1
|
Zou Y, Fang C, Wang Y, Li H, Guo X. Scutellarin protects cortical neurons against neonatal hypoxic-ischemic encephalopathy injury via upregulation of vascular endothelial growth factor. IBRAIN 2022; 8:353-364. [PMID: 37786736 PMCID: PMC10529008 DOI: 10.1002/ibra.12052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 10/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) causes devastating cerebral damage and neurological deficits that seldom have effective therapies. This study aimed to explore the mechanisms underlying the therapeutic efficacy of Scutellarin in NHIE. NHIE models were successfully established. Zea-longa score and triphenyte-trazoliumchloride (TTC) staining demonstrated that hypoxia and ischemia (HI) insult induced prominent neurological dysfunctions and brain infarction. Protein microarray was applied to detect the differentially expressed genes in the cortex, hippocampus, and lung tissues of HI rats, which revealed the downregulation of vascular endothelial growth factor (VEGF) in these tissues. Additionally, double immunostaining uncovered VEGF expression was localized in the neurons. Besides, VEGF was decreasingly expressed in oxygen-glucose deprivation (OGD) neurons, which was intriguingly reversed by Scutellarin treatment. Moreover, VEGF silencing increased OGD-induced neuronal apoptosis and attenuated neurite outgrowth, which was enhanced by Scutellarin administration. GeneMANIA predicted a close correlation of VEGF with caspase 3, caspase 7, and interleukin (IL)-1β, and qRT-PCR revealed that Scutellarin treatment depressed the expression levels of them elevated in OGD neurons, but the Scutellarin-depressed levels of these factors were prominently increased after VEGF silencing. Our findings suggested that Scutellarin exerted neuroprotective effects in NHIE potentially through mediating VEGF-targeted inactivation of caspase 3, caspase 7, and IL-1β.
Collapse
Affiliation(s)
- Yu Zou
- Department of NeurologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive DysfunctionJinzhou Medical UniversityJinzhouChina
| | - Chang‐Le Fang
- Animal Zoology DepartmentKunming Medical UniversityKunmingChina
| | - Ya‐Ting Wang
- Animal Zoology DepartmentKunming Medical UniversityKunmingChina
| | - Hua Li
- Hemodialysis CenterRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Xi‐Liang Guo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive DysfunctionJinzhou Medical UniversityJinzhouChina
| |
Collapse
|
2
|
Conniot J, Talebian S, Simões S, Ferreira L, Conde J. Revisiting gene delivery to the brain: silencing and editing. Biomater Sci 2020; 9:1065-1087. [PMID: 33315025 DOI: 10.1039/d0bm01278e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders, ischemic brain diseases, and brain tumors are debilitating diseases that severely impact a person's life and could possibly lead to their demise if left untreated. Many of these diseases do not respond to small molecule therapeutics and have no effective long-term therapy. Gene therapy offers the promise of treatment or even a cure for both genetic and acquired brain diseases, mediated by either silencing or editing disease-specific genes. Indeed, in the last 5 years, significant progress has been made in the delivery of non-coding RNAs as well as gene-editing formulations to the brain. Unfortunately, the delivery is a major limiting factor for the success of gene therapies. Both viral and non-viral vectors have been used to deliver genetic information into a target cell, but they have limitations. Viral vectors provide excellent transduction efficiency but are associated with toxic effects and have limited packaging capacity; however, non-viral vectors are less toxic and show a high packaging capacity at the price of low transfection efficiency. Herein, we review the progress made in the field of brain gene therapy, particularly in the design of non-toxic and trackable non-viral vectors, capable of controlled release of genes in response to internal/external triggers, and in the delivery of formulations for gene editing. The application of these systems in the context of various brain diseases in pre-clinical and clinical tests will be discussed. Such promising approaches could potentially pave the way for clinical realization of brain gene therapies.
Collapse
Affiliation(s)
- João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
3
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
4
|
Deng Q, Chang Y, Cheng X, Luo X, Zhang J, Tang X. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function. Brain Res Bull 2018; 139:31-37. [PMID: 29425795 DOI: 10.1016/j.brainresbull.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/06/2018] [Accepted: 02/02/2018] [Indexed: 12/09/2022]
Abstract
RATIONALE Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. OBJECTIVE To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. METHODS AND RESULTS Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. CONCLUSIONS Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD.
Collapse
Affiliation(s)
- Qingqing Deng
- Department of Pediatrics, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou 310014, Zhejiang, PR China
| | - Yanqun Chang
- Department of Pediatrics, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou 511400, Guangdong, PR China.
| | - Xiaomao Cheng
- Department of Finance Section, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou 310003, Zhejiang, PR China
| | - Xingang Luo
- Department of Pediatrics, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou 511400, Guangdong, PR China
| | - Jing Zhang
- Department of Pediatrics, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou 511400, Guangdong, PR China
| | - Xiaoyuan Tang
- Department of Respiratory, The First affiliated Hospitial of Gannan Medical University, 23 Young Road, Ganzhou 341000, Jiangxi, PR China
| |
Collapse
|
5
|
Promoting neuroregeneration after perinatal arterial ischemic stroke: neurotrophic factors and mesenchymal stem cells. Pediatr Res 2018; 83:372-384. [PMID: 28949952 DOI: 10.1038/pr.2017.243] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023]
Abstract
Newborns suffering from perinatal arterial ischemic stroke (PAIS) are at risk of neurodevelopmental problems. Current treatment options for PAIS are limited and mainly focus on supportive care, as presentation of PAIS is beyond the time window of current treatment strategies. Therefore, recent focus has shifted to interventions that stimulate regeneration of damaged brain tissue. From animal models, it is known that the brain increases its neurogenic capability after ischemic injury, by promoting neural cell proliferation and differentiation. However, neurogenesis is not maintained at the long term, which consequently impedes full repair leading to adverse consequences later in life. Boosting neuroregeneration of the newborn brain using treatment with neurotrophic factors and/or mesenchymal stem cells (MSCs) may be promising novel therapeutic strategies to improve neurological prospects and quality of life of infants with PAIS. This review focuses on effectiveness of neurotrophic growth factors, including erythropoietin, brain-derived neurotrophic factor, vascular endothelial growth factor, glial-derived neurotrophic factor, and MSC therapy, in both experimental neonatal stroke studies and first clinical trials for neonatal ischemic brain injury.
Collapse
|
6
|
Jain A, Kratimenos P, Koutroulis I, Jain A, Buddhavarapu A, Ara J. Effect of Intranasally Delivered rh-VEGF165 on Angiogenesis Following Cerebral Hypoxia-Ischemia in the Cerebral Cortex of Newborn Piglets. Int J Mol Sci 2017; 18:ijms18112356. [PMID: 29112164 PMCID: PMC5713325 DOI: 10.3390/ijms18112356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) stimulates vascular genesis and angiogenesis. Cerebral Hypoxia-Ischemia (HI) leads to the reduction of vasculature in the cerebral cortex of newborn piglets. Objective: The present study tests the hypothesis that post-hypoxia intranasal administration of recombinant human VEGF165 (rh-VEGF165) for 3 days increases the vascular density in the cerebral cortex of newborn piglets without promoting neovascularization. Design/Methods: Ventilated newborn piglets were divided into three groups (n = 5/group): normoxic (Nx), hypoxic-ischemic (HI), and HI treated with intranasal rh-VEGF165rh-VEGF165 (HI-VEGF). HI piglets were exposed to HI (0.05 FiO2) for 30 min. Recombinant h-VEGF165 (100 ng/kg) was administered 15 min after HI and then once daily for 3 days. The animals were perfused transcardially and coronal brains sections were processed for Isolectin, Hoechst, and ki-67 cell proliferation marker staining. To assess the vascular density, 30–35 fields per animal section were manually counted using image J software. Results: The vascular density (vessels/mm2) was 42.0 ± 8.0 in the Nx group, 26.4 ± 4.8 (p < 0.05 vs. Nx) in the HI group, and 46.0 ± 11.9 (p < 0.05 vs. HI) in the HI-VEGF group. When stained for newly formed vessels, via Ki-67 staining, the vascular density was 5.4 ± 3.6 in the Nx group (p < 0.05 vs. HI), 10.2 ± 2.1 in the HI group, and 10.9 ± 2.9 in the HI-VEGF group (p = 0.72 vs. HI). HI resulted in a decrease in vascular density. Intranasal rh-VEGF165rh-VEGF165 resulted in the attenuation of the HI-induced decrease in vascular density. However, rh-VEGF165 did not result in the formation of new vascularity, as evident by ki-67 staining. Conclusions: Intranasal rh-VEGF165 may prevent the HI-induced decrease in the vascular density of the brain and could serve as a promising adjuvant therapy for hypoxic-ischemic encephalopathy (HIE).
Collapse
Affiliation(s)
- Amit Jain
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sanford Children's Hospital, Sioux Falls, SD 57105, USA.
| | - Panagiotis Kratimenos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics, Division of Neonatology, Children's National Medical Center, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA.
| | - Ioannis Koutroulis
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics and Emergency Medicine, Children's National Medical Center, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA.
| | - Amishi Jain
- College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA.
| | - Amulya Buddhavarapu
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics, Driscoll Children's Hospital, Texas A&M College of Medicine, Corpus Christi, TX 77807, USA.
| | - Jahan Ara
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
| |
Collapse
|
7
|
Song X, Shi L, Chen L, Liu X, Qu X, Wang K, Wei F. Endothelial cells modified by adenovirus vector containing nine copies hypoxia response elements and human vascular endothelial growth factor as the novel seed cells for bone tissue engineering. Acta Biochim Biophys Sin (Shanghai) 2017; 49:973-978. [PMID: 29036390 DOI: 10.1093/abbs/gmx101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/14/2022] Open
Abstract
Vascularization is one of the hotspots during the development of new therapeutic strategies for bone tissue engineering, which can alleviate hypoxic circumstance and prevent transplant failure. Vascular endothelial growth factor (VEGF) gene transfection using recombinant adenovirus (Ad) vector can effectively promote angiogenesis, but uncontrolled long-term continuous expression of VEGF brings safety concern. Here we constructed a recombinant Ad vector containing nine copies of HRE promoter and the hVEGF165 gene, which conserved the oxygen sensitivity of hypoxia-inducible factor-1/hypoxia response elements (HIF-1/HRE). After transfection into human umbilical vein endothelial cells (HUVEC), the hVEGF165 mRNA and protein levels were much higher in response to hypoxia, as revealed by RT-PCR and ELISA, respectively. Furthermore, Ad-9HRE-hVEGF165 vector effectively promoted proliferation, migration and tube formation of HUVEC under hypoxic conditions. Thus we believe that the Ad-9HRE-hVEGF165 vector can contribute to the regulation of vascularization, which may provide a new approach for a better control of the expression of hVEGF165 during bone tissue engineering.
Collapse
Affiliation(s)
- Xiaobin Song
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Liang Shi
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lamei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xinyu Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ketao Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fengcai Wei
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Studies on cerebral protection of digoxin against hypoxic–ischemic brain damage in neonatal rats. Neuroreport 2016; 27:906-15. [DOI: 10.1097/wnr.0000000000000630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yao Y, Zheng XR, Zhang SS, Wang X, Yu XH, Tan JL, Yang YJ. Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage. Neural Regen Res 2016; 11:1456-1463. [PMID: 27857750 PMCID: PMC5090849 DOI: 10.4103/1673-5374.191220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-ischemic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neonatal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165 gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs.
Collapse
Affiliation(s)
- Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang-Rong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shan-Shan Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiao-He Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie-Lu Tan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Jia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Tan J, Zheng X, Zhang S, Yang Y, Wang X, Yu X, Zhong L. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells. Neural Regen Res 2014; 9:1763-9. [PMID: 25422637 PMCID: PMC4238164 DOI: 10.4103/1673-5374.141785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into five groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular endothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. The cerebral palsy model was established by ligating the left common carotid artery followed by exposure to hypoxia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. After transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vascular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for finding water and the finding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. These findings indicate that the transplantation of vascular endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deficits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.
Collapse
Affiliation(s)
- Jielu Tan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shanshan Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaohe Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Zhong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Effect of VEGF and CX43 on the promotion of neurological recovery by hyperbaric oxygen treatment in spinal cord-injured rats. Spine J 2014; 14:119-27. [PMID: 24183749 DOI: 10.1016/j.spinee.2013.06.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 05/13/2013] [Accepted: 06/24/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) is a serious health issue that may result in high health care costs, with additional social and psychological burdens. Hyperbaric oxygen (HBO) treatment has been found to be beneficial for neurological recovery; however, the underlying mechanisms are yet to be characterized. PURPOSE The aim of this study was to investigate the mechanisms of HBO treatment in SCI by measuring the expression levels of vascular endothelial growth factor (VEGF) and Connexin43 (CX43) in the injured spinal cord tissue. STUDY DESIGN/SETTING An experiment animal study of rats undergoing SCI and HBO treatment. METHODS The spinal cord injury model was established in rats, which were randomly divided into the following four groups: (1) the sham-operated group (SH), (2) the sham-operated and hyperbaric oxygen treatment group (SH+HBO), (3) the spinal cord injury group (SCI), and (4) the spinal cord injury and hyperbaric oxygen treatment group (SCI+HBO). For groups of SH+HBO and SCI+HBO, the animals received 1 hour of HBO at 2.0 ATA in 100% O2 twice per day for 3 days and then daily for the following days consecutively after surgery. After operation, neurological assessments were performed, the spinal cord tissue samples were harvested for histopathological evaluation, Western blot and real-time polymerase chain reaction analysis. RESULTS The Basso-Bettie-Bresnahan scores were significantly improved in the SCI+HBO group compared with the SCI group on the postoperative 7th and 14th days. The histology scores were significantly decreased by HBO treatment compared with that in the SCI group on the postoperative 3rd, 7th, and 14th days. Western blot analysis and real-time polymerase chain reaction revealed that the expression level of vascular endothelial growth factor (VEGF) in the SCI+HBO group was significantly increased compared with the SCI group. The protein expression level of CX43 and its mRNA level in the SCI+HBO group were significantly decreased on the postoperative 3rd and 7th days, whereas its expression was significantly increased by HBO treatment on the postoperative 14th day compared with the SCI group. CONCLUSIONS HBO treatment improved neurological recovery when applied after SCI. The expression level changes of VEGF and CX43 may contribute to the further understanding on the molecular mechanisms of HBO treatment on SCI.
Collapse
|
12
|
Zhu AH, Hu YR, Liu W, Gao F, Li JX, Zhao LH, Chen G. Systemic Evaluation of Hypoxic-Ischemic Brain Injury in Neonatal Rats. Cell Biochem Biophys 2013; 69:295-301. [DOI: 10.1007/s12013-013-9798-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Bu Y, Lee K, Jung HS, Moon SK. Therapeutic effects of traditional herbal medicine on cerebral ischemia: a perspective of vascular protection. Chin J Integr Med 2013; 19:804-14. [PMID: 24170629 DOI: 10.1007/s11655-013-1341-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 12/15/2022]
Abstract
Although many agents for acute ischemic stroke treatment have been developed from extensive preclinical studies, most have failed in clinical trials. As a result, researchers are seeking other methods or agents based on previous studies. Among the various prospective approaches, vascular protection might be the key for development of therapeutic agents for stroke and for improvements in the efficacy and safety of conventional therapies. Traditional medicines in Asian countries are based on clinical experiences and literature accumulated over thousands of years. To date, many studies have used traditional herbal medicines to prove or develop new agents based on stroke treatments mentioned in traditional medicinal theory or other clinical data. In the current review, we describe the vascular factors related to ischemic brain damage and the herbal medicines that impact these factors, including Salviae Miltiorrhizae Radix, Notoginseng Radix, and Curcumae Rhizoma, based on scientific reports and traditional medical theory. Further, we point out the problems associated with herbal medicines in stroke research and propose better methodologies to address these problems.
Collapse
Affiliation(s)
- Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea,
| | | | | | | |
Collapse
|
14
|
The impact of experimental preconditioning using vascular endothelial growth factor in stroke and subarachnoid hemorrhage. Stroke Res Treat 2013; 2013:948783. [PMID: 23634319 PMCID: PMC3619542 DOI: 10.1155/2013/948783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/28/2013] [Indexed: 01/17/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) stimulating angiogenesis was shown to be a potential novel therapeutic approach for the treatment of ischemic vascular diseases. The goal of the present study was to examine whether transfection of VEGF before occurrence of major stroke (part I) and cerebral vasospasm after experimental subarachnoid hemorrhage (SAH; part II) develops neuroprotective qualities. A total of 25 (part I) and 26 (part II) brains were analyzed, respectively. In part one, a significant reduction of infarct volume in the VEGF-treated stroke animals (43% reduction, P < 0.05) could be detected. In part two, significant vasospasm was induced in all hemorrhage groups (P < 0.02). Analyzing microperfusion, a significant higher amount of perfused vessels could be detected (P < 0.01), whereas no significant effect could be detected towards macroperfusion. Histologically, no infarctions were observed in the VEGF-treated SAH group and the sham-operated group. Minor infarction in terms of vasospasm-induced small lesions could be detected in the control vector transduced group (P = 0.05) and saline-treated group (P = 0.09). The present study demonstrates the preconditioning impact of systemic intramuscular VEGF injection in animals after major stroke and induced severe vasospasm after SAH.
Collapse
|
15
|
Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70:1753-61. [PMID: 23475070 DOI: 10.1007/s00018-013-1282-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair, and the effects of transplanted stem cells in experimental stroke. Most of these actions involve VEGF-A and the VEGFR-2 receptor, but VEGF-B, placental growth factor, and VEGFR-1 have been implicated in some cases as well. VEGF signaling pathways represent important potential targets for the acute and chronic treatment of stroke.
Collapse
|
16
|
Variations in target gene expression and pathway profiles in the mouse hippocampus following treatment with different effective compounds for ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:797-806. [PMID: 22622953 DOI: 10.1007/s00210-012-0743-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/14/2012] [Indexed: 12/30/2022]
Abstract
In order to elucidate the overlapping and diverse pharmacological protective mechanisms of different Chinese medicinal compounds, we investigated the alteration of gene expression and activation of signaling pathways in the mouse hippocampus after treatment of cerebral ischemia-reperfusion injury with various compounds. A microarray including 16,463 genes was used to identify differentially expressed genes among six treatment groups: baicalin (BA), jasminoidin (JA), cholic acid (CA), concha margaritiferausta (CM), sham, and vehicle. The US Food and Drug Administration (FDA) ArrayTrack system and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to screen significantly altered genes and pathways (P < 0.05, fold change >1.5). Vehicle treatment alone resulted in alteration of 726 genes (283 upregulated, 443 downregulated) compared to the sham treatment group. BA, JA, and CA treatments, but not CM treatment, were effective in reducing infarct volume compared with vehicle treatment (P < 0.05). Compared with the CM group, a total of 167 (73 upregulated, 94 downregulated), 379 (211 upregulated, 168 downregulated), and 181 (76 upregulated, 105 downregulated) altered genes were found in the BA, JA, and CA groups, respectively. The numbers of overlapping genes between the BA and JA, BA and CA, and JA and CA groups were 28 (16 upregulated, 12 downregulated), 14 (4 upregulated, 10 downregulated), and 31 (8 upregulated, 23 downregulated), respectively. Three overlapping genes were identified among the BA, JA, and CA treatment groups: Il1rap, Gnb5, and Wdr38. Based on KEGG pathway analysis, two, seven, and four pathways were significantly activated in the BA, JA, and CA groups, respectively, when compared to the CM group. The ATP-binding cassette (ABC) transporters general pathway was activated by BA and JA treatment, and the mitogen-activated protein kinase (MAPK) signaling pathway was activated by JA and CA treatment. Alteration of IL-1 and Hspa1a expression was found by real time reverse transcription polymerase chain reaction, confirming the results of the microarray analysis. Our data demonstrated that polytypic profiles of 167-379 altered genes exist in the mouse hippocampus treated with different compounds known to be therapeutically effective in cerebral ischemia-reperfusion injury, and we were able to identify overlapping genes and pathways among these groups. Therefore, these different compounds may function through both overlapping and distinct pharmacological mechanisms to exert their therapeutic action.
Collapse
|
17
|
Neuroprotection of VEGF-expression neural stem cells in neonatal cerebral palsy rats. Behav Brain Res 2012; 230:108-15. [PMID: 22342488 DOI: 10.1016/j.bbr.2012.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 01/18/2023]
Abstract
Cerebral palsy (CP) is a very common neural system development disorder that can cause physical disability in human. Here, we studied the neuroprotective effect of vascular endothelial growth factor (VEGF)-transfected neural stem cells (NSCs) in newborn rats with cerebral palsy (CP). Seven-day-old Sprague-Dawley rats were randomly divided into four groups: sham operation (control group), PBS transplantation (PBS group), VEGF+NSCs transplantation (transgene NSCs group) and NSCs transplantation groups (NSCs group). PBS, Transgene NSCs and NSCs groups respectively received stereotactic injections of PBS, lentiviral vector (pGC-FU-VEGF) infected NSCs or a NSCs suspension in the left sensory-motor cortex 3 days after CP model was established. The NSCs activity, their impacts on neural cell growth and apoptosis, brain development and animal behaviors were examined on the animals up to age 35-days. As expected, unilateral carotid artery occlusion plus hypoxia (cerebral palsy model) resulted in severe neural developmental disorders, including slowed growth, increased in cortical neuron apoptosis, decreased cerebral cortex micro-vessel density and retarded behavior developments. Transplantation of NSCs not only resulted in increases in VEGF protein expression in rat brains, but also largely prevented the behavioral defects and brain tissue pathology that resulted from cerebral palsy procedure, with animals received VEGF transfected NSCs always being marginally better than these received un-transfected cells. In conclusion, NSCs transplantation can partially prevent/slow down the brain damages that are associated with CP in the newborn rats, suggesting a new possible strategy for CP treatment.
Collapse
|
18
|
Gene regulation systems for gene therapy applications in the central nervous system. Neurol Res Int 2012; 2012:595410. [PMID: 22272373 PMCID: PMC3261487 DOI: 10.1155/2012/595410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/23/2011] [Indexed: 01/02/2023] Open
Abstract
Substantial progress has been made in the development of novel gene therapy strategies for central nervous system (CNS) disorders in recent years. However, unregulated transgene expression is a significant issue limiting human applications due to the potential side effects from excessive levels of transgenic protein that indiscriminately affect both diseased and nondiseased cells. Gene regulation systems are a tool by which tight tissue-specific and temporal regulation of transgene expression may be achieved. This review covers the features of ideal regulatory systems and summarises the mechanics of current exogenous and endogenous gene regulation systems and their utility in the CNS.
Collapse
|
19
|
Ma Y, Liu W, Wang Y, Chao X, Qu Y, Wang K, Fei Z. VEGF protects rat cortical neurons from mechanical trauma injury induced apoptosis via the MEK/ERK pathway. Brain Res Bull 2011; 86:441-6. [DOI: 10.1016/j.brainresbull.2011.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|