been pursued, most of the resulting compounds simultaneously cause hypertension. Evidence supports the concept that although feeding behaviors, RMR, and blood pressure are controlled through mechanisms that utilize similar molecular mediators, these mechanisms exist in anatomically dissociable networks. New evidence supports a major change in molecular signaling within AgRP (Agouti-related peptide) neurons of the arcuate nucleus of the hypothalamus during prolonged obesity and the existence of multiple distinct subtypes of AgRP neurons that individually contribute to control of feeding, RMR, or blood pressure. Finally, ongoing work by our laboratory and others support a unique role for AT1 (angiotensin II type 1 receptor) within one specific subtype of AgRP neuron for the control of RMR. We propose that understanding the unique biology of the AT1-expressing, RMR-controlling subtype of AgRP neurons will help to resolve the selective dysfunctions in RMR control that develop during prolonged obesity and potentially point toward novel druggable antiobesity targets that will not simultaneously cause hypertension.
Collapse
Affiliation(s)
- Vanessa Oliveira
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Anne E Kwitek
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Curt D Sigmund
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Neuroscience Research Center (C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee
| | - Lisa L Morselli
- Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Division of Endocrinology and Molecular Medicine, Department of Medicine (L.L.M.), Medical College of Wisconsin, Milwaukee
| | - Justin L Grobe
- From the Department of Physiology (V.O., A.E.K., C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Cardiovascular Center (A.E.K., C.D.S., L.L.M., J.L.G.), Medical College of Wisconsin, Milwaukee.,Neuroscience Research Center (C.D.S., J.L.G.), Medical College of Wisconsin, Milwaukee.,Department of Biomedical Engineering (J.L.G.), Medical College of Wisconsin, Milwaukee.,Comprehensive Rodent Metabolic Phenotyping Core (J.L.G.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
7
|
Zenatti AA, Pereira ED, Possari J, Andrade CAF, Menani JV, De Luca LA. Interference with the renin-angiotensin system reduces the palatability of 0.3 M NaCl in sodium-deplete rats. Appetite 2020; 158:105037. [PMID: 33186624 DOI: 10.1016/j.appet.2020.105037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/15/2023]
Abstract
The renin-angiotensin system (RAS) controls hypertonic NaCl intake driven by sodium appetite. Here we investigated whether the antagonism of RAS interferes with hedonic and aversive orofacial motor responses, or palatability, to intraoral infusion of 0.3 M NaCl (hNaCl). Adult rats were depleted of sodium by combined sc injection of furosemide and 24 h removal of ambient sodium. In experiment 1, losartan (AT1 angiotensin II receptor antagonist, intracerebroventricular, 200 μg/μl), produced a three-fold increase in aversive orofacial motor responses to hNaCl. Losartan also suppressed hNaCl intake recorded immediately thereafter. In experiment 2, each animal had repeated recordings of hNaCl intake and orofacial responses to hNaCl distributed for 180 min. Paired recordings of intake and orofacial responses occurred within five successive blocks after the recordings of only orofacial responses when the animals were still sodium deplete (block zero). Captopril (angiotensin converting enzyme blocker, intraperitoneal, 30 mg/kg) inhibited by 75% the hedonic orofacial responses to hNaCl in blocks zero and 1. The hedonic responses to captopril remained the same throughout blocks, but became similar to vehicle from blocks 2 to 5. There was no difference in aversive responses to 0.3 M NaCl between captopril and vehicle. Captopril produced a 70-100% inhibition of hNaCl intake in blocks 1 to 5. The results suggest that angiotensin II acts in the brain increasing the palatability of hypertonic sodium during the consummatory phase of sodium appetite.
Collapse
Affiliation(s)
- A A Zenatti
- Department of Physiology and Pathology, School of Dentistry - FOAr, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - E D Pereira
- Department of Physiology and Pathology, School of Dentistry - FOAr, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J Possari
- Department of Physiology and Pathology, School of Dentistry - FOAr, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry - FOAr, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry - FOAr, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry - FOAr, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
8
|
Kang Y, Ding L, Dai H, Wang F, Zhou H, Gao Q, Xiong X, Zhang F, Song T, Yuan Y, Zhu G, Zhou Y. Intermedin in Paraventricular Nucleus Attenuates Ang II-Induced Sympathoexcitation through the Inhibition of NADPH Oxidase-Dependent ROS Generation in Obese Rats with Hypertension. Int J Mol Sci 2019; 20:ijms20174217. [PMID: 31466304 PMCID: PMC6747263 DOI: 10.3390/ijms20174217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Increased reactive oxygen species (ROS) induced by angiotensin II (Ang II) in the paraventricular nucleus (PVN) play a critical role in sympathetic overdrive in hypertension (OH). Intermedin (IMD), a bioactive peptide, has extensive clinically prospects in preventing and treating cardiovascular diseases. The study was designed to test the hypothesis that IMD in the PVN can inhibit the generation of ROS caused by Ang II for attenuating sympathetic nerve activity (SNA) and blood pressure (BP) in rats with obesity-related hypertension (OH). Male Sprague-Dawley rats (160-180 g) were used to induce OH by feeding of a high-fat diet (42% kcal as fat) for 12 weeks. The dynamic changes of sympathetic outflow were evaluated as the alterations of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to certain chemicals. The results showed that the protein expressions of Ang II type 1 receptor (AT1R), calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 2 (RAMP2) and RAMP3 were markedly increased, but IMD was much lower in OH rats when compared to control rats. IMD itself microinjection into PVN not only lowered SNA, NADPH oxidase activity and ROS level, but also decreased Ang II-caused sympathetic overdrive, and increased NADPH oxidase activity, ROS levels and mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) activation in OH rats. However, those effects were mostly blocked by the adrenomedullin (AM) receptor antagonist AM22-52 pretreatment. The enhancement of SNA caused by Ang II can be significantly attenuated by the pretreatment of AT1R antagonist lorsatan, superoxide scavenger Tempol and NADPH oxidase inhibitor apocynin (Apo) in OH rats. ERK activation inhibitor U0126 in the PVN reversed Ang II-induced enhancement of SNA, and Apo and IMD pretreatment in the PVN decreased Ang II-induced ERK activation. Chronic IMD administration in the PVN resulted in significant reductions in basal SNA and BP in OH rats. Moreover, IMD lowered NADPH oxidase activity and ROS level in the PVN; reduced the protein expressions of AT1R and NADPH oxidase subunits NOX2 and NOX4, and ERK activation in the PVN; and decreased Ang II levels-inducing sympathetic overactivation. These results indicated that IMD via AM receptors in the PVN attenuates SNA and hypertension, and decreases Ang II-induced enhancement of SNA through the inhibition of NADPH oxidase activity and ERK activation.
Collapse
Affiliation(s)
- Ying Kang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Lei Ding
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hangbing Dai
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Fangzheng Wang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Tianrun Song
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yan Yuan
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Guoqing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yebo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|