1
|
Cover KK, Mathur BN. Rostral Intralaminar Thalamus Engagement in Cognition and Behavior. Front Behav Neurosci 2021; 15:652764. [PMID: 33935663 PMCID: PMC8082140 DOI: 10.3389/fnbeh.2021.652764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
The thalamic rostral intralaminar nuclei (rILN) are a contiguous band of neurons that include the central medial, paracentral, and central lateral nuclei. The rILN differ from both thalamic relay nuclei, such as the lateral geniculate nucleus, and caudal intralaminar nuclei, such as the parafascicular nucleus, in afferent and efferent connectivity as well as physiological and synaptic properties. rILN activity is associated with a range of neural functions and behaviors, including arousal, pain, executive function, and action control. Here, we review this evidence supporting a role for the rILN in integrating arousal, executive and motor feedback information. In light of rILN projections out to the striatum, amygdala, and sensory as well as executive cortices, we propose that such a function enables the rILN to modulate cognitive and motor resources to meet task-dependent behavioral engagement demands.
Collapse
Affiliation(s)
- Kara K Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Li JN, Sun Y, Ji SL, Chen YB, Ren JH, He CB, Wu ZY, Li H, Dong YL, Li YQ. Collateral Projections from the Medullary Dorsal Horn to the Ventral Posteromedial Thalamic Nucleus and the Parafascicular Thalamic Nucleus in the Rat. Neuroscience 2019; 410:293-304. [PMID: 31075313 DOI: 10.1016/j.neuroscience.2019.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
Medullary dorsal horn (MDH), the homolog of spinal dorsal horn, plays essential roles in processing of nociceptive signals from orofacial region toward higher centers, such as the ventral posteromedial thalamic nucleus (VPM) and parafascicular thalamic nucleus (Pf), which belong to the sensory-discriminative and affective aspects of pain transmission systems at the thalamic level, respectively. In the present study, in order to provide morphological evidence for whether neurons in the MDH send collateral projections to the VPM and Pf, a retrograde double tracing method combined with immunofluorescence staining for substance P (SP), SP receptor (SPR) and Fos protein was used. Fluoro-gold (FG) was injected into the VPM and the tetramethylrhodamine-dextran (TMR) was injected into the Pf. The result revealed that both FG- and TMR-labeled projection neurons were observed throughout the entire extent of the MDH, while the FG/TMR double-labeled neurons were mainly located in laminae I and III. It was also found that some of the FG/TMR double-labeled neurons within lamina I expressed SPR and were in close contact with SP-immunoreactive (SP-ir) terminals. After formalin injection into the orofacial region, 41.4% and 34.3% of the FG/TMR double-labeled neurons expressed Fos protein in laminae I and III, respectively. The present results provided morphological evidence for that some SPR-expressing neurons within the MDH send collateral projections to both VPM and Pf and might be involved in sensory-discriminative and affective aspects of acute orofacial nociceptive information transmission.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Sun
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou 350108, China
| | - Song-Ling Ji
- Department of Anatomy, The Zunyi Medical Collage, Zunyi 563000, China
| | - Yan-Bing Chen
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou 350108, China
| | - Jia-Hao Ren
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Cheng-Bo He
- Department of Anatomy, The Zunyi Medical Collage, Zunyi 563000, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, China; Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
3
|
Pahor A, Pahor D, Gračner T. Nichtarteriitische anteriore ischämische Optikusneuropathie bei Patienten mit rheumatoider Arthritis. SPEKTRUM DER AUGENHEILKUNDE 2018. [DOI: 10.1007/s00717-018-0409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Cytoarchitecture and neurocytology of rabbit cingulate cortex. Brain Struct Funct 2015; 221:3571-89. [DOI: 10.1007/s00429-015-1120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
|