1
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Ye S, Yang B, Yang L, Wei W, Fu M, Yan Y, Wang B, Li X, Liang C, Zhao W. Stemness subtypes in lower-grade glioma with prognostic biomarkers, tumor microenvironment, and treatment response. Sci Rep 2024; 14:14758. [PMID: 38926605 PMCID: PMC11208487 DOI: 10.1038/s41598-024-65717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Our research endeavors are directed towards unraveling the stem cell characteristics of lower-grade glioma patients, with the ultimate goal of formulating personalized treatment strategies. We computed enrichment stemness scores and performed consensus clustering to categorize phenotypes. Subsequently, we constructed a prognostic risk model using weighted gene correlation network analysis (WGCNA), random survival forest regression analysis as well as full subset regression analysis. To validate the expression differences of key genes, we employed experimental methods such as quantitative Polymerase Chain Reaction (qPCR) and assessed cell line proliferation, migration, and invasion. Three subtypes were assigned to patients diagnosed with LGG. Notably, Cluster 2 (C2), exhibiting the poorest survival outcomes, manifested characteristics indicative of the subtype characterized by immunosuppression. This was marked by elevated levels of M1 macrophages, activated mast cells, along with higher immune and stromal scores. Four hub genes-CDCA8, ORC1, DLGAP5, and SMC4-were identified and validated through cell experiments and qPCR. Subsequently, these validated genes were utilized to construct a stemness risk signature. Which revealed that Lower-Grade Glioma (LGG) patients with lower scores were more inclined to demonstrate favorable responses to immune therapy. Our study illuminates the stemness characteristics of gliomas, which lays the foundation for developing therapeutic approaches targeting CSCs and enhancing the efficacy of current immunotherapies. By identifying the stemness subtype and its correlation with prognosis and TME patterns in glioma patients, we aim to advance the development of personalized treatments, enhancing the ability to predict and improve overall patient prognosis.
Collapse
Affiliation(s)
- Shengda Ye
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurosurgery, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yan
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Hospital of Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Clinical Study Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, China.
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Tan L, Wang S, Huang S, Tie Y, Sai N, Mao Y, Zhao S, Hou Y, Dou H. FoxO1 promotes ovarian cancer by increasing transcription and METTL14-mediated m 6A modification of SMC4. Cancer Sci 2024; 115:1224-1240. [PMID: 38403332 PMCID: PMC11006996 DOI: 10.1111/cas.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The transcription factor forkhead box protein O1 (FoxO1) is closely related to the occurrence and development of ovarian cancer (OC), however its role and molecular mechanisms remain unclear. Herein, we found that FoxO1 was highly expressed in clinical samples of OC patients and was significantly correlated with poor prognosis. FoxO1 knockdown inhibited the proliferation of OC cells in vitro and in vivo. ChIP-seq combined with GEPIA2 and Kaplan-Meier database analysis showed that structural maintenance of chromosome 4 (SMC4) is a downstream target of FoxO1, and FoxO1 promotes SMC4 transcription by binding to its -1400/-1390 bp promoter. The high expression of SMC4 significantly blocked the tumor inhibition effect of FoxO1 knockdown. Furtherly, FoxO1 increased SMC4 mRNA abundance by transcriptionally activating methyltransferase-like 14 (METTL14) and increasing SMC4 m6A methylation on its coding sequence region. The Cancer Genome Atlas dataset analysis confirmed a significant positive correlation between FoxO1, SMC4, and METTL14 expression in OC. In summary, this study revealed the molecular mechanisms of FoxO1 regulating SMC4 and established a clinical link between the expression of FoxO1/METTL14/SMC4 in the occurrence of OC, thus providing a potential diagnostic target and therapeutic strategy.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shuangan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shijia Huang
- General Clinical Research Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yujuan Tie
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Na Sai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Yichen Mao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| |
Collapse
|
4
|
Yang D, Cheng W, Liu Y, Ma L, Sun Y, Wang H, Liu H, Nan L, Yang Y, Wang X. SMC4 serves as a potential marker for the diagnosis and prognosis of colon adenocarcinoma. Int J Immunopathol Pharmacol 2024; 38:3946320241286565. [PMID: 39423024 PMCID: PMC11490969 DOI: 10.1177/03946320241286565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE We aimed to explore the role of structural maintenance of chromosomes 4 (SMC4) in malignant progression and immunology of colon adenocarcinoma (COAD). METHODS The expression, genetic and protein features, and immune cell infiltration of SMC4 in pan-cancer were provided by public databases and websites. The protein expression of SMC4 in COAD tissues was screened by immunohistochemical assay. Si-RNA-mediated transfection was performed in COAD cells and the proliferation viability was measured using MTT, colony formation and EdU assays. Cell autophagy was detected by AO staining, western blots, and immunofluorescence staining. The migratory ability was determined using scratch and transwell assays. The expression of epithelial-to-mesenchymal transition (EMT) markers and transcriptional factors were detected using western blots. RESULTS The expression of SMC4 was upregulated in pan-cancer and had relationships with prognosis, TMB, and MSI of cancer patients. Particularly, SMC4 protein was highly expressed in COAD tissues and correlated with poor prognosis of patients. Depletion of SMC4 inhibited cell proliferation, induced autophagy, and decreased migration through EMT progression in COAD cells. In addition, SMC4 was associated with infiltration of neutrophils, M2 macrophages, and CD4 + T cells in COAD, and had positive association with M2 macrophage markers and immune checkpoints. CONCLUSION SMC4 was correlated with patients' poor prognosis, proliferation, metastasis, and immune cell infiltrates, and might function as a potential diagnosis and prognostic biomarker in COAD.
Collapse
Affiliation(s)
- Dawei Yang
- Department of General Surgery, Siping Central People’s Hospital, Siping, Jilin, China
| | - Wenxin Cheng
- Department of Surgery, Chinese Medical Sciences University, Shenyang, Liaoning, China
| | - Ying Liu
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin, China
| | - Liang Ma
- Department of General Surgery, Siping Central People’s Hospital, Siping, Jilin, China
| | - Yao Sun
- Department of General Surgery, Siping Central People’s Hospital, Siping, Jilin, China
| | - Hongzhen Wang
- Life Science Academy, Jilin Normal University, Siping, China
| | - Haifeng Liu
- Department of General Surgery, Siping Central People’s Hospital, Siping, Jilin, China
| | - Li Nan
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Yang Yang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin, China
| | - Xinyue Wang
- Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, Jilin, China
| |
Collapse
|
5
|
He J, Xi X, Cao P, Zhou J, Liu H, Li N. Long non-coding RNA GNAS-AS1 knockdown inhibits proliferation and epithelial-mesenchymal transition of lung adenocarcinoma cells via the microRNA-433-3p/Rab3A axis. Open Med (Wars) 2023; 18:20230740. [PMID: 37465347 PMCID: PMC10350893 DOI: 10.1515/med-2023-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/30/2023] [Accepted: 05/31/2023] [Indexed: 07/20/2023] Open
Abstract
The goal of this study was to demonstrate the functions and specific mechanism of long non-coding RNA (lncRNA) GNAS-AS1 in lung adenocarcinoma. Levels of lncRNA GNAS-AS1, microRNA (miR)-433-3p, and Rab3A were assessed by quantitative real-time PCR (qRT-PCR). The target-binding sites of lncRNA GNAS-AS1, miR-433-3p, and Rab3A were predicted and confirmed by bioinformatics tool (StarBase) and a dual-luciferase reporter system. Cell proliferation and apoptosis were checked using MTT and flow cytometry, respectively. Additionally, the levels of apoptosis-related and epithelial-mesenchymal transition (EMT)-associated genes in A549 cells were analyzed by qRT-PCR and western blot. We found that lncRNA GNAS-AS1 was upregulated, miR-433-3p was low-expressed, and Rab3A was overexpressed in lung adenocarcinoma tissues and cell lines. LncRNA GNAS-AS1 interacted with miR-433-3p and negatively regulated miR-433-3p levels. Rab3A was a direct target of miR-433-3p. Downregulation of lncRNA GNAS-AS1 remarkably suppressed cell proliferation, promoted cell apoptosis, decreased B-cell lymphoma-2 (Bcl-2) expression, enhanced the Bcl-2-Associated X (Bax) level, promoted E-cadherin expression, and reduced N-cadherin and Rab3A levels. However, the miR-433-3p inhibitor reversed all these findings. Similarly, the inhibitory effects of miR-433-3p mimic on A549 cells were reversed by the Rab3A-plasmid. In conclusion, lncRNA GNAS-AS1 downregulation suppressed lung adenocarcinoma cell proliferation and EMT through the miR-433-3p/Rab3A axis.
Collapse
Affiliation(s)
- Jing He
- Department of Thoracic Surgery, Taixing People’s Hospital, Taixing, 225400, China
| | - Xiaoxiang Xi
- Department of Thoracic Surgery, Taixing People’s Hospital, No. 1 Changzheng Road, Taixing Town, Taixing, 225400, China
| | - Peng Cao
- Department of Thoracic Surgery, Taixing People’s Hospital, Taixing, 225400, China
| | - Jinxia Zhou
- Department of Thoracic Surgery, Taixing People’s Hospital, Taixing, 225400, China
| | - Hui Liu
- Department of Thoracic Surgery, Taixing People’s Hospital, Taixing, 225400, China
| | - Na Li
- Department of Thoracic Surgery, Taixing People’s Hospital, Taixing, 225400, China
| |
Collapse
|
6
|
Zhao Z, Wang X, Ding Y, Cao X, Zhang X. SMC4, a novel tumor prognostic marker and potential tumor therapeutic target. Front Oncol 2023; 13:1117642. [PMID: 37007153 PMCID: PMC10064883 DOI: 10.3389/fonc.2023.1117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
The structural maintenance of chromosome 4 (SMC4) is a member of the ATPase family of chromosomes. The most widely reported function of SMC4, as well as the remaining subunits of whole condensin complexes, is compression and dissociation of sister chromatids, DNA damage repair, DNA recombination, and pervasive transcription of the genome. Studies have also shown that SMC4 plays an exceedingly essential role in the division cycle of embryonic cells, such as RNA splicing, DNA metabolic process, cell adhesion, and extracellular matrix. On the other hand, SMC4 is also a positive regulator of the inflammatory innate immune response, while excessive innate immune responses not only disrupt immune homeostasis and may lead to autoimmune diseases, but even cancer. To further understand the expression and prognostic value of SMC4 in tumors, we provide an in-depth review of the literature and several bioinformatic databases, for example, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), The Human Protein Atlas and Kaplan Meier plotter tools, illustrating that SMC4 plays a vital role in the occurrence and development of tumors, and high expression of SMC4 seems to consistently predict worse overall survival. In conclusion, we present this review which introduces the structure, biological function of SMC4, and its correlation with the tumor in detail; it might provide new insight into a novel tumor prognostic marker and potential tumor therapeutic target.
Collapse
Affiliation(s)
- Zonglei Zhao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xixiu Wang
- Department of Cardiovascular Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yan Ding
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xuefeng Cao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
- *Correspondence: Xuefeng Cao,
| | - Xingyuan Zhang
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
7
|
Shen P, Yu J, Yan C, Yang D, Tong C, Wang X. Analysis of differentially expressed microRNAs in bovine mammary epithelial cells treated with lipoteichoic acid. J Anim Physiol Anim Nutr (Berl) 2023; 107:463-474. [PMID: 35997417 DOI: 10.1111/jpn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most common diseases of dairy cattle and can be caused by physical stress, chemicals and microbial infection. Staphylococcus aureus is the most common pathogens that induce mastitis in dairy cattle. In this study, bovine mammary epithelial cells (BMECs) were treated either with lipoteichoic acid (LTA, 30 µg/ml) or 1 × phosphate-buffer saline (PBS, control) and RNA-Seq was applied to explore the effect of LTA on the expression microRNAs (miRNAs) in BMECs. Compared to the control group, 43 miRNAs were significantly up-regulated and eight miRNAs were significantly down-regulated. Additionally, 724 genes were significantly up-regulated and 13 genes were significantly down-regulated in LTA group relative to the control group. Bta-miR-196a, bta-miR-2285aj-5p, bta-miR-143, bta-miR-2433, bta-miR-2284f and bta-miR-2368-3p were selected from 51 differentially expressed miRNAs and are discussed in this manuscript. Target gene prediction revealed that the target genes of these six miRNAs were all differentially expressed, including MT1E, SPDYA, FGL1, TLR2, PAPOLG, ZDHHC17 and SMC4. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the target genes with differentially expressed miRNAs were enriched in mitogen-activated protein kinase (MAPK) signalling pathway, rheumatoid arthritis and cancer. Therefore, the results of this study provided new evidences for the molecular mechanism of LTA-induced mastitis, which may provide new targets for the diagnosis and treatment of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Deng Y, Xu L, Li Y. Knockdown of circEXOC6 inhibits cell progression and glycolysis by sponging miR-433-3p and mediating FZD6 in glioma. Transl Neurosci 2023; 14:20220294. [PMID: 37554539 PMCID: PMC10404894 DOI: 10.1515/tnsci-2022-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The effect of circular RNA in many human cancers is widely studied. Nevertheless, their specific biological functions and mechanisms in glioma remain unclear. METHODS CircEXOC6, miR-433-3p, and frizzled class receptor 6 (FZD6) mRNA expression levels were measured by quantitative reverse transcription polymerase chain reaction assay. Cell proliferation, migration, invasion, apoptosis, and angiogenesis were tested by colony formation, cell-light 5-ethynyl-2'-deoxyuridine, transwell, and tube formation assays, respectively. Moreover, glucose consumption and lactate production were calculated to evaluate the glycolytic metabolism using the respective kits. Western blot assay was carried out to measure the protein levels of apoptotic markers (Bcl-2 and Bax), glycolytic markers (HK2 and GLUT1), and FZD6. The targeted relationship of miR-433-3p and circEXOC6 or FZD6 was verified by dual-luciferase reporter or RNA immunoprecipitation assays. In vivo, xenograft and immunohistochemistry assay was conducted to discriminate the effect of circEXOC6. RESULTS CircEXOC6 and FZD6 were highly expressed, while miR-433-3p was significantly lowly expressed in glioma tissues or cells. Deficiency of circEXOC6 inhibited cell proliferation, migration, invasion, angiogenesis, and glycolysis, and triggered cell apoptosis ratio in glioma; simultaneously, it could block the growth of tumor in vivo. In addition, miR-433-3p was a target of circEXOC6, and downregulated miR-433-3p could partly weaken the inhibitory effect of circEXOC6 deficiency. Besides, miR-433-3p enrichment inhibited cell progression and glycolysis in glioma, and the effect was reversed by overexpression of FZD6. CONCLUSION Deletion of circEXOC6 restrained cell progression and glycolysis by sponging miR-433-3p and interacting with FZD6, which might provide an underlying target for glioma treatment.
Collapse
Affiliation(s)
- Yu Deng
- Department of Pathology, Jinan People’s Hospital, No. 001 Xuehu Street, Zhangjiawa Street, Laiwu District, Jinan, Shandong, 271100, China
| | - Liu Xu
- Department of Pathology, Jinan People’s Hospital, No. 001 Xuehu Street, Zhangjiawa Street, Laiwu District, Jinan, Shandong, 271100, China
| | - Yuqiang Li
- Department of Pathology, Jinan People’s Hospital, No. 001 Xuehu Street, Zhangjiawa Street, Laiwu District, Jinan, Shandong, 271100, China
| |
Collapse
|
9
|
Zhang G, Chen A, Fang J, Wu A, Chen G, Tai P, Chen H, Chen X, Cao K. Construction of a novel molecular typing and scoring system for anoikis distinguishes between different prognostic risks and treatment responsiveness in low-grade glioma. Front Immunol 2023; 14:1105210. [PMID: 37114037 PMCID: PMC10126347 DOI: 10.3389/fimmu.2023.1105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background The main factors responsible for low-grade glioma (LGG)s' poor prognosis and treatment effectiveness include recurrence and malignant progression. A specific type of programmed cell death, known as anoikis, which is crucial for tumor invasion and metastasis, however, has not yet been investigated in LGGs. Methods We downloaded data of 509 samples from the TCGA-LGG cohort, carried out cluster analysis for typing twice on the basis of 19 anoikis-associated genes, and the subtypes were evaluated the differences in clinicopathological and biological features. ESTIMATE and single-sample gene set enrichment analysis were employed to examine the immunological milieu of LGGs, and enrichment analysis was used to look into the underlying biological mechanisms in LGGs. Cox regression analysis and the Least Absolute Shrinkage and Selection Operator regression algorithm were used to create a prediction scoring system. The scoring system was used for classifying LGG into high- and low- anoikis riskscore (anoiS) groups. The impact of the anoiS on the prognosis, standard treatment, and immunotherapy of patients with LGG was assessed using survival analysis and drug sensitivity analysis. Cell experiments were employed for the verification of the differential expression between LGG cells and normal cells of the anoikis gene team that regard CCT5 as the core. Results Based on the expression profiles of the 19 anoikis-associated genes, all individuals with LGG were classified into four subtypes and two macrosubtypes. The different macrosubtypes had significantly different biological characteristics, and the anoirgclusterBD subtype manifested a significantly bad prognosis and a high immune level of infiltration. And subsequent secondary genotyping also showed good prognostic discrimination. We further constructed an anoikis scoring system, anoiS. LGG patients having a high anoiS had a worse prognosis in comparison to those having a low anoiS. The high anoiS group exhibited larger levels of immune infiltration and superior immunotherapy efficacy than the low anoiS group. The high anoiS group was also more susceptible to temozolomide (TMZ) than the low anoiS group, according to a drug sensitivity analysis of TMZ. Conclusion This study constructed a scoring system for predicting the prognosis of patients with LGG and their responsive to TMZ and immunotherapy.
Collapse
Affiliation(s)
- Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Anshan Wu
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ke Cao, ;
| |
Collapse
|
10
|
Correlation between DNA Methylation and Cell Proliferation Identifies New Candidate Predictive Markers in Meningioma. Cancers (Basel) 2022; 14:cancers14246227. [PMID: 36551712 PMCID: PMC9776514 DOI: 10.3390/cancers14246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Meningiomas are the most common primary tumors of the central nervous system. Based on the 2021 WHO classification, they are classified into three grades reflecting recurrence risk and aggressiveness. However, the WHO's histopathological criteria defining these grades are somewhat subjective. Together with reliable immunohistochemical proliferation indices, other molecular markers such as those studied with genome-wide epigenetics promise to revamp the current prognostic classification. In this study, 48 meningiomas of various grades were randomly included and explored for DNA methylation with the Infinium MethylationEPIC microarray over 850k CpG sites. We conducted differential and correlative analyses on grade and several proliferation indices and markers, such as mitotic index and Ki-67 or MCM6 immunohistochemistry. We also set up Cox proportional hazard models for extensive associations between CpG methylation and survival. We identified loci highly correlated with cell growth and a targeted methylation signature of regulatory regions persistently associated with proliferation, grade, and survival. Candidate genes under the control of these regions include SMC4, ESRRG, PAX6, DOK7, VAV2, OTX1, and PCDHA-PCDHB-PCDHG, i.e., the protocadherin gene clusters. This study highlights the crucial role played by epigenetic mechanisms in shaping dysregulated cellular proliferation and provides potential biomarkers bearing prognostic and therapeutic value for the clinical management of meningioma.
Collapse
|
11
|
Wang P, Wang T, Dong L, Xu Z, Guo S, Chang C. Circular RNA circ_0079593 facilitates glioma development via modulating miR-324-5p/XBP1 axis. Metab Brain Dis 2022; 37:2389-2403. [PMID: 35793013 DOI: 10.1007/s11011-022-01040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Glioma is a common brain tumor with high mortality. Circular RNAs (circRNAs) play crucial roles in tumor occurrence and development. However, the function and molecular basis of circ_0079593 in glioma remain unknown. Quantitative real-time PCR (qPCR) and Western blot were used for expression determination of circ_0079593, microRNA-324-5p (miR-324-5p) and X-box binding protein 1 (XBP1). Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell assays, and tube formation assay were employed to evaluate cell functions. Glycolysis was determined via detecting glucose consumption, lactate production and ATP level. The binding relationship between miR-324-5p and circ_0079593 or XBP1 was validated by dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. Besides, xenograft assay was applied to test tumor growth in vivo. Circ_0079593 and XBP1 levels were elevated, while miR-324-5p level was declined in glioma. Silencing of circ_0079593 restrained proliferation, mobility, angiogenesis and glycolysis and induced apoptosis in glioma cells. Circ_0079593 accelerated glioma progression via sequestering miR-324-5p, one of the targets of circ_0079593. XBP1 was a target gene of miR-324-5p, and miR-324-5p alleviated the malignant growth of glioma by repressing XBP1. Furthermore, silence of circ_0079593 hindered tumor growth in vivo. Circ_0079593 contributed to the malignant evolution of glioma via modulating miR-324-5p and downstream XBP1 gene, suggesting that circ_0079593 might be a promising therapeutic target for glioma. Circ_0079593 was boosted in glioma. Circ_0079593 depletion restrained glioma progression. Circ_0079593 triggered glioma development via miR-324-5p/XBP1 axis. Circ_0079593 silence suppressed glioma tumorigenesis in vivo.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Neurosurgery, Weifang People's Hospital, No 151 Guangwen Street, Kuiwen district, Weifang, 261000, China
| | - Tong Wang
- Department of Neurosurgery, Weifang People's Hospital, No 151 Guangwen Street, Kuiwen district, Weifang, 261000, China
| | - Lei Dong
- Department of Neurosurgery, Weifang People's Hospital, No 151 Guangwen Street, Kuiwen district, Weifang, 261000, China
| | - Zhenkuan Xu
- Department of Neurosurgery, Second Hospital of Shandong University, Jinan, China
| | - Shouzhong Guo
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Chengyue Chang
- Department of Neurosurgery, Weifang People's Hospital, No 151 Guangwen Street, Kuiwen district, Weifang, 261000, China.
| |
Collapse
|
12
|
Fan H, Xie X, Kuang X, Du J, Peng F. MicroRNAs, Key Regulators in Glioma Progression as Potential Therapeutic Targets for Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1799-1825. [PMID: 36121713 DOI: 10.1142/s0192415x22500768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gliomas are tumors of the primary central nervous system associated with poor prognosis and high mortality. The 5-year survival rate of patients with gliomas received surgery combined with chemotherapy or radiotherapy does not exceed 5%. Although temozolomide is commonly used in the treatment of gliomas, the development of resistance limits its use. MicroRNAs are non-coding RNAs involved in numerous processes of glioma cells, such as proliferation, migration and apoptosis. MicroRNAs regulate cell cycle, PI3K/AKT signal pathway, and target apoptosis-related genes (e.g., BCL6), angiogenesis-related genes (e.g., VEGF) and other related genes to suppress gliomas. Evidence illustrates that microRNAs can regulate the sensitivity of gliomas to temozolomide, cisplatin, and carmustine, thereby enhancing the efficacy of these agents. Moreover, traditional Chinese medicine (e.g., tanshinone IIA, xanthohumol, and curcumin) exert antiglioma effects by regulating the expression of microRNAs, and then microRNAs inhibit gliomas through influencing the process of tumors by targeting certain genes. In this paper, the mechanisms through which microRNAs regulate the sensitivity of gliomas to therapeutic drugs are described, and traditional Chinese medicine that can suppress gliomas through microRNAs are discussed. This review aims to provide new insights into the traditional Chinese medicine treatment of gliomas.
Collapse
Affiliation(s)
- Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
13
|
Tang J, Chen J, Wang Y, Zhou S. The role of
MiRNA
‐433 in malignant tumors of digestive tract as tumor suppressor. Cancer Rep (Hoboken) 2022; 5:e1694. [PMID: 35976177 PMCID: PMC9458491 DOI: 10.1002/cnr2.1694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of short non‐coding RNAs with a length of approximate 22 nuclei acids that can be expressed both as an oncogene and tumor suppressor gene in human cancers. MiRNAs can participate in the post‐ transcriptional regulation of gene expression, and regulate the several cancer‐related processes, including proliferation, apoptosis, metastasis, etc. Recent findings Expression of miRNA‐433 has been reported to vary in different tumors and affected by various factors. We have summarized the different previous studies and found that miRNA‐433 can significantly inhibit the growth of the cancer cells not only in malignant tumors of the digestive tract, but also in lung cancer, breast cancer, cervical cancer, ovarian cancer, bladder cancer, renal carcinoma, glioma, retinoblastoma and osteosarcoma. Conclusion When the expression of miRNA‐433 was up‐regulated, the proliferation, metastasis and invasion abilities of the malignant tumor cells were significantly inhibited. At the same time, the potential mechanisms through which miRNA‐433 can suppress the growth and metastasis of the cancer cells were found to be basically the same, and involved modulation of the specific signaling pathways or target genes in the malignant tumors. Overall, it can be concluded that miRNA‐433 can serve as potential and valuable therapeutic target.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Jiawei Chen
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Yongqiang Wang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Shaobo Zhou
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
14
|
Pang D, Yu S, Yang X. A mini-review of the role of condensin in human nervous system diseases. Front Mol Neurosci 2022; 15:889796. [PMID: 35992200 PMCID: PMC9386267 DOI: 10.3389/fnmol.2022.889796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023] Open
Abstract
Mitosis and meiosis are crucial life activities that transmit eukaryotic genetic information to progeny in a stable and orderly manner. The formation and appearance of chromosomes, which are derived from chromatin, are the preconditions and signs of mitosis. When entering mitosis, interphase loose chromatin is highly spiralized and folded to form compact chromosomes. In recent years, it has been found that in addition to the well-known DNA, histones, and topoisomerase, a large protein complex called condensin plays an important role in the process of chromosome formation. Numerous studies have shown that the abnormal function of condensin can lead to incomplete or excessive concentration of chromatin, as well as disorder of genome organization process, abnormal transmission of genetic information, and ultimately lead to various diseases of individual, especially in nervous system diseases. In this review, the biological function of condensin and the potential pathogenic mechanism of condensin in nervous system diseases are briefly summarized. Therefore, the investigation of these mechanisms makes a significant contribution to the understanding of those related diseases and provides new ideas for clinical treatments.
Collapse
Affiliation(s)
- Du Pang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
- *Correspondence: Shengping Yu Xuejun Yang
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Affiliated Hospital of Tsinghua University, Beijing, China
- *Correspondence: Shengping Yu Xuejun Yang
| |
Collapse
|
15
|
Yan Y, Liu C, Zhang J, Li W, Yin X, Dong L, Pang S, Li X. SMC4 knockdown inhibits malignant biological behaviors of endometrial cancer cells by regulation of FoxO1 activity. Arch Biochem Biophys 2021; 712:109026. [PMID: 34506757 DOI: 10.1016/j.abb.2021.109026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 01/16/2023]
Abstract
Structural maintenance of chromosomes 4 (SMC4) has an important role in chromosome condensation and segregation, which is involved in regulating multiple tumor development. However, the role of SMC4 in endometrial cancer is uncertain. The expression and prognostic value of SMC4 were predicted by UALCAN, Gene Expression Omnibus (GEO), The Human Protein Atlas and Kaplan Meier plotter tools. SMC4-related genes were analyzed by LinkedOmics, Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Forkhead box protein O1 (FoxO1) activity was suppressed by AS1842856 (AS). SMC4, Ki67, B-cell lymphoma-2(Bcl-2), Bcl-2 associated X protein (Bax), FoxO1, phosphorylated FoxO1 (p-FoxO1), and p27 protein levels were detected by Western blotting. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) analyses. Cell apoptosis was measured using TUNEL analysis. SMC4 abundance was increased in endometrial cancer, and predicted a worse overall survival. SMC4 knockdown repressed proliferative ability of endometrial cancer cells and promoted cell apoptosis. SMC4 knockdown promoted FoxO1 transactivation by decreasing its phosphorylated level. Addition of AS inhibited FoxO1 activity by increasing the phosphorylated level of FoxO1. The inhibition of FoxO1 activity reversed the effect of SMC4 silencing on cell proliferation and apoptosis. In conclusion, SMC4 silencing restrained cell proliferation and facilitated apoptosis in endometrial cancer via regulating FoxO1 activity.
Collapse
Affiliation(s)
- Yani Yan
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China.
| | - Cong Liu
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Jian Zhang
- Clinical Department, Qinhuangdao Mental Health Center, Qinhuangdao, 066000, China
| | - Weiwei Li
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Lixia Dong
- Department of Reproductive Medicine, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| | - Shulan Pang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Xuefeng Li
- Department of Ultrasonics, Maternal and Child Care Center of Qinhuangdao, Qinhuangdao, 066000, China
| |
Collapse
|