1
|
Xu IR, Danzi MC, Raposo J, Züchner S. The continued promise of genomic technologies and software in neurogenetics. J Neuromuscul Dis 2025:22143602251325345. [PMID: 40208247 DOI: 10.1177/22143602251325345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The continued evolution of genomic technologies over the past few decades has revolutionized the field of neurogenetics, offering profound insights into the genetic underpinnings of neurological disorders. Identification of causal genes for numerous monogenic neurological conditions has informed key aspects of disease mechanisms and facilitated research into critical proteins and molecular pathways, laying the groundwork for therapeutic interventions. However, the question remains: has this transformative trend reached its zenith? In this review, we suggest that despite significant strides in genome sequencing and advanced computational analyses, there is still ample room for methodological refinement. We anticipate further major genetic breakthroughs corresponding with the increased use of long-read genomes, variant calling software, AI tools, and data aggregation databases. Genetic progress has historically been driven by technological advancements from the commercial sector, which are developed in response to academic research needs, creating a continuous cycle of innovation and discovery. This review explores the potential of genomic technologies to address the challenges of neurogenetic disorders. By outlining both established and modern resources, we aim to emphasize the importance of genetic technologies as we enter an era poised for discoveries.
Collapse
Affiliation(s)
- Isaac Rl Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacquelyn Raposo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Zhang Y, Ma L, Wang Z, Gao C, Yang L, Li M, Tang X, Yuan H, Pang D, Ouyang H. Mfn2 R364W, Mfn2 G176S, and Mfn2 H165R mutations drive Charcot-Marie-Tooth type 2A disease by inducing apoptosis and mitochondrial oxidative phosphorylation damage. Int J Biol Macromol 2024; 278:134673. [PMID: 39142491 DOI: 10.1016/j.ijbiomac.2024.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Charcot-Marie-Tooth type 2A (CMT2A) is a single-gene motor sensory neuropathy caused by Mfn2 mutation. It is generally believed that CMT2A involves mitochondrial fusion disruption. However, how Mfn2 mutation mediates the mitochondrial membrane fusion loss and its further pathogenic mechanisms remain unclear. Here, in vivo and in vitro mouse models harboring the Mfn2R364W, Mfn2G176S and Mfn2H165R mutations were constructed. Mitochondrial membrane fusion and fission proteins analysis showed that Mfn2R364W, Mfn2G176S, and Mfn2H165R/+ mutations maintain the expression of Mfn2, but promote Drp1 upregulation and Opa1 hydrolytic cleavage. In Mfn2H165R/H165R mutation, Mfn2, Drp1, and Opa1 all play a role in inducing mitochondrial fragmentation, and the mitochondrial aggregation is affected by Mfn2 loss. Further research into the pathogenesis of CMT2A showed these three mutations all induce mitochondria-mediated apoptosis, and mitochondrial oxidative phosphorylation damage. Overall, loss of overall fusion activity affects mitochondrial DNA (mtDNA) stability and causes mitochondrial loss and dysfunction, ultimately leading to CMT2A disease. Interestingly, the differences in the pathogenesis of CMT2A between Mfn2R364W, Mfn2G176S, Mfn2H165R/+ and Mfn2H165R/H165R mutations, including the distribution of Mfn2 and mitochondria, the expression of mitochondrial outer membrane-associated proteins (Bax, VDAC1 and AIF), and the enzyme activity of mitochondrial complex I, are related to the expression of Mfn2.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Central Laboratory, People's Hospital of Ningxia Hui Autonomous Region, 750002, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Ziru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Chuang Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Mengjing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, 130062, Changchun, Jilin Province, China; Chongqing Research Institute, Jilin University, Chongqing, China.
| |
Collapse
|
4
|
Mackay TFC, Anholt RRH. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nat Rev Genet 2024; 25:639-657. [PMID: 38565962 PMCID: PMC11330371 DOI: 10.1038/s41576-024-00711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Monson E, Cideciyan AV, Roman AJ, Sumaroka A, Swider M, Wu V, Viarbitskaya I, Jacobson SG, Fliesler SJ, Pittler SJ. Inherited Retinal Degeneration Caused by Dehydrodolichyl Diphosphate Synthase Mutation-Effect of an ALG6 Modifier Variant. Int J Mol Sci 2024; 25:1004. [PMID: 38256083 PMCID: PMC10816542 DOI: 10.3390/ijms25021004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Modern advances in disease genetics have uncovered numerous modifier genes that play a role in the severity of disease expression. One such class of genetic conditions is known as inherited retinal degenerations (IRDs), a collection of retinal degenerative disorders caused by mutations in over 300 genes. A single missense mutation (K42E) in the gene encoding the enzyme dehydrodolichyl diphosphate synthase (DHDDS), which is required for protein N-glycosylation in all cells and tissues, causes DHDDS-IRD (retinitis pigmentosa type 59 (RP59; OMIM #613861)). Apart from a retinal phenotype, however, DHDDS-IRD is surprisingly non-syndromic (i.e., without any systemic manifestations). To explore disease pathology, we selected five glycosylation-related genes for analysis that are suggested to have disease modifier variants. These genes encode glycosyltransferases (ALG6, ALG8), an ER resident protein (DDOST), a high-mannose oligosaccharyl transferase (MPDU1), and a protein N-glycosylation regulatory protein (TNKS). DNA samples from 11 confirmed DHDDS (K42E)-IRD patients were sequenced at the site of each candidate genetic modifier. Quantitative measures of retinal structure and function were performed across five decades of life by evaluating foveal photoreceptor thickness, visual acuity, foveal sensitivity, macular and extramacular rod sensitivity, and kinetic visual field extent. The ALG6 variant, (F304S), was correlated with greater macular cone disease severity and less peripheral rod disease severity. Thus, modifier gene polymorphisms may account for a significant portion of phenotypic variation observed in human genetic disease. However, the consequences of the polymorphisms may be counterintuitively complex in terms of rod and cone populations affected in different regions of the retina.
Collapse
Affiliation(s)
- Elisha Monson
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Artur V. Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Alejandro J. Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Vivian Wu
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Iryna Viarbitskaya
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Samuel G. Jacobson
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.J.R.); (A.S.); (M.S.); (V.W.); (I.V.)
| | - Steven J. Fliesler
- Departments of Ophthalmology and Biochemistry, and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York—University at Buffalo, Buffalo, NY 14203, USA;
- Research Service, VA Western NY Healthcare System, Buffalo, NY 14215, USA
| | - Steven J. Pittler
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Kontogeorgiou Z, Kartanou C, Rentzos M, Kokotis P, Anagnostou E, Zambelis T, Chroni E, Dinopoulos A, Panas M, Koutsis G, Karadima G. Mutational screening of Greek patients with axonal Charcot-Marie-Tooth disease using targeted next-generation sequencing: Clinical and molecular spectrum delineation. J Peripher Nerv Syst 2023; 28:642-650. [PMID: 37747677 DOI: 10.1111/jns.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND AIMS Axonal forms of Charcot-Marie-Tooth disease (CMT) are classified as CMT2, distal hereditary motor neuropathy (dHMN) or hereditary sensory neuropathy (HSN) and can be caused by mutations in over 100 genes. We presently aimed to investigate for the first time the genetic landscape of axonal CMT in the Greek population. METHODS Sixty index patients with CMT2, dHMN or HSN were screened by a combination of Sanger sequencing (GJB1) and next-generation sequencing custom-made gene panel covering 24 commonly mutated genes in axonal CMT. RESULTS Overall, 20 variants classified as pathogenic or likely pathogenic were identified in heterozygous state in 20 index cases, representing 33.3% of the cohort. Of these, 14 were known pathogenic/likely pathogenic and six were designated as such according to ACMG classification, after in silico evaluation, testing for familial segregation and further literature review. The most frequently involved genes were GJB1 (11.7%), MPZ (5%) and MFN2 (5%), followed by DNM2 (3.3%) and LRSAM1 (3.3%). Single cases were identified with mutations in BSCL2, HSPB1 and GDAP1. INTERPRETATION A wide phenotypic variability in terms of severity and age of onset was noted. Given the limited number of genes tested, the diagnostic yield of the present panel compares favourably with studies in other European populations. Our study delineates the genetic and phenotypic variability of inherited axonal neuropathies in the Greek population and contributes to the pathogenicity characterization of further variants linked to axonal neuropathies.
Collapse
Affiliation(s)
- Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kokotis
- Clinical Neurophysiology Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Anagnostou
- Clinical Neurophysiology Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Zambelis
- Clinical Neurophysiology Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, General Hospital of Athens Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Cavalcanti EBU, Leal RDCC, Marques Junior W, Nascimento OJMD. Charcot-Marie-Tooth disease: from historical landmarks in Brazil to current care perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:913-921. [PMID: 37611635 PMCID: PMC10631856 DOI: 10.1055/s-0043-1770348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/16/2023] [Indexed: 08/25/2023]
Abstract
Hereditary motor and sensory neuropathy, also known as Charcot-Marie-Tooth disease (CMT), traditionally refers to a group of genetic disorders in which neuropathy is the main or sole feature. Its prevalence varies according to different populations studied, with an estimate between 1:2,500 to 1:10,000. Since the identification of PMP22 gene duplication on chromosome 17 by Vance et al., in 1989, more than 100 genes have been related to this group of disorders, and we have seen advances in the care of patients, with identification of associated conditions and better supportive treatments, including clinical and surgical interventions. Also, with discoveries in the field of genetics, including RNA interference and gene editing techniques, new treatment perspectives begin to emerge. In the present work, we report the most import landmarks regarding CMT research in Brazil and provide a comprehensive review on topics such as frequency of different genes associated with CMT in our population, prevalence of pain, impact on pregnancy, respiratory features, and development of new therapies.
Collapse
Affiliation(s)
| | | | - Wilson Marques Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurologia, Ribeirão Preto SP, Brazil.
| | | |
Collapse
|
8
|
Tang J, Li N, Li G, Wang J, Yu T, Yao R. Assessment of Rare Genetic Variants to Identify Candidate Modifier Genes Underlying Neurological Manifestations in Neurofibromatosis 1 Patients. Genes (Basel) 2022; 13:genes13122218. [PMID: 36553485 PMCID: PMC9778305 DOI: 10.3390/genes13122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Neurological phenotypes such as intellectual disability occur in almost half of patients with neurofibromatosis 1 (NF1). Current genotype-phenotype studies have failed to reveal the mechanism underlying this clinical variability. Despite the presence of pathogenic variants of NF1, modifier genes likely determine the occurrence and severity of neurological phenotypes. Exome sequencing data were used to identify genetic variants in 13 NF1 patients and 457 healthy controls, and this information was used to identify candidate modifier genes underlying neurological phenotypes based on an optimal sequence kernel association test. Thirty-six genes were identified as significant modifying factors in patients with neurological phenotypes and all are highly expressed in the nervous system. A review of the literature confirmed that 19 genes including CUL7, DPH1, and BCO1 are clearly associated with the alteration of neurological functioning and development. Our study revealed the enrichment of rare variants of 19 genes closely related to neurological development and functioning in NF1 patients with neurological phenotypes, indicating possible modifier genes and variants affecting neurodevelopment. Further studies on rare genetic variants of candidate modifier genes may help explain the clinical heterogeneity of NF1.
Collapse
|
9
|
Nguyen‐Le T, Do MD, Le LHG, Nhat QNN, Hoang NTT, Van Le T, Mai TP. Genotype-phenotype characteristics of Vietnamese patients diagnosed with Charcot-Marie-Tooth disease. Brain Behav 2022; 12:e2744. [PMID: 35938991 PMCID: PMC9480926 DOI: 10.1002/brb3.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is one of the most common hereditary neuropathies. Identifying causative mutations in CMT is essential as it provides important information for genetic diagnosis and counseling. However, genetic information of Vietnamese patients diagnosed with CMT is currently not available. METHODS In this study, we described the clinical profile and determined the mutation spectrum of CMT in a cohort of Vietnamese patients with CMT by using a combination of multiplex ligation-dependent probe amplification and next-generation sequencing targeting 11 genes PMP22, MPZ, EGR2, NEFL, MFN2, GDAP1, GARS, MTMR2, GJB1, RAB7A, LITAF. RESULTS In 31 CMT cases, the mutation detection rate was 42% and the most common genetic aberration was PMP22 duplication. The pedigree analysis showed two de novo mutations c.64C > A (p.P22T) and c.281delG (p.G94Afs*17) in the NEFL and PMP22 genes, respectively. CONCLUSION The results of this study once again emphasize the important role of molecular diagnosis and provide preliminary genetic data on Vietnamese patients with CMT.
Collapse
Affiliation(s)
- Trung‐Hieu Nguyen‐Le
- Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityVietnam
| | - Minh Duc Do
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityVietnam
| | - Linh Hoang Gia Le
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityVietnam
| | - Quynh Nhu Nguyen Nhat
- Center for Molecular BiomedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityVietnam
| | | | - Tuan Van Le
- Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityVietnam
| | - Thao Phuong Mai
- Faculty of MedicineUniversity of Medicine and Pharmacy at Ho Chi Minh CityVietnam
| |
Collapse
|
10
|
Prediction of Regulatory SNPs in Putative Minor Genes of the Neuro-Cardiovascular Variant in Fabry Reveals Insights into Autophagy/Apoptosis and Fibrosis. BIOLOGY 2022; 11:biology11091287. [PMID: 36138766 PMCID: PMC9495465 DOI: 10.3390/biology11091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Even though a mutation in monogenic diseases leads to a “classic” manifestation, many disorders exhibit great clinical variability that could be due to modifying genes also called minor genes. Fabry disease (FD) is an X-linked inborn error resulting from the deficient or absent activity of alpha-galactosidase A (α-GAL) enzyme, that leads to deposits of globotriaosylceramide. With our proprietary software SNPclinic v.1.0, we analyzed 110 single nucleotide polymorphisms (SNPs) in the proximal promoter of 14 genes that could modify the FD phenotype FD. We found seven regulatory-SNP (rSNPs) in three genes (IL10, TGFB1 and EDN1) in five cell lines relevant to FD (Cardiac myocytes and fibroblasts, Astrocytes-cerebellar, endothelial cells and T helper cells 1-TH1). Each SNP was confirmed as a true rSNP in public eQTL databases, and additional software suggested the prediction of variants. The two proposed rSNPs in IL10, could explain components for the regulation of active B cells that influence the fibrosis process. The three predicted rSNPs in TGFB1, could act in apoptosis-autophagy regulation. The two putative rSNPs in EDN1, putatively regulate chronic inflammation. The seven rSNPs described here could act to modulate Fabry’s clinical phenotype so we propose that IL10, TGFB1 and EDN1 be considered minor genes in FD.
Collapse
|
11
|
Kabzińska D, Chabros K, Kamińska J, Kochański A. The GDAP1 p.Glu222Lys Variant-Weak Pathogenic Effect, Cumulative Effect of Weak Sequence Variants, or Synergy of Both Factors? Genes (Basel) 2022; 13:genes13091546. [PMID: 36140714 PMCID: PMC9498914 DOI: 10.3390/genes13091546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Charcot−Marie−Tooth disorders (CMT) represent a highly heterogeneous group of diseases of the peripheral nervous system in which more than 100 genes are involved. In some CMT patients, a few weak sequence variants toward other CMT genes are detected instead of one leading CMT mutation. Thus, the presence of a few variants in different CMT-associated genes raises the question concerning the pathogenic status of one of them. In this study, we aimed to analyze the pathogenic effect of c.664G>A, p.Glu222Lys variant in the GDAP1 gene, whose mutations are known to be causative for CMT type 4A (CMT4A). Due to low penetrance and a rare occurrence limited to five patients from two Polish families affected by the CMT phenotype, there is doubt as to whether we are dealing with real pathogenic mutation. Thus, we aimed to study the pathogenic effect of the c.664G>A, p.Glu222Lys variant in its natural environment, i.e., the neuronal SH-SY5Y cell line. Additionally, we have checked the pathogenic status of p.Glu222Lys in the broader context of the whole exome. We also have analyzed the impact of GDAP1 gene mutations on the morphology of the transfected cells. Despite the use of several tests to determine the pathogenicity of the p.Glu222Lys variant, we cannot point to one that would definitively solve the problem of pathogenicity.
Collapse
Affiliation(s)
- Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Chabros
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Kamińska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
12
|
Burgess RW, Saporta MA. Brain research special issue on CMT, editorial. Brain Res 2022; 1785:147891. [PMID: 35339430 DOI: 10.1016/j.brainres.2022.147891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Mario A Saporta
- Departments of Neurology and Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33124, USA
| |
Collapse
|
13
|
Hao X, Li C, Lv Y, Zhou T, Tian H, Ma Y, Ding J, Li X, Wang Y, Wang L, Yang P. MPZ gene variant site in Chinese patients with Charcot-Marie-Tooth disease. Mol Genet Genomic Med 2022; 10:e1890. [PMID: 35174662 PMCID: PMC9000946 DOI: 10.1002/mgg3.1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Background Charcot–Marie–Tooth disease (CMT) is a hereditary monogenic peripheral nerve disease. Variants in the gene encoding myelin protein zero (MPZ) lead to CMT, and different variants have different clinical phenotypes. A variant site, namely, c.389A > G (p.Lys130Arg), in the MPZ gene has been found in Chinese people. The pathogenicity of this variant has been clarified through pedigrees, and peripheral blood‐related functional studies have been conducted. Method Whole‐exome sequencing and Sanger sequencing were used to detect the c.389A > G (p.Lys130Arg) variant in the MPZ gene in family members of the proband. Physical examination was performed in the case group to assess the clinical characteristics of MPZ site variants. The expression of MPZ and phosphorylated MPZ in the blood of 12 cases and 12 randomly selected controls was compared by RT–qPCR, Western blotting, and ELISA. Results The proband and 12 of her family members presented the AG genotype with different clinical manifestations. The expression of MPZ mRNA in the case group was increased compared with that in the control group, and the levels of MPZ and phosphorylated MPZ in peripheral blood were higher than those in normal controls. Conclusion The heterozygous genotype of the c.389A > G (p.Lys130Arg) variant in the MPZ gene mediated the increase in MPZ and phosphorylated MPZ levels in peripheral blood and was found to be involved with CMT.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Chong Li
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Yunguo Lv
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Tongtong Zhou
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Hao Tian
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Yaru Ma
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Ping Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
14
|
Sainio MT, Aaltio J, Hyttinen V, Kortelainen M, Ojanen S, Paetau A, Tienari P, Ylikallio E, Auranen M, Tyynismaa H. Effectiveness of clinical exome sequencing in adult patients with difficult-to-diagnose neurological disorders. Acta Neurol Scand 2022; 145:63-72. [PMID: 34418069 DOI: 10.1111/ane.13522] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Clinical diagnostics in adults with hereditary neurological diseases is complicated by clinical and genetic heterogeneity, as well as lifestyle effects. Here, we evaluate the effectiveness of exome sequencing and clinical costs in our difficult-to-diagnose adult patient cohort. Additionally, we expand the phenotypic and genetic spectrum of hereditary neurological disorders in Finland. METHODS We performed clinical exome sequencing (CES) to 100 adult patients from Finland with neurological symptoms of suspected genetic cause. The patients were classified as myopathy (n = 57), peripheral neuropathy (n = 16), ataxia (n = 15), spastic paraplegia (n = 4), Parkinsonism (n = 3), and mixed (n = 5). In addition, we gathered the costs of prior diagnostic work-up to retrospectively assess the cost-effectiveness of CES as a first-line diagnostic tool. RESULTS The overall diagnostic yield of CES was 27%. Pathogenic variants were found for 14 patients (in genes ANO5, CHCHD10, CLCN1, DES, DOK7, FKBP14, POLG, PYROXD1, SCN4A, TUBB3, and TTN) and likely pathogenic previously undescribed variants for 13 patients (in genes ABCD1, AFG3L2, ATL1, CACNA1A, COL6A1, DYSF, IRF2BPL, KCNA1, MT-ATP6, SAMD9L, SGCB, and TPM2). Age of onset below 40 years increased the probability of finding a genetic cause. Our cost evaluation of prior diagnostic work-up suggested that early CES would be cost-effective in this patient group, in which diagnostic costs increase linearly with prolonged investigations. CONCLUSIONS Based on our results, CES is a cost-effective, powerful first-line diagnostic tool in establishing the molecular diagnosis in adult neurological patients with variable symptoms. Importantly, CES can markedly shorten the diagnostic odysseys of about one third of patients.
Collapse
Affiliation(s)
- Markus T. Sainio
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Juho Aaltio
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Virva Hyttinen
- VATT Institute for Economic Research Helsinki Finland
- Department of Health and Social Management University of Eastern Finland Kuopio Finland
| | - Mika Kortelainen
- VATT Institute for Economic Research Helsinki Finland
- Department of Economics Turku School of Economics Turku Finland
| | - Simo Ojanen
- Department of Veterinary Biosciences Faculty of Veterinary Medicine University of Helsinki Helsinki Finland
| | - Anders Paetau
- Department of Pathology HUSLAB and University of Helsinki Helsinki Finland
| | - Pentti Tienari
- Clinical Neurosciences Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
- Translational Immunology Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
- Clinical Neurosciences Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Mari Auranen
- Clinical Neurosciences Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Medical and Clinical Genetics University of Helsinki Helsinki Finland
- Neuroscience Center Helsinki Institute of Life Science University of Helsinki Helsinki Finland
| |
Collapse
|
15
|
Beijer D, Agnew T, Rack JGM, Prokhorova E, Deconinck T, Ceulemans B, Peric S, Milic Rasic V, De Jonghe P, Ahel I, Baets J. Biallelic ADPRHL2 mutations in complex neuropathy affect ADP ribosylation and DNA damage response. Life Sci Alliance 2021; 4:e202101057. [PMID: 34479984 PMCID: PMC8424258 DOI: 10.26508/lsa.202101057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
ADP ribosylation is a reversible posttranslational modification mediated by poly(ADP-ribose)transferases (e.g., PARP1) and (ADP-ribosyl)hydrolases (e.g., ARH3 and PARG), ensuring synthesis and removal of mono-ADP-ribose or poly-ADP-ribose chains on protein substrates. Dysregulation of ADP ribosylation signaling has been associated with several neurodegenerative diseases, including Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Recessive ADPRHL2/ARH3 mutations are described to cause a stress-induced epileptic ataxia syndrome with developmental delay and axonal neuropathy (CONDSIAS). Here, we present two families with a neuropathy predominant disorder and homozygous mutations in ADPRHL2 We characterized a novel C26F mutation, demonstrating protein instability and reduced protein function. Characterization of the recurrent V335G mutant demonstrated mild loss of expression with retained enzymatic activity. Although the V335G mutation retains its mitochondrial localization, it has altered cytosolic/nuclear localization. This minimally affects basal ADP ribosylation but results in elevated nuclear ADP ribosylation during stress, demonstrating the vital role of ADP ribosylation reversal by ARH3 in DNA damage control.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Thomas Agnew
- Sir William Dunn School of Pathology, Oxford University, Oxford, UK
| | | | | | - Tine Deconinck
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Stojan Peric
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Milic Rasic
- Clinic for Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Peter De Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford University, Oxford, UK
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
16
|
Longo F, De Ritis D, Miluzio A, Fraticelli D, Baets J, Scarlato M, Santorelli FM, Biffo S, Maltecca F. Assessment of Sacsin Turnover in Patients With ARSACS: Implications for Molecular Diagnosis and Pathogenesis. Neurology 2021; 97:e2315-e2327. [PMID: 34649874 PMCID: PMC8665432 DOI: 10.1212/wnl.0000000000012962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by variations in SACS gene encoding sacsin, a huge multimodular protein of unknown function. More than 200 SACS variations have been described worldwide to date. Because ARSACS presents phenotypic variability, previous empirical studies attempted to correlate the nature and position of SACS variations with the age at onset or with disease severity, although not considering the effect of the various variations on protein stability. In this work, we studied genotype-phenotype correlation in ARSACS at a functional level. Methods We analyzed a large set of skin fibroblasts derived from patients with ARSACS, including both new and already published cases, carrying variations of different types affecting diverse domains of the protein. Results We found that sacsin is almost absent in patients with ARSACS, regardless of the nature of the variation. As expected, we did not detect sacsin in patients with truncating variations. We found it strikingly reduced or absent also in compound heterozygotes carrying diverse missense variations. In this case, we excluded SACS mRNA decay, defective translation, or faster posttranslational degradation as possible causes of protein reduction. Conversely, our results demonstrate that nascent mutant sacsin protein undergoes cotranslational ubiquitination and degradation. Discussion Our results provide a mechanistic explanation for the lack of genotype-phenotype correlation in ARSACS. We also propose a new and unambiguous criterion for ARSACS diagnosis that is based on the evaluation of sacsin level. Last, we identified preemptive degradation of a mutant protein as a novel cause of a human disease.
Collapse
Affiliation(s)
- Fabiana Longo
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Daniele De Ritis
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Annarita Miluzio
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Davide Fraticelli
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Marina Scarlato
- Department of Neurology, Ospedale San Raffaele, Milan, Italy
| | | | - Stefano Biffo
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Maltecca
- Mitochondrial Dysfunctions in Neurodegeneration Unit, Ospedale San Raffaele, Milan, Italy .,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
17
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
18
|
Özsoy ED, Yılmaz M, Patlar B, Emecen G, Durmaz E, Magwire MM, Zhou S, Huang W, Anholt RRH, Mackay TFC. Epistasis for head morphology in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab285. [PMID: 34568933 PMCID: PMC8473977 DOI: 10.1093/g3journal/jkab285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Epistasis-gene-gene interaction-is common for mutations with large phenotypic effects in humans and model organisms. Epistasis impacts quantitative genetic models of speciation, response to natural and artificial selection, genetic mapping, and personalized medicine. However, the existence and magnitude of epistasis between alleles with small quantitative phenotypic effects are controversial and difficult to assess. Here, we use the Drosophila melanogaster Genetic Reference Panel of sequenced inbred lines to evaluate the magnitude of naturally occurring epistasis modifying the effects of mutations in jing and inv, two transcription factors that have subtle quantitative effects on head morphology as homozygotes. We find significant epistasis for both mutations and performed single marker genome-wide association analyses to map candidate modifier variants and loci affecting head morphology. A subset of these loci was significantly enriched for a known genetic interaction network, and mutations of the candidate epistatic modifier loci also affect head morphology.
Collapse
Affiliation(s)
- Ergi D Özsoy
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Murat Yılmaz
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Bahar Patlar
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Güzin Emecen
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Esra Durmaz
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Michael M Magwire
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Shanshan Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Robert R H Anholt
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
19
|
Candayan A, Çakar A, Yunisova G, Özdağ Acarlı AN, Atkinson D, Topaloğlu P, Durmuş H, Yapıcı Z, Jordanova A, Parman Y, Battaloğlu E. Genetic Survey of Autosomal Recessive Peripheral Neuropathy Cases Unravels High Genetic Heterogeneity in a Turkish Cohort. NEUROLOGY-GENETICS 2021; 7:e621. [PMID: 34476298 PMCID: PMC8409130 DOI: 10.1212/nxg.0000000000000621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives Inherited peripheral neuropathies (IPNs) are a group of genetic disorders of the peripheral nervous system in which neuropathy is the only or the most predominant clinical feature. The most common type of IPN is Charcot-Marie-Tooth (CMT) disease. Autosomal recessive CMT (ARCMT) is generally more severe than dominant CMT and its genetic basis is poorly understood due to high clinical and genetic diversity. Here, we report clinical and genetic findings from 56 consanguineous Turkish families initially diagnosed with CMT disease. Methods We initially screened the GDAP1 gene in our cohort as it is the most commonly mutated ARCMT gene. Next, whole-exome sequencing and homozygosity mapping based on whole-exome sequencing (HOMWES) analysis was performed. To understand the molecular impact of candidate causative genes, functional analyses were performed in patient primary fibroblasts. Results Biallelic recurrent mutations in the GDAP1 gene have been identified in 6 patients. Whole-exome sequencing and HOMWES analysis revealed 16 recurrent and 13 novel disease-causing alleles in known IPN-related genes and 2 novel candidate genes: 1 for a CMT-like disease and 1 for autosomal recessive cerebellar ataxia with axonal neuropathy. We have achieved a potential genetic diagnosis rate of 62.5% (35/56 families) in our cohort. Considering only the variants that meet the American College for Medical Genetics and Genomics (ACMG) classification as pathogenic or likely pathogenic, the definitive diagnosis rate was 55.35% (31/56 families). Discussion This study paints a genetic landscape of the Turkish ARCMT population and reports additional candidate genes that might help enlighten the mechanism of pathogenesis of the disease.
Collapse
Affiliation(s)
- Ayşe Candayan
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Arman Çakar
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Gulshan Yunisova
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Ayşe Nur Özdağ Acarlı
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Derek Atkinson
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Pınar Topaloğlu
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Hacer Durmuş
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Zuhal Yapıcı
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Albena Jordanova
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Yeşim Parman
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| | - Esra Battaloğlu
- Department of Molecular Biology and Genetics (A.C., E.B.), Boğaziçi University, Istanbul, Turkey; Neuromuscular Unit (A.Ç., G.Y., A.N.Ö.A., H.D., Y.P.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; Molecular Neurogenomics Group (D.A., A.J.), VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Belgium; Department of Epigenetics (D.A.), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Child Neurology (P.T., Z.Y.), Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey; and Molecular Medicine Center (A.J.), Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Bulgaria
| |
Collapse
|
20
|
Argente-Escrig H, Frasquet M, Vázquez-Costa JF, Millet-Sancho E, Pitarch I, Tomás-Vila M, Espinós C, Lupo V, Sevilla T. Pediatric inherited peripheral neuropathy: a prospective study at a Spanish referral center. Ann Clin Transl Neurol 2021; 8:1809-1816. [PMID: 34323022 PMCID: PMC8419398 DOI: 10.1002/acn3.51432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background Single‐center clinical series provide important information on genetic distribution that can guide genetic testing. However, there are few such studies on pediatric populations with inherited peripheral neuropathies (IPNs). Methods Thorough genetic testing was performed on IPN patients under 20 years of age from a geographically well‐defined Mediterranean area (Valencian Community, Spain), annually assessed with the Charcot–Marie–Tooth disease Pediatric Scale (CMTPedS). Results From 86 families with IPNs, 99 patients (59 males) were identified, 85 with sensorimotor neuropathy or CMT (2/3 demyelinating form) and 14 with distal hereditary motor neuropathy (dHMN). Genetic diagnosis was achieved in 79.5% families, with a similar mutation detection rate in the demyelinating (88.7%) and axonal (89.5%) forms, significantly higher than in the dHMN families (27.3%). CMT1A was the most common subtype, followed by those carrying heterozygous mutations in either the GDAP1 or GJB1 genes. Mutations in 15 other genes were identified, including a new pathogenic variant in the ATP1A gene. The CMTPedS detected significant disease progression in all genetic subtypes of CMT, at a rate of 1.84 (±3.7) over 1 year (p < 0.0005, n = 62) and a 2‐year rate of 3.6 (±4.4: p < 0.0005, n = 45). Significant disease worsening was also detected for CMT1A over 1 (1.7 ± 3.6, p < 0.05) and 2 years (4.2 ± 4.3, p < 0.0005). Conclusions This study highlights the unique spectrum of IPN gene frequencies among pediatric patients in this specific geographic region, identifying the CMTPedS as a sensitive tool to detect significant disease worsening over 1 year that could help optimize the design of clinical trials.
Collapse
Affiliation(s)
- Herminia Argente-Escrig
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Valencia, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Marina Frasquet
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Valencia, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Valencia, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain
| | - Elvira Millet-Sancho
- Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Inmaculada Pitarch
- Department of Pediatrics, Neuropediatrics Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel Tomás-Vila
- Department of Pediatrics, Neuropediatrics Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Carmen Espinós
- Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Vincenzo Lupo
- Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular & Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Centre for Biomedical Network Research on Rare Diseases-CIBERER, Valencia, Spain.,Rare Diseases Joint Unit IIS La Fe - CIPF, Valencia, Spain.,Department of Medicine, University of Valencia School of Medicine, Valencia, Spain
| |
Collapse
|
21
|
Sadler B, Christopherson PA, Haller G, Montgomery RR, Di Paola J. von Willebrand factor antigen levels are associated with burden of rare nonsynonymous variants in the VWF gene. Blood 2021; 137:3277-3283. [PMID: 33556167 PMCID: PMC8351900 DOI: 10.1182/blood.2020009999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Approximately 35% of patients with type 1 von Willebrand disease (VWD) do not have a known pathogenic variant in the von Willebrand factor (VWF) gene. We aimed to understand the impact of VWF coding variants on VWD risk and VWF antigen (VWF:Ag) levels, studying 527 patients with low VWF and VWD and 210 healthy controls. VWF sequencing was performed and VWF:Ag levels assayed. A combined annotation-dependent depletion (CADD) score >20 was used as a predicted pathogenicity measure. The number of rare nonsynonymous VWF variants significantly predicted VWF:Ag levels (P = 1.62 × 10-21). There was an association between average number of rare nonsynonymous VWF variants with VWD type 1 (P = 2.4 × 10-13) and low VWF (P = 1.6 × 10-27) compared with healthy subjects: type 1 subjects possessed on average >2 times as many rare variants as those with low VWF and 8 times as many as healthy subjects. The number of rare nonsynonymous variants significantly predicts VWF:Ag levels even after controlling for presence of a variant with a CADD score >20 or a known pathogenic variant in VWF (P = 2.7 × 10-14). The number of rare nonsynonymous variants in VWF as well as the presence of a variant with CADD >20 are both significantly associated with VWF levels. The association with rare nonsynonymous variants holds even when controlling for known pathogenic variants, suggesting that additional variants, in VWF or elsewhere, are associated with VWF:Ag levels. Patients with higher VWF:Ag levels with fewer rare nonsynonymous VWF gene variants could benefit from next-generation sequencing to find the cause of their bleeding.
Collapse
Affiliation(s)
- Brooke Sadler
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | | | - Gabe Haller
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St Louis, MO; and
| | - Robert R Montgomery
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Jorge Di Paola
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
22
|
Jennings MJ, Lochmüller A, Atalaia A, Horvath R. Targeted Therapies for Hereditary Peripheral Neuropathies: Systematic Review and Steps Towards a 'treatabolome'. J Neuromuscul Dis 2021; 8:383-400. [PMID: 32773395 PMCID: PMC8203235 DOI: 10.3233/jnd-200546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Hereditary peripheral neuropathies are inherited disorders affecting the peripheral nervous system, including Charcot-Marie-Tooth disease, familial amyloid polyneuropathy and hereditary sensory and motor neuropathies. While the molecular basis of hereditary peripheral neuropathies has been extensively researched, interventional trials of pharmacological therapies are lacking. Objective: We collated evidence for the effectiveness of pharmacological and gene-based treatments for hereditary peripheral neuropathies. Methods: We searched several databases for randomised controlled trials (RCT), observational studies and case reports of therapies in hereditary peripheral neuropathies. Two investigators extracted and analysed the data independently, assessing study quality using the Oxford Centre for Evidence Based Medicine 2011 Levels of Evidence in conjunction with the Jadad scale. Results: Of the 2046 studies initially identified, 119 trials met our inclusion criteria, of which only 34 were carried over into our final analysis. Ascorbic acid was shown to have no therapeutic benefit in CMT1A, while a combination of baclofen, naltrexone and sorbitol (PXT3003) demonstrated some efficacy, but phase III data are incomplete. In TTR-related amyloid polyneuropathy tafamidis, patisiran, inotersen and revusiran showed significant benefit in high quality RCTs. Smaller studies showed the efficacy of L-serine for SPTLC1-related hereditary sensory neuropathy, riboflavin for Brown-Vialetto-Van Laere syndrome (SLC52A2/3) and phytanic acid-poor diet in Refsum disease (PHYH). Conclusions: The ‘treatable’ variants highlighted in this project will be flagged in the treatabolome database to alert clinicians at the time of the diagnosis and enable timely treatment of patients with hereditary peripheral neuropathies.
Collapse
Affiliation(s)
- Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Antonio Atalaia
- Center of Research in Myology, Sorbonne Université - Inserm UMRS 974, Institut de Myologie, G.H. Pitie-Salpetriere, Paris, France
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Estiar MA, Yu E, Haj Salem I, Ross JP, Mufti K, Akçimen F, Leveille E, Spiegelman D, Ruskey JA, Asayesh F, Dagher A, Yoon G, Tarnopolsky M, Boycott KM, Dupre N, Dion PA, Suchowersky O, Trempe JF, Rouleau GA, Gan-Or Z. Evidence for Non-Mendelian Inheritance in Spastic Paraplegia 7. Mov Disord 2021; 36:1664-1675. [PMID: 33598982 DOI: 10.1002/mds.28528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). OBJECTIVES We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. METHODS We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. RESULTS The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. CONCLUSIONS Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | | | - Jay P Ross
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Kheireddin Mufti
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Fulya Akçimen
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Etienne Leveille
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Dupre
- Neuroscience Axis, CHU de Québec, Université Laval, Québec City, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Oksana Suchowersky
- Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jean-Francois Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Boso F, Taioli F, Cabrini I, Cavallaro T, Fabrizi GM. Aberrant Splicing in GJB1 and the Relevance of 5' UTR in CMTX1 Pathogenesis. Brain Sci 2020; 11:brainsci11010024. [PMID: 33375465 PMCID: PMC7824018 DOI: 10.3390/brainsci11010024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
The second most common form of Charcot-Marie-Tooth disease (CMT) follows an X-linked dominant inheritance pattern (CMTX1), referring to mutations in the gap junction protein beta 1 gene (GJB1) that affect connexin 32 protein (Cx32) and its ability to form gap junctions in the myelin sheath of peripheral nerves. Despite the advances of next-generation sequencing (NGS), attention has only recently also focused on noncoding regions. We describe two unrelated families with a c.-17+1G>T transversion in the 5' untranslated region (UTR) of GJB1 that cosegregates with typical features of CMTX1. As suggested by in silico analysis, the mutation affects the regulatory sequence that controls the proper splicing of the intron in the corresponding mRNA. The retention of the intron is also associated with reduced levels of the transcript and the loss of immunofluorescent staining for Cx32 in the nerve biopsy, thus supporting the hypothesis of mRNA instability as a pathogenic mechanism in these families. Therefore, our report corroborates the role of 5' UTR of GJB1 in the pathogenesis of CMTX1 and emphasizes the need to include this region in routine GJB1 screening, as well as in NGS panels.
Collapse
Affiliation(s)
- Federica Boso
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
| | - Ilaria Cabrini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
| | - Tiziana Cavallaro
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.B.); (F.T.); (I.C.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-0458124286
| |
Collapse
|
25
|
Miressi F, Magdelaine C, Cintas P, Bourthoumieux S, Nizou A, Derouault P, Favreau F, Sturtz F, Faye PA, Lia AS. One Multilocus Genomic Variation Is Responsible for a Severe Charcot-Marie-Tooth Axonal Form. Brain Sci 2020; 10:brainsci10120986. [PMID: 33333791 PMCID: PMC7765239 DOI: 10.3390/brainsci10120986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited disorders affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than 80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2). Consequentially, the genotype-phenotype correlation is not always easy to assess. Diagnosis could require multiple analysis before the correct causative mutation is detected. Moreover, it seems that approximately 5% of overall diagnoses for genetic diseases involves multiple genomic loci, although they are often underestimated or underreported. In particular, the combination of multiple variants is rarely described in CMT pathology and often neglected during the diagnostic process. Here, we present the complex genetic analysis of a family including two CMT cases with various severities. Interestingly, next generation sequencing (NGS) associated with Cov'Cop analysis, allowing structural variants (SV) detection, highlighted variations in MORC2 (microrchidia family CW-type zinc-finger 2) and AARS1 (alanyl-tRNA-synthetase) genes for one patient and an additional mutation in MFN2 (Mitofusin 2) in the more affected patient.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Correspondence:
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire à Toulouse, F-31000 Toulouse, France;
| | - Sylvie Bourthoumieux
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Cytogénétique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Angélique Nizou
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
| | - Paco Derouault
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| |
Collapse
|
26
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
27
|
Bis-Brewer DM, Gan-Or Z, Sleiman P, Hakonarson H, Fazal S, Courel S, Cintra V, Tao F, Estiar MA, Tarnopolsky M, Boycott KM, Yoon G, Suchowersky O, Dupré N, Cheng A, Lloyd TE, Rouleau G, Schüle R, Züchner S. Assessing non-Mendelian inheritance in inherited axonopathies. Genet Med 2020; 22:2114-2119. [PMID: 32741968 PMCID: PMC7710562 DOI: 10.1038/s41436-020-0924-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Inherited axonopathies (IA) are rare, clinically and genetically heterogeneous diseases that lead to length-dependent degeneration of the long axons in central (hereditary spastic paraplegia [HSP]) and peripheral (Charcot-Marie-Tooth type 2 [CMT2]) nervous systems. Mendelian high-penetrance alleles in over 100 different genes have been shown to cause IA; however, about 50% of IA cases do not receive a genetic diagnosis. A more comprehensive spectrum of causative genes and alleles is warranted, including causative and risk alleles, as well as oligogenic multilocus inheritance. METHODS Through international collaboration, IA exome studies are beginning to be sufficiently powered to perform a pilot rare variant burden analysis. After extensive quality control, our cohort contained 343 CMT cases, 515 HSP cases, and 935 non-neurological controls. We assessed the cumulative mutational burden across disease genes, explored the evidence for multilocus inheritance, and performed an exome-wide rare variant burden analysis. RESULTS We replicated the previously described mutational burden in a much larger cohort of CMT cases, and observed the same effect in HSP cases. We identified a preliminary risk allele for CMT in the EXOC4 gene (p value= 6.9 × 10-6, odds ratio [OR] = 2.1) and explored the possibility of multilocus inheritance in IA. CONCLUSION Our results support the continuing emergence of complex inheritance mechanisms in historically Mendelian disorders.
Collapse
Affiliation(s)
- Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia; Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia; Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steve Courel
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivian Cintra
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Feifei Tao
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Mark Tarnopolsky
- Neuromuscular and Neurometabolics Division, Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Oksana Suchowersky
- Department of Medicine, Medical Genetics and Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Québec City, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Andrew Cheng
- Department of Neurology and Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas E Lloyd
- Department of Neurology and Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
28
|
Lee AJ, Nam DE, Choi YJ, Noh SW, Nam SH, Lee HJ, Kim SJ, Song GJ, Choi BO, Chung KW. Paternal gender specificity and mild phenotypes in Charcot-Marie-Tooth type 1A patients with de novo 17p12 rearrangements. Mol Genet Genomic Med 2020; 8:e1380. [PMID: 32648354 PMCID: PMC7507087 DOI: 10.1002/mgg3.1380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background Charcot–Marie–Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) are developed by duplication and deletion of the 17p12 (PMP22) region, respectively. Methods De novo rates were determined in 211 CMT1A or HNPP trio families, and then, analyzed gender‐specific genetic features and clinical phenotypes of the de novo cases. Results This study identified 40 de novo cases (19.0%). Paternal origin was highly frequent compared to maternal origin (p = .005). Most de novo CMT1A rearrangements occurred between non‐sister chromatids (p = .003), but it was interesting that three of the four sister chromatids exchange cases were observed in the less frequent maternal origin. Paternal ages at the affected child births were slightly higher in the de novo CMT1A group than in the non‐de novo CMT1A control group (p = .0004). For the disability score of CMTNS, the de novo CMT1A group had a slightly lower value compared to the control group (p = .005). Electrophysiological studies showed no significant differences between the two groups. Conclusion This study suggests that de novo CMT1A patients tend to have milder symptoms and that the paternal ages at child births in the de novo group are higher than those of the non‐de novo group.
Collapse
Affiliation(s)
- Ah J Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Yu J Choi
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Seung W Noh
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo H Nam
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Hye J Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung J Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyun J Song
- Department of Medical Science, Institute for Bio-Medical Convergence, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
29
|
Rahit KMTH, Tarailo-Graovac M. Genetic Modifiers and Rare Mendelian Disease. Genes (Basel) 2020; 11:E239. [PMID: 32106447 PMCID: PMC7140819 DOI: 10.3390/genes11030239] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Despite advances in high-throughput sequencing that have revolutionized the discovery of gene defects in rare Mendelian diseases, there are still gaps in translating individual genome variation to observed phenotypic outcomes. While we continue to improve genomics approaches to identify primary disease-causing variants, it is evident that no genetic variant acts alone. In other words, some other variants in the genome (genetic modifiers) may alleviate (suppress) or exacerbate (enhance) the severity of the disease, resulting in the variability of phenotypic outcomes. Thus, to truly understand the disease, we need to consider how the disease-causing variants interact with the rest of the genome in an individual. Here, we review the current state-of-the-field in the identification of genetic modifiers in rare Mendelian diseases and discuss the potential for future approaches that could bridge the existing gap.
Collapse
Affiliation(s)
- K. M. Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|