1
|
Wang L, Gao F, Chen L, Sun W, Liu H, Yang W, Zhang X, Bai J, Wang R. Remote Ischemia Postconditioning Mitigates Hippocampal Neuron Impairment by Modulating Cav1.2-CaMKIIα-Aromatase Signaling After Global Cerebral Ischemia in Ovariectomized Rats. Mol Neurobiol 2024; 61:6511-6527. [PMID: 38321351 PMCID: PMC11339123 DOI: 10.1007/s12035-024-03930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Brain-derived estrogen (BDE2) is gaining attention as an endogenous neurotransmitter. Recent research has revealed that selectively removing the aromatase gene, the pivotal enzyme responsible for BDE2 synthesis, in forebrain neurons or astrocytes can lead to synaptic loss and cognitive impairment. It is worth noting that remote ischemia post-conditioning (RIP), a non-invasive technique, has been shown to activate natural protective mechanisms against severe ischemic events. The aim of our study was to investigate whether RIP triggers aromatase-BDE2 signaling, shedding light on its neuroprotective mechanisms after global cerebral ischemia (GCI) in ovariectomized rats. Our findings are as follows: (1) RIP was effective in mitigating ischemic damage in hippocampal CA1 neurons and improved cognitive function after GCI. This was partially due to increased Aro-BDE2 signaling in CA1 neurons. (2) RIP intervention efficiently enhanced pro-survival kinase pathways, such as AKT, ERK1/2, CREB, and suppressed CaMKIIα signaling in CA1 astrocytes induced by GCI. Remarkably, inhibiting CaMKIIα activity led to elevated Aro-BDE2 levels and replicated the benefits of RIP. (3) We also identified the positive mediation of Cav1.2, an LVGCC calcium channel, on CaMKIIα-Aro/BDE2 pathway response to RIP intervention. (4) Significantly, either RIP or CaMKIIα inhibition was found to alleviate reactive astrogliosis, which was accompanied by increased pro-survival A2-astrocyte protein S100A10 and decreased pro-death A1-astrocyte marker C3 levels. In summary, our study provides compelling evidence that Aro-BDE2 signaling is a critical target for the reparative effects of RIP following ischemic insult. This effect may be mediated through the CaV1.2-CaMKIIα signaling pathway, in collaboration with astrocyte-neuron interactions, thereby maintaining calcium homeostasis in the neuronal microenvironment and reducing neuronal damage after ischemia.
Collapse
Affiliation(s)
- Lu Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Lingling Chen
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Wuxiang Sun
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Huiyu Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Wei Yang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Xin Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
3
|
Rumian NL, Brown CN, Hendry-Hofer TB, Rossetti T, Orfila JE, Tullis JE, Dwoskin LP, Buonarati OR, Lisman JE, Quillinan N, Herson PS, Bebarta VS, Bayer KU. Short-term CaMKII inhibition with tatCN19o does not erase pre-formed memory in mice and is neuroprotective in pigs. J Biol Chem 2023; 299:104693. [PMID: 37037305 PMCID: PMC10189404 DOI: 10.1016/j.jbc.2023.104693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.
Collapse
Affiliation(s)
- Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tara B Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Rossetti
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John E Lisman
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Rumian NL, Brown CN, Hendry-Hofer TB, Rossetti T, Orfila JE, Tullis JE, Dwoskin LP, Buonarati OR, Lisman JE, Quillinan N, Herson PS, Bebarta VS, Bayer KU. Short-term CaMKII inhibition with tatCN19o does not erase pre-formed memory and is neuroprotective in non-rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.523316. [PMID: 36747773 PMCID: PMC9900743 DOI: 10.1101/2023.01.23.523316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. This was at ≥500fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce return of spontaneous circulation. Of additional importance for therapeutic development, cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, even though prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.
Collapse
Affiliation(s)
- Nicole L. Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tara B. Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas Rossetti
- Department of Biology, Brandeis University, Waltham, MA 02453, USA,present address: Department of Pharmacology, Weill Cornell Medicine, NY 10021, USA
| | - James E. Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jonathan E. Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Linda P. Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Olivia R. Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John E. Lisman
- Department of Biology, Brandeis University, Waltham, MA 02453, USA,deceased
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paco S. Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA,Correspondence should be addressed to Paco S. Herson (), Vikhyat S. Bebarta (), or K. Ulrich Bayer ()
| | - Vikhyat S. Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Correspondence should be addressed to Paco S. Herson (), Vikhyat S. Bebarta (), or K. Ulrich Bayer ()
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Correspondence should be addressed to Paco S. Herson (), Vikhyat S. Bebarta (), or K. Ulrich Bayer ()
| |
Collapse
|
5
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|