1
|
Weber RZ, Bernardoni D, Rentsch NH, Buil BA, Halliday S, Augath MA, Razansky D, Tackenberg C, Rust R. A toolkit for stroke infarct volume estimation in rodents. Neuroimage 2024; 287:120518. [PMID: 38219841 DOI: 10.1016/j.neuroimage.2024.120518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
Stroke volume is a key determinant of infarct severity and an important metric for evaluating treatments. However, accurate estimation of stroke volume can be challenging, due to the often confined 2-dimensional nature of available data. Here, we introduce a comprehensive semi-automated toolkit to reliably estimate stroke volumes based on (1) whole brains ex-vivo magnetic resonance imaging (MRI) and (2) brain sections that underwent immunofluorescence staining. We located and quantified infarct areas from MRI three days (acute) and 28 days (chronic) after photothrombotic stroke induction in whole mouse brains. MRI results were compared with measures obtained from immunofluorescent histologic sections of the same brains. We found that infarct volume determined by post-mortem MRI was highly correlated with a deviation of only 6.6 % (acute) and 4.9 % (chronic) to the measurements as determined in the histological brain sections indicating that both methods are capable of accurately assessing brain tissue damage (Pearson r > 0.9, p < 0.001). The Dice similarity coefficient (DC) showed a high degree of coherence (DC > 0.8) between MRI-delineated regions of interest (ROIs) and ROIs obtained from histologic sections at four to six pre-defined landmarks, with histology-based delineation demonstrating higher inter-operator similarity compared to MR images. We further investigated stroke-related scarring and post-ischemic angiogenesis in cortical peri‑infarct regions and described a negative correlation between GFAP+fluorescence intensity and MRI-obtained lesion size.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren 8952, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Davide Bernardoni
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren 8952, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren 8952, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Stefanie Halliday
- Institute for Regenerative Medicine, University of Zurich, Schlieren 8952, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich 8052, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich 8052, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren 8952, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren 8952, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90089, United States; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St., Los Angeles, CA 900893, United States.
| |
Collapse
|
2
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Tamakoshi K, Meguro K, Takahashi Y, Oshimi R, Iwasaki N. Comparison of motor function recovery and brain changes in intracerebral hemorrhagic and ischemic rats with similar brain damage. Neuroreport 2023; 34:332-337. [PMID: 36966806 DOI: 10.1097/wnr.0000000000001898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
In this study, we compared the mechanisms of brain recovery in intracerebral hemorrhage and ischemia, focusing on synapses, glial cells, and dopamine expression, which are considered fundamental for neural recovery after stroke. Male Wistar rats were divided into intracerebral hemorrhage, ischemia, and sham surgery (SHAM) groups. The intracerebral hemorrhage group was injected with a collagenase solution, the ischemia group was injected with an endothelin-1 solution, and the SHAM group was injected with physiological saline. The motor function of these rats was evaluated using a rotarod test on days 7, 14, 21, and 28 post-surgery. On postoperative day 29, lesion volume was analyzed using Nissl staining. In addition, the protein expression levels of NeuN, GFAP, tyrosine hydroxylase, and PSD95 were analyzed in the striatum and motor cortex. There was no significant difference between the ischemia and intracerebral hemorrhage groups in terms of lesion volume in the striatum; however, the motor recovery of the intracerebral hemorrhage group occurred more rapidly than that of the ischemia group, and the intracerebral hemorrhage group exhibited higher GFAP protein expression in the motor cortex. The rapid motor recovery in intracerebral hemorrhage rats relative to that in ischemia rats may be associated with changes in astrocytes in brain regions remote from the injury site.
Collapse
Affiliation(s)
- Keigo Tamakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare
- Institute for Human Movement and Medical Sciences
| | - Kota Meguro
- Department of Rehabilitation, Kaetsu Hospital
| | | | - Ryu Oshimi
- Department of Rehabilitation, Saigata Medical Center, National Hospital Organization
| | - Natsuka Iwasaki
- Department of Rehabilitation, Azuma Neurosurgical Hospital, Niigata, Japan
| |
Collapse
|