1
|
Guo XJ, He LW, Chang JQ, Su WN, Feng T, Gao YM, Wu YY, Zhao C, Rao JS. Epidural electrical stimulation combined with photobiomodulation restores hindlimb motor function in rats with thoracic spinal cord injury. Exp Neurol 2025; 385:115112. [PMID: 39667656 DOI: 10.1016/j.expneurol.2024.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Epidural electrical stimulation (EES) could restore motor function of paralyzed limbs of patients with spinal cord injury (SCI). However, its invasiveness limits its application in early stage of injury. Photobiomodulation (PBM) utilizes infrared light for percutaneous irradiation of the spinal cord to protect nerve tissue, delay muscle atrophy, and can be applied in early stage of SCI due to its non-invasiveness. This study tested the effect of the combination of EES and PBM on promoting motor function recovery in SCI rats. Severe contusion was induced at the T9 spinal segment in female rats, EES (applied to the L2 and S1 spinal cord segments) with treadmill training was conducted one week after the injury, and PBM percutaneous irradiation started at the injured segment on the day of surgery. In the third week post-injury, electromyographic and gait performance during training were recorded. Besides, the muscles of the hind limbs and the spinal cord on the caudal side of the injured segment were extracted. The results demonstrate that compared to the EES- or PBM-only group, this combined therapy led to several indicators returning to intact levels, including behavioral and electrophysiological, the gait patterns was also closer to intact rats. Additionally, the combined treatment group showed minimal muscle atrophy and maximal preservation of the injured spinal cord on the caudal side, with this histological improvement correlated with motor function recovery. Taken together, our results showed that this combined therapy was a more effective treatment for improving motor dysfunction after SCI which could protect the damaged spinal cord and promote the recovery of motor function in rats with SCI.
Collapse
Affiliation(s)
- Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jia-Qi Chang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Wen-Nan Su
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yi-Meng Gao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuan-Yuan Wu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China.
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
2
|
Gordon KE, Dusane S, Kahn JH, Shafer A, Brazg G, Henderson H, Kim KYA. Amplify Gait to Improve Locomotor Engagement in Spinal Cord Injury (AGILE SCI) trial: study protocol for an assessor blinded randomized controlled trial. BMC Neurol 2024; 24:271. [PMID: 39097695 PMCID: PMC11297765 DOI: 10.1186/s12883-024-03757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Among ambulatory people with incomplete spinal cord injury (iSCI), balance deficits are a primary factor limiting participation in walking activities. There is broad recognition that effective interventions are needed to enhance walking balance following iSCI. Interventions that amplify self-generated movements (e.g., error augmentation) can accelerate motor learning by intensifying sensorimotor feedback and facilitating exploration of motor control strategies. These features may be beneficial for retraining walking balance after iSCI. We have developed a cable-driven robot that creates a movement amplification environment during treadmill walking. The robot applies a continuous, laterally-directed, force to the pelvis that is proportional in magnitude to real-time lateral velocity. Our purpose is to investigate the effects of locomotor training in this movement amplification environment on walking balance. We hypothesize that for ambulatory people with iSCI, locomotor training in a movement amplification environment will be more effective for improving walking balance and participation in walking activities than locomotor training in a natural environment (no applied external forces). METHODS We are conducting a two-arm parallel-assignment intervention. We will enroll 36 ambulatory participants with chronic iSCI. Participants will be randomized into either a control or experimental group. Each group will receive 20 locomotor training sessions. Training will be performed in either a traditional treadmill environment (control) or in a movement amplification environment (experimental). We will assess changes using measures that span the International Classification of Functioning, Disability and Health (ICF) framework including 1) clinical outcome measures of gait, balance, and quality of life, 2) biomechanical assessments of walking balance, and 3) participation in walking activities quantified by number of steps taken per day. DISCUSSION Training walking balance in people with iSCI by amplifying the individual's own movement during walking is a radical departure from current practice and may result in new strategies for addressing balance impairments. Knowledge gained from this study will expand our understanding of how people with iSCI improve walking balance and how an intervention targeting walking balance affects participation in walking activities. Successful outcomes could motivate development of clinically feasible tools to replicate the movement amplification environment within clinical settings. TRIAL REGISTRATION NCT04340063.
Collapse
Affiliation(s)
- Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA.
| | - Shamali Dusane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jennifer H Kahn
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anna Shafer
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | | | - Heather Henderson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kwang-Youn A Kim
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Asín-Prieto G, Oliveira Barroso F, Martínez-Expósito A, Urendes E, Gonzalez-Vargas J, Moreno JC. Mechanical disturbances applied by motorized ankle foot orthosis to adapt ankle muscles activation—A validation study. Front Bioeng Biotechnol 2023; 11:1079027. [PMID: 37008040 PMCID: PMC10060880 DOI: 10.3389/fbioe.2023.1079027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Reduced function of ankle muscles usually leads to impaired gait. Motorized ankle foot orthoses (MAFOs) have shown potential to improve neuromuscular control and increase volitional engagement of ankle muscles. In this study, we hypothesize that specific disturbances (adaptive resistance-based perturbations to the planned trajectory) applied by a MAFO can be used to adapt the activity of ankle muscles. The first goal of this exploratory study was to test and validate two different ankle disturbances based on plantarflexion and dorsiflexion resistance while training in standing still position. The second goal was to assess neuromuscular adaptation to these approaches, namely, in terms of individual muscle activation and co-activation of antagonists.Methods: Two ankle disturbances were tested in ten healthy subjects. For each subject, the dominant ankle followed a target trajectory while the contralateral leg was standing still: a) dorsiflexion torque during the first part of the trajectory (Stance Correlate disturbance—StC), and b) plantarflexion torque during the second part of the trajectory (Swing Correlate disturbance—SwC). Electromyography was recorded from the tibialis anterior (TAnt) and gastrocnemius medialis (GMed) during MAFO and treadmill (baseline) trials.Results: GMed (plantarflexor muscle) activation decreased in all subjects during the application of StC, indicating that dorsiflexion torque did not enhance GMed activity. On the other hand, TAnt (dorsiflexor muscle) activation increased when SwC was applied, indicating that plantarflexion torque succeeded in enhancing TAnt activation. For each disturbance paradigm, there was no antagonist muscle co-activation accompanying agonist muscle activity changes.Conclusion: We successfully tested novel ankle disturbance approaches that can be explored as potential resistance strategies in MAFO training. Results from SwC training warrant further investigation to promote specific motor recovery and learning of dorsiflexion in neural-impaired patients. This training can potentially be beneficial during intermediate phases of rehabilitation prior to overground exoskeleton-assisted walking. Decreased activation of GMed during StC might be attributed to the unloaded body weight in the ipsilateral side, which typically decreases activation of anti-gravity muscles. Neural adaptation to StC needs to be studied thoroughly in different postures in futures studies.
Collapse
Affiliation(s)
- Guillermo Asín-Prieto
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Gogoa Mobility Robots, Abadiño, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Filipe Oliveira Barroso,
| | - Aitor Martínez-Expósito
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Eloy Urendes
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Juan C. Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Lascu CF, Buhaș CL, Mekeres GM, Bulzan M, Boț RB, Căiță GA, Voiță IB, Pogan MD. Advantages and Limitations in the Evaluation of the Neurological and Functional Deficit in Patients with Spinal Cord Injuries. Clin Pract 2022; 13:14-21. [PMID: 36648842 PMCID: PMC9844280 DOI: 10.3390/clinpract13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Vertebro-medullary trauma (VMT) causes osteo-articular injuries in a varied anatomical lesion associated with multiple clinical manifestations and therapeutic indications. The neurological evaluation of patients who have suffered a spinal cord injury (SCI) is costly in testing the motor and sensory function. To standardize the assessment, several scales are used that measure the neurological deficit in order to guide subsequent treatment according to complete or incomplete SCI. The aim of this study is to identify and present the relevant tools for assessing SCI. (2) Methods: Relevant SCI studies were used for a fact-finding investigation from a rational and critical perspective of this field of research. The relationship between clinical tools and those with a psychosocial component was assessed based on studies reported in the literature. (3) Results: SCI severity scales have been proposed throughout to be able to estimate the functional prognosis of victims of these traumatic events. These tools can be divided into scales for assessing the neurological deficit due to trauma, and functional scales that assess the ability to perform daily activities, self-care, etc. (4) Conclusions: The closest scale to the need for standardization and the most accurate assessment of neurological deficits secondary to SCI is ASIA/IMSOP.
Collapse
Affiliation(s)
- Camelia Florentina Lascu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Camelia Liana Buhaș
- Morphological Disciplines Department, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Legal Medicine, County Clinical Emergency Hospital of Oradea, 410169 Oradea, Romania
| | - Gabriel Mihai Mekeres
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Correspondence:
| | - Mădălin Bulzan
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Robert Bogdan Boț
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Georgiana Albina Căiță
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ioan Bogdan Voiță
- Department of Anesthesiology and Intensive Care, Regional Institute of Gastroenterology and Hepatology “Prof. Octavian Fodor”, 400162 Cluj-Napoca, Romania
| | - Mihaela Dana Pogan
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
5
|
Hicks AL. Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord 2020; 59:9-16. [PMID: 32581307 DOI: 10.1038/s41393-020-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Locomotor training holds tremendous appeal to people with spinal cord injury who are wheelchair dependent, as the reacquisition of gait remains one of the most coveted goals in this population. For the last few decades this type of training has remained primarily in the clinical environment, as it requires the use of expensive treadmills with bodyweight support or complex overhead suspension tracks to facilitate overground walking. The development of powered exoskeletons has taken locomotor training out of the clinic, both improving accessibility and providing a potential option for community ambulation in people with lower limb paralysis. A question that has yet to be answered, however, is whether or not locomotor training offers a sufficiently intense stimulus to induce improvements in fitness or health. As inactivity-related secondary health complications are a major source of morbidity and mortality in people with SCI, it would be important to characterize the potential of locomotor training to not only improve functional walking ability, but also improve health-related fitness. This narrative review will summarize the key literature in this area to determine whether locomotor training challenges the cardiovascular, muscular or metabolic systems enough to be considered a viable form of exercise.
Collapse
Affiliation(s)
- Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
El Semary MM, Daker LI. Influence of percentage of body-weight support on gait in patients with traumatic incomplete spinal cord injury. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Zhu H, Poon W, Liu Y, Leung GKK, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So KF, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury. Cell Transplant 2018; 25:1925-1943. [PMID: 27075659 DOI: 10.3727/096368916x691411] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood-derived mononuclear cell (UCB-MNC) transplants improve recovery in animal spinal cord injury (SCI) models. We transplanted UCB-MNCs into 28 patients with chronic complete SCI in Hong Kong (HK) and Kunming (KM). Stemcyte Inc. donated UCB-MNCs isolated from human leukocyte antigen (HLA ≥4:6)-matched UCB units. In HK, four patients received four 4-μl injections (1.6 million cells) into dorsal entry zones above and below the injury site, and another four received 8-μl injections (3.2 million cells). The eight patients were an average of 13 years after C5-T10 SCI. Magnetic resonance diffusion tensor imaging of five patients showed white matter gaps at the injury site before treatment. Two patients had fiber bundles growing across the injury site by 12 months, and the rest had narrower white matter gaps. Motor, walking index of SCI (WISCI), and spinal cord independence measure (SCIM) scores did not change. In KM, five groups of four patients received four 4-μl (1.6 million cells), 8-μl (3.2 million cells), 16-μl injections (6.4 million cells), 6.4 million cells plus 30 mg/kg methylprednisolone (MP), or 6.4 million cells plus MP and a 6-week course of oral lithium carbonate (750 mg/day). KM patients averaged 7 years after C3-T11 SCI and received 3-6 months of intensive locomotor training. Before surgery, only two patients walked 10 m with assistance and did not need assistance for bladder or bowel management before surgery. The rest could not walk or do their bladder and bowel management without assistance. At about a year (41-87 weeks), WISCI and SCIM scores improved: 15/20 patients walked 10 m ( p = 0.001) and 12/20 did not need assistance for bladder management ( p = 0.001) or bowel management ( p = 0.002). Five patients converted from complete to incomplete (two sensory, three motor; p = 0.038) SCI. We conclude that UCB-MNC transplants and locomotor training improved WISCI and SCIM scores. We propose further clinical trials.
Collapse
Affiliation(s)
- Hui Zhu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Waisang Poon
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Yansheng Liu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | | | - Yatwa Wong
- Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yaping Feng
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Stephanie C P Ng
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kam Sze Tsang
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David T F Sun
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - David K Yeung
- Prince of Wales Hospital, Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Caihong Shen
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Fang Niu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Zhexi Xu
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Pengju Tan
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Shaofeng Tang
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Hongkun Gao
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China.,Kunming Tongren Hospital, Yunnan, P.R. China
| | - Yun Cha
- Kunming General Hospital of Chengdu Military Command, Yunnan, P.R. China
| | - Kwok-Fai So
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, SAR, P.R. China.,GHM Institute of CNS Regeneration, and Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, P.R. China.,China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | | | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - John Chen
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Jan Lai
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wendy Cheng
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China
| | - Wise Young
- China Spinal Cord Injury Network, Hong Kong Science Technology Park, Hong Kong, SAR, P.R. China.,W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
Awai L, Curt A. Comprehensive assessment of walking function after human spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:1-14. [PMID: 25890130 DOI: 10.1016/bs.pbr.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Regaining any locomotor function after spinal cord injury is not only of immediate importance for affected patients but also for clinical research as it allows to investigate mechanisms underlying motor impairment and locomotor recovery. Clinical scores inform on functional outcomes that are clinically meaningful to value effects of therapy while they all lack the ability to explain underlying mechanisms of recovery. For this purpose, more elaborate recordings of walking kinematics combined with assessments of spinal cord conductivity and muscle activation patterns are required. A comprehensive assessment framework comprising of multiple complementary modalities is necessary. This will not only allow for capturing even subtle changes induced by interventions that are likely missed by standard clinical outcome measures. It will be fundamental to attribute observed changes to naturally occurring spontaneous recovery in contrast to specific changes induced by novel therapeutic interventions beyond the improvements achieved by conventional therapy.
Collapse
Affiliation(s)
- Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| |
Collapse
|
9
|
Lam T, Pauhl K, Ferguson A, Malik RN, Krassioukov A, Eng JJ. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study. ACTA ACUST UNITED AC 2015; 52:113-29. [DOI: 10.1682/jrrd.2014.03.0090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/10/2014] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Amanda Ferguson
- NeuroMotion Physical Therapy, Vancouver, British Columbia, Canada
| | | | - Andrei Krassioukov
- International Collaboration on Repair Discoveries, the University of British Columbia, Vancouver, British Columbia, Canada;Department of Medicine, Division of Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Janice J. Eng
- International Collaboration on Repair Discoveries, the University of British Columbia, Vancouver, British Columbia, Canada;GF Strong Rehabilitation Centre, Vancouver, British Columbia, Canada
| | | |
Collapse
|
10
|
Stevens SL, Caputo JL, Fuller DK, Morgan DW. Effects of underwater treadmill training on leg strength, balance, and walking performance in adults with incomplete spinal cord injury. J Spinal Cord Med 2015; 38:91-101. [PMID: 24969269 PMCID: PMC4293539 DOI: 10.1179/2045772314y.0000000217] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To document the effects of underwater treadmill training (UTT) on leg strength, balance, and walking performance in adults with incomplete spinal cord injury (iSCI). DESIGN Pre-test and post-test design. SETTING Exercise physiology laboratory. PARTICIPANTS Adult volunteers with iSCI (n = 11). INTERVENTION Participants completed 8 weeks (3 × /week) of UTT. Each training session consisted of three walks performed at a personalized speed, with adequate rest between walks. Body weight support remained constant for each participant and ranged from 29 to 47% of land body weight. Increases in walking speed and duration were staggered and imposed in a gradual and systematic fashion. OUTCOME MEASURES Lower-extremity strength (LS), balance (BL), preferred and rapid walking speeds (PWS and RWS), 6-minute walk distance (6MWD), and daily step activity (DSA). RESULTS Significant (P < 0.05) increases were observed in LS (13.1 ± 3.1 to 20.6 ± 5.1 N·kg(-1)), BL (23 ± 11 to 32 ± 13), PWS (0.41 ± 0.27 to 0.55 ± 0.28 m·s(-1)), RWS (0.44 ± 0.31 to 0.71 ± 0.40 m·s(-1)), 6MWD (97 ± 80 to 177 ± 122 m), and DSA (593 ± 782 to 1310 ± 1258 steps) following UTT. CONCLUSION Physical function and walking ability were improved in adults with iSCI following a structured program of UTT featuring individualized levels of body weight support and carefully staged increases in speed and duration. From a clinical perspective, these findings highlight the potential of UTT in persons with physical disabilities and diseases that would benefit from weight-supported exercise.
Collapse
Affiliation(s)
- Sandra L. Stevens
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, TN, USA,Correspondence to: Sandra L. Stevens, Department of Health and Human Performance, Middle Tennessee State University, PO Box 96, Murfreesboro, TN 37132, USA.
| | - Jennifer L. Caputo
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Dana K. Fuller
- Department of Psychology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Don W. Morgan
- Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
11
|
Metabolic demand and muscle activation during different forms of bodyweight supported locomotion in men with incomplete SCI. BIOMED RESEARCH INTERNATIONAL 2014; 2014:632765. [PMID: 24971340 PMCID: PMC4055602 DOI: 10.1155/2014/632765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 12/02/2022]
Abstract
Body weight supported locomotor training uses neuroplasticity principles to improve recovery following a spinal cord injury (SCI). Steady state locomotion using the same body weight support (BWS) percent was compared in 7 males (42.6 ± 4.29 years) with incomplete SCI and matched (gender, age) noninjured controls (42.7 ± 5.4 years) using the Lokomat, Manual Treadmill, and ZeroG. The VO2000, Polar Heart Rate (HR) Monitor, and lower limb electromyography (EMG) electrodes were worn during the 2-minute sessions. Oxygen uptake (VO2) and HR were expressed as percentage of peak values obtained using progressive arm ergometry; VO2 was also expressed relative to resting metabolic equivalents (METS). Filtered EMG signals from tibialis anterior (TA), rectus femoris (RF), biceps femoris (BF), and medial gastrocnemius (MG) were normalized to ZeroG stepping. The Lokomat required 30% of VO2 peak (2METS) compared to ~54% (3METS) for Manual Treadmill and ZeroG sessions. HR was 67% of peak during Lokomat sessions compared to ~83% for Manual Treadmill and ZeroG. Muscle activation was higher in treadmill conditions compared to the ZeroG primarily due to increased BF activity. At the same level of BWS, locomotion using the Manual Treadmill or the ZeroG is more aerobically demanding than the Lokomat. Treadmill modalities encourage greater hip extensor activation compared to overground locomotion.
Collapse
|
12
|
Dutra CMR, Dutra CMR, Moser ADDL, Manffra EF. Treino locomotor com suporte parcial de peso corporal na reabilitação da lesão medular: revisão da literatura. FISIOTERAPIA EM MOVIMENTO 2013. [DOI: 10.1590/s0103-51502013000400019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: O treino locomotor com suporte de peso corporal (TLSP) é utilizado há aproximadamente 20 anos no campo da reabilitação em pacientes que sofrem de patologias neurológicas. O TLSP favorece melhoras osteomusculares, cardiovasculares e psicológicas, pois desenvolve ao máximo o potencial residual do organismo, proporcionando a reintegração na convivência familiar, profissional e social. OBJETIVO: Identificar as principais modalidades de TLSP e seus parâmetros de avaliação com a finalidade de contribuir com o estabelecimento de evidências confiáveis para as práticas reabilitativas de pessoas com lesão medular. MATERIAIS E MÉTODOS: Foram analisados artigos originais, publicados entre 2000 e 2011, que envolvessem treino de marcha após a lesão medular, com ou sem suporte parcial de peso corporal, e tecnologias na assistência do treino, como biofeedback e estimulação elétrica funcional, entre outras. RESULTADOS: A maioria dos participantes dos estudos era do sexo masculino; os níveis de lesão variavam de C3 a L3; ASIA teve pontuações de A a D; os tempos de lesão variaram entre 0,3 meses a 33 anos. Também se verificou que não há consenso em relação ao protocolo de TLSP. CONCLUSÃO: O treino locomotor com suporte de peso corporal mostra-se viável na reabilitação de pacientes que sofrem de uma patologia neurológica como a lesão medular. Independentemente do protocolo de treino utilizado, os benefícios referentes ao aumento da força muscular, manutenção ou aumento da densidade óssea, diminuição da frequência cardíaca e aumento do condicionamento físico estão presentes
Collapse
|
13
|
Stevens SL, Fuller DK, Morgan DW. Leg strength, preferred walking speed, and daily step activity in adults with incomplete spinal cord injuries. Top Spinal Cord Inj Rehabil 2013; 19:47-53. [PMID: 23678285 DOI: 10.1310/sci1901-47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The reduction in physical activity that accompanies spinal cord injury (SCI) contributes to the development of secondary health concerns. Research has explored potential strategies to enhance the recovery of walking and lessen the impact of physical disability following SCI, but further work is needed to identify determinants of community walking activity in this population. OBJECTIVES To quantify relationships among lower extremity strength (LES), preferred walking speed (PWS), and daily step activity (DSA) in adults with incomplete SCI (iSCI) and determine the extent to which LES and PWS predict DSA in persons with iSCI. METHODS Participants were 21 adults (age range, 21 to 62 years; AIS levels C and D) with iSCI. Maximal values of hip abduction, flexion, and extension, knee flexion and extension, and ankle dorsiflexion and plantar flexion were measured using handheld dynamometry and were summed to determine LES. PWS was calculated using a photoelectric cell-based timing system, and participants were fitted with activity monitors to measure DSA in a natural setting. RESULTS Statistically significant (P <; .05) correlations of moderate to high magnitude (.74 to .87) were observed among LES, PWS, and DSA. Multiple regression analysis revealed that LES and PWS accounted for 83% (adjusted R2) of the variation in DSA (P <; .001). CONCLUSION A significant proportion of the explained variance in DSA can be predicted from knowledge of LES and PWS in adults with iSCI. These findings suggest that future efforts to improve community walking behavior following SCI should be directed toward increasing LES and PWS.
Collapse
Affiliation(s)
- Sandra L Stevens
- Department of Health and Human Performance, Middle Tennessee State University , Murfreesboro, Tennessee
| | | | | |
Collapse
|
14
|
Gil-Agudo A, Pérez-Nombela S, Pérez-Rizo E, del Ama-Espinosa A, Crespo-Ruiz B, Pons JL. Comparative biomechanical analysis of gait in patients with central cord and Brown-Séquard syndrome. Disabil Rehabil 2013; 35:1869-76. [DOI: 10.3109/09638288.2013.766268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Wang P, Low KH, McGregor AH, Tow A. Detection of abnormal muscle activations during walking following spinal cord injury (SCI). RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:1226-1235. [PMID: 23396198 DOI: 10.1016/j.ridd.2012.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI participants were given assistance from physiotherapists, if required, while they were walking. In agreement with other research, larger cadence and smaller step length and swing phase of SCI gait were observed as a result of muscle weakness and resultant gait instability. Muscle activation patterns of seven major leg muscles were collected. The EMG signal was processed by the RMS in frequency domain to represent the muscle activation power, and the distribution of muscle activation was compared between healthy and SCI participants. The alternations of muscle activation within the phases of the gait cycle are highlighted to facilitate our understanding of the underlying muscular activation following SCI. Key differences were observed (p-value=0.0006) in the reduced activation of tibialis anterior (TA) in single stance phase and rectus femoris (RF) in swing phase (p-value=0.0011). We can then conclude that the proposed assessment approach of gait provides valuable information that can be used to target and define therapeutic interventions and their evaluation; hence impacting the functional outcome of SCI individuals.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Sports Research, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | | | | | | |
Collapse
|
16
|
Abstract
Walking is possible for many patients with a spinal cord injury. Avenues enabling walking include braces, robotics and FES. Among the benefits are improved musculoskeletal and mental health, however unrealistic expectations may lead to negative changes in quality of life. Use rigorous assessment standards to gauge the improvement of walking during the rehabilitation process, but also yearly. Continued walking after discharge may be limited by challenges, such as lack of accessibility in and outside the home, and complications, such as shoulder pain or injuries from falls. It is critical to determine the risks and benefits of walking for each patient.
Collapse
Affiliation(s)
- Elizabeth C Hardin
- Motion Study Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
17
|
Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:259-74. [PMID: 23098718 DOI: 10.1016/b978-0-444-52137-8.00016-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physical rehabilitation for individuals coping with neurological deficits is evolving in response to a paradigm shift in thinking about the injured nervous system and using evidence as a basis for clinical decisions. Functional recovery from paralysis was generally believed to be nearly impossible, based on traditional expert opinion, and the priority was to develop compensation strategies to achieve functional goals in the home and community. Research, which began in animal models of neurological insult and is currently being translated to the clinic, has challenged these assumptions. The nervous system, whether intact or injured, has enormous potential for adaptation and modification, which can be harnessed to facilitate recovery. In this chapter we will briefly outline the history of physical rehabilitation as it concerns the development of strategies aimed at compensation, rather than functional recovery. Then we will discuss how new activity-based therapies are being developed, based on evidence from basic science and clinical evidence. One of these activity-based therapies is locomotor training, a program which relies on the intrinsic, automatic, control of locomotion by "lower" neural centers. A brief description of the program, including the four foundational principles, will be followed by an introduction to the use of robotics in these programs. Finally, we will discuss a second activity-based therapy, functional electrical stimulation (FES), and the future of physical rehabilitation for spinal cord injury and other neurological disorders.
Collapse
Affiliation(s)
- Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| | | | | |
Collapse
|
18
|
Nadeau S, Duclos C, Bouyer L, Richards CL. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. PROGRESS IN BRAIN RESEARCH 2011; 192:161-80. [PMID: 21763525 DOI: 10.1016/b978-0-444-53355-5.00011-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
To recover the ability to walk is one of the most important goals of persons recovering from a stroke or spinal cord injury (SCI). While a task-oriented approach to gait training is recommended, randomized controlled trials or meta-analyses comparing different methods of delivering training have failed in general to demonstrate the superiority of one approach over the other. The large variations in the mean outcome gait measures reported in these studies reflect, at least in part, the heterogeneity of the sensorimotor impairments underlying the gait disability as well as variations in the therapeutic response. The purpose of this chapter is to demonstrate that biomechanical gait analysis can reveal information pertinent to the selection of a task-oriented approach to enhance gait training as well as the therapeutic response that clinical evaluations alone cannot provide. We first briefly review locomotor impairments underlying the gait disability after stroke and SCI as well as the effects of selected technological task-oriented gait training interventions. We then give examples that demonstrate the use of gait analysis to pinpoint underlying impairments that can guide the choice of sensorimotor therapy and then immediately identify responders to the intervention. Such an individualized approach should promote therapeutic efficacy while leading over time to the identification of clinical indices to guide therapy when gait analysis is not feasible. Given the requirements of a gait analysis laboratory and the qualified personnel to capture and interpret the data, future studies will need to demonstrate the feasibility of the technological proposed approach and assess the costs and benefits for the health care system.
Collapse
Affiliation(s)
- Sylvie Nadeau
- Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation, Institut de réadaptation Gingras-Lindsay-de-Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
19
|
Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study. Spinal Cord 2011; 49:1001-7. [PMID: 21537338 DOI: 10.1038/sc.2011.37] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Single-blind randomized, controlled clinical study. OBJECTIVES To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. SETTING Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. METHODS Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. RESULTS There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. CONCLUSION Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.
Collapse
|
20
|
Gil-Agudo A, Pérez-Nombela S, Forner-Cordero A, Pérez-Rizo E, Crespo-Ruiz B, del Ama-Espinosa A. Gait kinematic analysis in patients with a mild form of central cord syndrome. J Neuroeng Rehabil 2011; 8:7. [PMID: 21288347 PMCID: PMC3040131 DOI: 10.1186/1743-0003-8-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/02/2011] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed. METHODS Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion - ROM) were compared between the two groups walking at similar speeds. RESULTS The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05). CONCLUSIONS The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.
Collapse
Affiliation(s)
- Angel Gil-Agudo
- Department of Physical Medicine and Rehabilitation, National Hospital for Spinal Cord Injury, SESCAM, Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
The effects of different rehabilitation strategies on the functional recovery of spinal cord injured rats: an experimental study. Spine (Phila Pa 1976) 2010; 35:E1273-7. [PMID: 20938389 DOI: 10.1097/brs.0b013e3181e3fc5f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental study. OBJECTIVE To investigate the effects of different rehabilitation strategies on functional recovery of partial spinal cord of injured rats. SUMMARY OF BACKGROUND DATA Activity-based rehabilitation is promising strategy for improving functional recovery following spinal cord injury (SCI). METHODS Twenty-four female Sprague-Dawley rats weighing 180 to 220 g were anesthetized with chloral hydrate (450 mg kg⁻¹) by intraperitoneal injection, and laminectomy was performed at T7-T8 level, leaving the dura intact. A compression plate (2.2 × 5.0 mm) loaded with weight of 35 g was placed on the exposed cord for 5 minutes to create partial SCI. Animals were divided into 3 groups of 8 rats each. Group 1 served as control (SCI + without treadmill and swimming training). Whereas rats in Groups 2 and 3 were subjected to SCI as mentioned previously and received swimming training 5 minutes for Group 2 and treadmill training 5 minutes for Group 3 each day, which occurred beginning 14 days postsurgery and continued for 14 days. The spontaneous coordinate activity (SCA), Basso, Beattie, and Bresnahan (BBB), and Tarlov locomotor scores were used to assess functional recovery of spinal cord injured rats. RESULTS Day 1 (baseline, 14 days after the surgery), there was no significant difference among the means for SCA, BBB, and Tarlov scores of all groups. After day 1, Groups 1, 2, and 3 showed continuous improvement in their BBB, Tarlov, and SCA scores. This improvement was maintained throughout the duration of the study with different levels for each group. By the end of the study, trained Groups 2 and 3 showed statistically significant improvement in their SCA, BBB, and Tarlov scores compared with Group 1 (P < 0.05). CONCLUSION These results suggest that 2 weeks of treadmill locomotor training and swimming training may have positive effects on functional recovery after partial SCI.
Collapse
|