1
|
Zarzosa V, Neri-Castro E, Lomonte B, Fernández J, Rodríguez-Barrera G, Rodríguez-López B, Rodríguez-Solís AM, Olvera-Rodríguez A, Bénard-Valle M, Saviola A, García-Vázquez UO, Fernández-Badillo L, Morales-Capellán N, Borja M, Zamudio F, Alagón A. Integrative transcriptomic, proteomic, biochemical and neutralization studies on the venom of Micrurus ephippifer. J Proteomics 2025; 316:105416. [PMID: 40023277 DOI: 10.1016/j.jprot.2025.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Species of the genus Micrurus belong to the family Elapidae and possess venoms of significant clinical importance. This study presents an analysis of the venom composition of Micrurus ephippifer, employing transcriptomic and proteomic methodologies. A total of 2885 venom gland transcripts were assembled, of which 42 were identified as toxins. Transcripts for three-finger toxins (3FTx) were the most abundant (80.7 %), followed by PLA2 transcripts (16.3 %). Tryptic peptide sequences obtained through bottom-up shotgun MS/MS venom analysis were assigned to 46 distinct proteins in the SwissProt/UniProt database, of which 23 belong to the 3FTx family. Peptide spectral matching against the venom gland transcriptome database identified 24 proteins, 12 of which correspond to 3FTx, and three belong to PLA2. Venom decomplexation by RP-HPLC followed by N-terminal amino acid sequencing of fractions allowed an estimation of the relative abundance of protein families, indicating that 3FTx comprise over 50 % of the venom. The identified toxic fractions displayed distinct lethality profiles in mice, with certain combinations exhibiting enhanced toxicity, very similar to what has been reported with Brownitoxin-I, with only the PLA2 sequence showing similarity. Our results emphasize the importance of integrating transcriptomic and proteomic approaches to understand venom diversity and its implications for antivenom development. SIGNIFICANCE: Mexico ranks first in the Americas in snake venom diversity. Paradoxically, very little is known about the composition of coral snake venoms, and Micrurus ephippifer is a clear example of this gap, as nothing was known about its venom composition. This type of study provides valuable information that helps fill these knowledge gaps. This study presents the second report of coral snake venoms containing a complex of phospholipase A2 and a three-finger toxin, offering important data that, with further research, will contribute to understanding venom evolution and evaluating the efficacy of antivenoms.
Collapse
Affiliation(s)
- Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Gibrán Rodríguez-Barrera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Bruno Rodríguez-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Audrey Michelle Rodríguez-Solís
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Melisa Bénard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads DK-2800, Kongens Lyngby. Denmark
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Uri O García-Vázquez
- Laboratorio de Sistemática Molecular, Carrera de Biología, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n, Ejército de Oriente, Ciudad de México 09230, Mexico
| | - Leonardo Fernández-Badillo
- Laboratorio de interacciones biológicas, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, s/n, Mineral de la Reforma, Hidalgo, Mexico
| | - Nallely Morales-Capellán
- Instalación de Vida Silvestre, X-Plora Reptilia, Km 65 carretera Pachuca-Huejutla, Localidad Pilas y Granadas, Metztitlán, Hidalgo, México
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Dashevsky D, Harris RJ, Zdenek CN, Benard-Valle M, Alagón A, Portes-Junior JA, Tanaka-Azevedo AM, Grego KF, Sant'Anna SS, Frank N, Fry BG. Red-on-Yellow Queen: Bio-Layer Interferometry Reveals Functional Diversity Within Micrurus Venoms and Toxin Resistance in Prey Species. J Mol Evol 2024; 92:317-328. [PMID: 38814340 PMCID: PMC11168994 DOI: 10.1007/s00239-024-10176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Richard J Harris
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia
| | - Christina N Zdenek
- Celine Frere Group, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Region Hovedstaden, Denmark
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Kathleen F Grego
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Sávio S Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI, 54902, USA
| | - Bryan G Fry
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
3
|
Rodríguez-Vargas A, Franco-Vásquez AM, Bolívar-Barbosa JA, Vega N, Reyes-Montaño E, Arreguín-Espinosa R, Carbajal-Saucedo A, Angarita-Sierra T, Ruiz-Gómez F. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins (Basel) 2023; 15:622. [PMID: 37999485 PMCID: PMC10674450 DOI: 10.3390/toxins15110622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 11/25/2023] Open
Abstract
Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Janeth Alejandra Bolívar-Barbosa
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Alejandro Carbajal-Saucedo
- Laboratorio de Herpetología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Mexico;
| | - Teddy Angarita-Sierra
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
- Grupo de investigación Biodiversidad para la Sociedad, Escuela de pregrados, Dirección Académica, Universidad Nacional de Colombia sede de La Paz, Cesar 22010, Colombia
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| |
Collapse
|
4
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
5
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
6
|
Santos NFTD, Imberg ADS, Mariano DOC, Moraes ACD, Andrade-Silva J, Fernandes CM, Sobral AC, Giannotti KC, Kuwabara WMT, Pimenta DC, Maria DA, Sandoval MRL, Afeche SC. β-micrustoxin (Mlx-9), a PLA2 from Micrurus lemniscatus snake venom: biochemical characterization and anti-proliferative effect mediated by p53. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210094. [PMID: 35432496 PMCID: PMC9008913 DOI: 10.1590/1678-9199-jvatitd-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Endogenous phospholipases A2 (PLA2) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of β-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The β-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods β-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM medium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results Proteomic analysis revealed fragments on β-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. β-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion These findings indicate that β-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.
Collapse
|
7
|
Bolívar-Barbosa JA, Rodríguez-Vargas AL. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n3.75992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Las serpientes del género Micrurus son animales de hábitos fosoriales, de temperamento pasivo y escasa producción de un potente veneno con características neurotóxicas que bloquean la transmisión sináptica en la placa neuromuscular.Objetivo. Presentar un panorama general de la neurotoxicidad del veneno de las serpientes Micrurus y su caracterización funcional mediante métodos de análisis ex vivo.Materiales y métodos. Se realizó una revisión de la literatura en MedLine y ScienceDirect usando términos específicos y sus combinaciones. Estrategia de búsqueda: tipo de estudios: artículos sobre la neurotoxicidad del veneno de serpientes Micrurus y técnicas para determinar su actividad neurotóxica mediante modelos in vitro, in vivo y ex vivo; periodo de publicación: sin limite inicial a junio de 2018; idiomas: inglés y español.Resultados. De los 88 estudios identificados en la búsqueda inicial, se excluyeron 28 por no cumplir los criterios de inclusión (basándose en la lectura de títulos y resúmenes); además, se incluyeron 8 documentos adicionales (libros e informes), que, a criterio de los autores, complementaban la información reportada por las referencias seleccionadas. Los estudios incluidos en la revisión (n=68) correspondieron a las siguientes tipologías: investigaciones originales (n=44), artículos de revisión (n=16) y capítulos de libros, informes, guías y consultas en internet (n=8).Conclusiones. Los estudios que describen el uso de preparaciones ex vivo de músculo y nervio para evaluar el efecto de neurotoxinas ofrecen un buen modelo para la caracterización del efecto presináptico y postsináptico del veneno producido por las serpientes Micrurus.
Collapse
|
8
|
Dos Santos RTF, Silva MFP, Porto RM, Lebrun I, Gonçalves LRDC, Batista IDFC, Sandoval MRL, Abdalla FMF. Effects of Mlx-8, a phospholipase A 2 from Brazilian coralsnake Micrurus lemniscatus venom, on muscarinic acetylcholine receptors in rat hippocampus. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190041. [PMID: 32063920 PMCID: PMC6986814 DOI: 10.1590/1678-9199-jvatitd-2019-0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Background: Here, we described the presence of a neurotoxin with phospholipase
A2 activity isolated from Micrurus
lemniscatus venom (Mlx-8) with affinity for muscarinic
acetylcholine receptors (mAChRs). Methods: The purification, molecular mass determination, partial amino acid
sequencing, phospholipase A2 activity determination, inhibition
of the binding of the selective muscarinic ligand [3H]QNB and
inhibition of the total [3H]inositol phosphate accumulation in
rat hippocampus of the Mlx-8 were determined. Results: Thirty-one fractions were collected from HPLC chromatography, and the Mlx-8
toxin was used in this work. The molecular mass of Mlx-8 is 13.628 Da. Edman
degradation yielded the following sequence:
NLYQFKNMIQCTNTRSWL-DFADYG-CYCGRGGSGT. The Mlx-8 had phospholipase
A2 enzymatic activity. The pKi values were
determined for Mlx-8 toxin and the M1 selective muscarinic
antagonist pirenzepine in hippocampus membranes via [3H]QNB
competition binding assays. The pKi values obtained from the
analysis of Mlx-8 and pirenzepine displacement curves were 7.32 ± 0.15, n =
4 and 5.84 ± 0.18, n = 4, respectively. These results indicate that Mlx-8
has affinity for mAChRs. There was no effect on the inhibition ability of
the [3H]QNB binding in hippocampus membranes when 1 µM Mlx-8 was
incubated with 200 µM DEDA, an inhibitor of phospholipase A2.
This suggests that the inhibition of the phospholipase A2
activity of the venom did not alter its ability to bind to displace
[3H]QNB binding. In addition, the Mlx-8 toxin caused a
blockade of 43.31 ± 8.86%, n = 3 and 97.42 ± 2.02%, n = 3 for 0.1 and 1 µM
Mlx-8, respectively, on the total [3H]inositol phosphate content
induced by 10 µM carbachol. This suggests that Mlx-8 inhibits the
intracellular signaling pathway linked to activation of mAChRs in
hippocampus. Conclusion: The results of the present work show, for the first time, that muscarinic
receptors are also affected by the Mlx-8 toxin, a muscarinic ligand with
phospholipase A2 characteristics, obtained from the venom of the
Elapidae snake Micrurus lemniscatus, since this toxin was
able to compete with muscarinic ligand [3H]QNB in hippocampus of
rats. In addition, Mlx-8 also blocked the accumulation of total
[3H]inositol phosphate induced by muscarinic agonist
carbachol. Thus, Mlx-8 may be a new pharmacological tool for examining
muscarinic cholinergic function.
Collapse
Affiliation(s)
| | | | - Rafael Marques Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
9
|
Neurotoxicity of Micrurus lemniscatus lemniscatus (South American coralsnake) venom in vertebrate neuromuscular preparations in vitro and neutralization by antivenom. Arch Toxicol 2019; 93:2065-2086. [PMID: 31123802 DOI: 10.1007/s00204-019-02476-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
We investigated the effect of South American coralsnake (Micrurus lemniscatus lemniscatus) venom on neurotransmission in vertebrate nerve-muscle preparations in vitro. The venom (0.1-30 µg/ml) showed calcium-dependent PLA2 activity and caused irreversible neuromuscular blockade in chick biventer cervicis (BC) and mouse phrenic nerve-diaphragm (PND) preparations. In BC preparations, contractures to exogenous acetylcholine and carbachol (CCh), but not KCl, were abolished by venom concentrations ≥ 0.3 µg/ml; in PND preparations, the amplitude of the tetanic response was progressively attenuated, but with little tetanic fade. In low Ca2+ physiological solution, venom (10 µg/ml) caused neuromuscular blockade in PND preparations within ~ 10 min that was reversible by washing; the addition of Ca2+ immediately after the blockade temporarily restored the twitch responses, but did not prevent the progression to irreversible blockade. Venom (10 µg/ml) did not depolarize diaphragm muscle, prevent depolarization by CCh, or cause muscle contracture or histological damage. Venom (3 µg/ml) had a biphasic effect on the frequency of miniature end-plate potentials, but did not affect their amplitude; there was a progressive decrease in the amplitude of evoked end-plate potentials. The amplitude of compound action potentials in mouse sciatic nerve was unaffected by venom (10 µg/ml). Pre-incubation of venom with coralsnake antivenom (Instituto Butantan) at the recommended antivenom:venom ratio did not neutralize the neuromuscular blockade in PND preparations, but total neutralization was achieved with a tenfold greater volume of antivenom. The addition of antivenom after 50% and 80% blockade restored the twitch responses. These results show that M. lemniscatus lemniscatus venom causes potent, irreversible neuromuscular blockade, without myonecrosis. This blockade is apparently mediated by pre- and postsynaptic neurotoxins and can be reversed by coralsnake antivenom.
Collapse
|
10
|
A Novel Phospholipase A2 Isolated from Palythoa caribaeorum Possesses Neurotoxic Activity. Toxins (Basel) 2019; 11:toxins11020089. [PMID: 30717279 PMCID: PMC6409743 DOI: 10.3390/toxins11020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
Zoanthids of the genus Palythoa are distributed worldwide in shallow waters around coral reefs. Like all cnidarians, they possess nematocysts that contain a large diversity of toxins that paralyze their prey. This work was aimed at isolating and functionally characterizing a cnidarian neurotoxic phospholipase named A2-PLTX-Pcb1a for the first time. This phospholipase was isolated from the venomous extract of the zoanthid Palythoa caribaeorum. This enzyme, which is Ca2+-dependent, is a 149 amino acid residue protein. The analysis of the A2-PLTX-Pcb1a sequence showed neurotoxic domain similitude with other neurotoxic sPLA2´s, but a different catalytic histidine domain. This is remarkable, since A2-PLTX-Pcb1a displays properties like those of other known PLA2 enzymes.
Collapse
|
11
|
Aird SD, da Silva NJ, Qiu L, Villar-Briones A, Saddi VA, Pires de Campos Telles M, Grau ML, Mikheyev AS. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa. Toxins (Basel) 2017; 9:E187. [PMID: 28594382 PMCID: PMC5488037 DOI: 10.3390/toxins9060187] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%). Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species by gene duplication and fusion. Four species have transcripts homologous to the nociceptive toxin, (MitTx) α-subunit, but all six species had homologs to the β-subunit. The first non-neurotoxic, non-catalytic elapid phospholipase A₂s are reported. All are probably myonecrotic. Phylogenetic analysis indicates that the six taxa diverged 15-35 million years ago and that they split from their last common ancestor with Old World elapines nearly 55 million years ago. Given their early diversification, many cryptic micrurine taxa are anticipated.
Collapse
Affiliation(s)
- Steven D Aird
- Division of Faculty Affairs, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
| | - Lijun Qiu
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alejandro Villar-Briones
- Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Vera Aparecida Saddi
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Oncogenética e Radiobiologia da Associação de Combate ao Câncer em Goiás, Universidade Federal de Goiás, Rua 239 no. 52-Setor Universitário, Goiânia, Goiás 74065-070, Brazil.
| | - Mariana Pires de Campos Telles
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Miguel L Grau
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| |
Collapse
|
12
|
Rey-Suárez P, Núñez V, Saldarriaga-Córdoba M, Lomonte B. Primary structures and partial toxicological characterization of two phospholipases A 2 from Micrurus mipartitus and Micrurus dumerilii coral snake venoms. Biochimie 2017; 137:88-98. [DOI: 10.1016/j.biochi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
|
13
|
Oliveira FDR, Noronha MDDN, Lozano JLL. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis. Rev Soc Bras Med Trop 2017; 50:365-373. [DOI: 10.1590/0037-8682-0408-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
|
14
|
Lomonte B, Rey-Suárez P, Fernández J, Sasa M, Pla D, Vargas N, Bénard-Valle M, Sanz L, Corrêa-Netto C, Núñez V, Alape-Girón A, Alagón A, Gutiérrez JM, Calvete JJ. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 2016; 122:7-25. [DOI: 10.1016/j.toxicon.2016.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
15
|
Casais-E-Silva LL, Teixeira CFP, Lebrun I, Lomonte B, Alape-Girón A, Gutiérrez JM. Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2. Toxicol Lett 2016; 257:60-71. [PMID: 27282409 DOI: 10.1016/j.toxlet.2016.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/14/2016] [Accepted: 06/04/2016] [Indexed: 12/28/2022]
Abstract
The venom of Micrurus lemniscatus, a coral snake of wide geographical distribution in South America, was fractionated by reverse-phase HPLC and the fractions screened for phospholipase A2 (PLA2) activity. The major component of the venom, a PLA2, here referred to as 'Lemnitoxin', was isolated and characterized biochemically and toxicologically. It induces myotoxicity upon intramuscular or intravenous injection into mice. The amino acid residues Arg15, Ala100, Asn108, and a hydrophobic residue at position 109, which are characteristic of myotoxic class I phospholipases A2, are present in Lemnitoxin. This PLA2 is antigenically related to M. nigrocinctus nigroxin, Notechis scutatus notexin, Pseudechis australis mulgotoxin, and Pseudonaja textilis textilotoxin, as demonstrated with monoclonal and polyclonal antibodies. Lemnitoxin is highly selective in its targeting of cells, being cytotoxic for differentiated myotubes in vitro and muscle fibers in vivo, but not for undifferentiated myoblasts or endothelial cells. Lemnitoxin is not lethal after intravenous injection at doses up to 2μg/g in mice, evidencing its lack of significant neurotoxicity. Lemnitoxin displays anticoagulant effect on human plasma and proinflammatory activity also, as it induces paw edema and mast cell degranulation. Thus, the results of this work demonstrate that Lemnitoxin is a potent myotoxic and proinflammatory class I PLA2.
Collapse
Affiliation(s)
- Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Department of Bioregulation, Institute of Health Sciences (ICS), Federal University of Bahia, Salvador, Bahia, Brazil.
| | | | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
16
|
Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Toxicon 2015; 103:1-11. [DOI: 10.1016/j.toxicon.2015.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/07/2015] [Accepted: 06/08/2015] [Indexed: 11/16/2022]
|
17
|
Geier MV, Quarcoo D, Spallek MF, Joachim R, Groneberg DA. Giftschlangenbisse — eine globale Herausforderung. ZENTRALBLATT FUR ARBEITSMEDIZIN ARBEITSSCHUTZ UND ERGONOMIE 2014. [DOI: 10.1007/bf03344195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
de Carvalho ND, Garcia RC, Ferreira AK, Batista DR, Cassola AC, Maria D, Lebrun I, Carneiro SM, Afeche SC, Marcourakis T, Sandoval MRL. Neurotoxicity of coral snake phospholipases A2 in cultured rat hippocampal neurons. Brain Res 2014; 1552:1-16. [PMID: 24480475 DOI: 10.1016/j.brainres.2014.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
The neurotoxicity of two secreted Phospholipases A2 from Brazilian coral snake venom in rat primary hippocampal cell culture was investigated. Following exposure to Mlx-8 or Mlx-9 toxins, an increase in free cytosolic Ca(2+) and a reduction in mitochondrial transmembrane potential (ΔΨm) became evident and occurred prior to the morphological changes and cytotoxicity. Exposure of hippocampal neurons to Mlx-8 or Mlx-9 caused a decrease in the cell viability as assessed by MTT and LDH assays. Inspection using fluorescent images and ultrastructural analysis by scanning and transmission electron microscopy showed that multiphase injury is characterized by overlapping cell death phenotypes. Shrinkage, membrane blebbing, chromatin condensation, nucleosomal DNA fragmentation and the formation of apoptotic bodies were observed. The most striking alteration observed in the electron microscopy was the fragmentation and rarefaction of the neuron processes network. Degenerated terminal synapses, cell debris and apoptotic bodies were observed among the fragmented fibers. Numerous large vacuoles as well as swollen mitochondria and dilated Golgi were noted. Necrotic signs such as a large amount of cellular debris and membrane fragmentation were observed mainly when the cells were exposed to highest concentration of the PLA2-neurotoxins. PLA2s exposed cultures showed cytoplasmic vacuoles filled with cell debris, clusters of mitochondria presented mitophagy-like structures that are in accordance to patterns of programmed cell death by autophagy. Finally, we demonstrated that the sPLA2s, Mlx-8 and Mlx-9, isolated from the Micrurus lemniscatus snake venom induce a hybrid cell death with apoptotic, autophagic and necrotic features. Furthermore, this study suggests that the augment in free cytosolic Ca(2+) and mitochondrial dysfunction are involved in the neurotoxicity of Elapid coral snake venom sPLA2s.
Collapse
Affiliation(s)
| | - Raphael CaioTamborelli Garcia
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508 000, Brazil
| | - Adilson Kleber Ferreira
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP 05503 900, Brazil
| | - Daniel Rodrigo Batista
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio Carlos Cassola
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Durvanei Maria
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP 05503 900, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP 05503 900, Brazil
| | | | - Solange Castro Afeche
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil 1500, São Paulo, SP 05503 900, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508 000, Brazil
| | | |
Collapse
|
19
|
da Silva DC, de Medeiros WAA, Batista IDFC, Pimenta DC, Lebrun I, Abdalla FMF, Sandoval MRL. Characterization of a new muscarinic toxin from the venom of the Brazilian coral snake Micrurus lemniscatus in rat hippocampus. Life Sci 2011; 89:931-8. [PMID: 22005021 DOI: 10.1016/j.lfs.2011.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/08/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
AIMS We have isolated a new muscarinic protein (MT-Mlα) from the venom of the Brazilian coral snake Micrurus lemniscatus. MAIN METHODS This small protein, which had a molecular mass of 7,048Da, shared high sequence homology with three-finger proteins that act on cholinergic receptors. The first 12 amino acid residues of the N-terminal sequence were determined to be: Leu-Ile-Cys-Phe-Ile-Cys-Phe-Ser-Pro-Thr-Ala-His. KEY FINDINGS The MT-Mlα was able to displace the [(3)H]QNB binding in the hippocampus of rats. The binding curve in competition experiments with MT-Mlα was indicative of two types of [(3)H]QNB-binding site with pK(i) values of 9.08±0.67 and 6.17±0.19, n=4, suggesting that various muscarinic acetylcholine receptor (mAChR) subtypes may be the target proteins of MT-Mlα. The MT-Mlα and the M(1) antagonist pirenzepine caused a dose-dependent block on total [(3)H]inositol phosphate accumulation induced by carbachol. The IC(50) values for MT-Mlα and pirenzepine were, respectively, 33.1 and 2.26 nM. Taken together, these studies indicate that the MT-Mlα has antagonist effect on mAChRs in rat hippocampus. SIGNIFICANCE The results of the present study show, for the first time, that mAChRs function is drastically affected by MT-Mlα since it not only has affinity for mAChRs but also has the ability to inhibit mAChRs.
Collapse
|