1
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
2
|
NPC transplantation rescues sci-driven cAMP/EPAC2 alterations, leading to neuroprotection and microglial modulation. Cell Mol Life Sci 2022; 79:455. [PMID: 35904607 PMCID: PMC9338125 DOI: 10.1007/s00018-022-04494-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Neural progenitor cell (NPC) transplantation represents a promising treatment strategy for spinal cord injury (SCI); however, the underlying therapeutic mechanisms remain incompletely understood. We demonstrate that severe spinal contusion in adult rats causes transcriptional dysregulation, which persists from early subacute to chronic stages of SCI and affects nearly 20,000 genes in total tissue extracts. Functional analysis of this dysregulated transcriptome reveals the significant downregulation of cAMP signalling components immediately after SCI, involving genes such as EPAC2 (exchange protein directly activated by cAMP), PKA, BDNF, and CAMKK2. The ectopic transplantation of spinal cord-derived NPCs at acute or subacute stages of SCI induces a significant transcriptional impact in spinal tissue, as evidenced by the normalized expression of a large proportion of SCI-affected genes. The transcriptional modulation pattern driven by NPC transplantation includes the rescued expression of cAMP signalling genes, including EPAC2. We also explore how the sustained in vivo inhibition of EPAC2 downstream signalling via the intrathecal administration of ESI-05 for 1 week impacts therapeutic mechanisms involved in the NPC-mediated treatment of SCI. NPC transplantation in SCI rats in the presence and absence of ESI-05 administration prompts increased rostral cAMP levels; however, NPC and ESI-05 treated animals exhibit a significant reduction in EPAC2 mRNA levels compared to animals receiving only NPCs treatment. Compared with transplanted animals, NPCs + ESI-05 treatment increases the scar area (as shown by GFAP staining), polarizes microglia into an inflammatory phenotype, and increases the magnitude of the gap between NeuN + cells across the lesion. Overall, our results indicate that the NPC-associated therapeutic mechanisms in the context of SCI involve the cAMP pathway, which reduces inflammation and provides a more neuropermissive environment through an EPAC2-dependent mechanism.
Collapse
|
3
|
Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci 2022; 15:808510. [PMID: 35283731 PMCID: PMC8904388 DOI: 10.3389/fnmol.2022.808510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/26/2022] [Indexed: 01/03/2023] Open
Abstract
Spinal cord injury (SCI) results in multiple pathophysiological processes, including blood–spinal cord barrier disruption, hemorrhage/ischemia, oxidative stress, neuroinflammation, scar formation, and demyelination. These responses eventually lead to severe tissue destruction and an inhibitory environment for neural regeneration.cAMP signaling is vital for neurite outgrowth and axonal guidance. Stimulating intracellular cAMP activity significantly promotes neuronal survival and axonal regrowth after SCI.However, neuronal cAMP levels in adult CNS are relatively low and will further decrease after injury. Targeting cAMP signaling has become a promising strategy for neural regeneration over the past two decades. Furthermore, studies have revealed that cAMP signaling is involved in the regulation of glial cell function in the microenvironment of SCI, including macrophages/microglia, reactive astrocytes, and oligodendrocytes. cAMP-elevating agents in the post-injury milieu increase the cAMP levels in both neurons and glial cells and facilitate injury repair through the interplay between neurons and glial cells and ultimately contribute to better morphological and functional outcomes. In recent years, combination treatments associated with cAMP signaling have been shown to exert synergistic effects on the recovery of SCI. Agents carried by nanoparticles exhibit increased water solubility and capacity to cross the blood–spinal cord barrier. Implanted bioscaffolds and injected hydrogels are potential carriers to release agents locally to avoid systemic side effects. Cell transplantation may provide permissive matrices to synergize with the cAMP-enhanced growth capacity of neurons. cAMP can also induce the oriented differentiation of transplanted neural stem/progenitor cells into neurons and increase the survival rate of cell grafts. Emerging progress focused on cAMP compartmentation provides researchers with new perspectives to understand the complexity of downstream signaling, which may facilitate the clinical translation of strategies targeting cAMP signaling for SCI repair.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyan Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Jun Gao
| |
Collapse
|
4
|
Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T, Bronckaers A. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines 2021; 9:703. [PMID: 34206420 PMCID: PMC8301462 DOI: 10.3390/biomedicines9070703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
Collapse
Affiliation(s)
- Laura Ponsaerts
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Lotte Alders
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Melissa Schepers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Jos Prickaerts
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annelies Bronckaers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
5
|
Guijarro-Belmar A, Domanski DM, Bo X, Shewan D, Huang W. The therapeutic potential of targeting exchange protein directly activated by cyclic adenosine 3',5'-monophosphate (Epac) for central nervous system trauma. Neural Regen Res 2021; 16:460-469. [PMID: 32985466 PMCID: PMC7996029 DOI: 10.4103/1673-5374.293256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Millions of people worldwide are affected by traumatic spinal cord injury, which usually results in permanent sensorimotor disability. Damage to the spinal cord leads to a series of detrimental events including ischaemia, haemorrhage and neuroinflammation, which over time result in further neural tissue loss. Eventually, at chronic stages of traumatic spinal cord injury, the formation of a glial scar, cystic cavitation and the presence of numerous inhibitory molecules act as physical and chemical barriers to axonal regrowth. This is further hindered by a lack of intrinsic regrowth ability of adult neurons in the central nervous system. The intracellular signalling molecule, cyclic adenosine 3′,5′-monophosphate (cAMP), is known to play many important roles in the central nervous system, and elevating its levels as shown to improve axonal regeneration outcomes following traumatic spinal cord injury in animal models. However, therapies directly targeting cAMP have not found their way into the clinic, as cAMP is ubiquitously present in all cell types and its manipulation may have additional deleterious effects. A downstream effector of cAMP, exchange protein directly activated by cAMP 2 (Epac2), is mainly expressed in the adult central nervous system, and its activation has been shown to mediate the positive effects of cAMP on axonal guidance and regeneration. Recently, using ex vivo modelling of traumatic spinal cord injury, Epac2 activation was found to profoundly modulate the post-lesion environment, such as decreasing the activation of astrocytes and microglia. Pilot data with Epac2 activation also suggested functional improvement assessed by in vivo models of traumatic spinal cord injury. Therefore, targeting Epac2 in traumatic spinal cord injury could represent a novel strategy in traumatic spinal cord injury repair, and future work is needed to fully establish its therapeutic potential.
Collapse
Affiliation(s)
- Alba Guijarro-Belmar
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen; Sainsbury Wellcome Centre, University College London, London, UK
| | - Dominik Mateusz Domanski
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Xuenong Bo
- Center for Neuroscience, Surgery and Trauma, Queen Mary University of London, London, UK
| | - Derryck Shewan
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Wenlong Huang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
7
|
Epac2 Elevation Reverses Inhibition by Chondroitin Sulfate Proteoglycans In Vitro and Transforms Postlesion Inhibitory Environment to Promote Axonal Outgrowth in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2019; 39:8330-8346. [PMID: 31409666 DOI: 10.1523/jneurosci.0374-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Millions of patients suffer from debilitating spinal cord injury (SCI) without effective treatments. Elevating cAMP promotes CNS neuron growth in the presence of growth-inhibiting molecules. cAMP's effects on neuron growth are partly mediated by Epac, comprising Epac1 and Epac2; the latter predominantly expresses in postnatal neural tissue. Here, we hypothesized that Epac2 activation would enhance axonal outgrowth after SCI. Using in vitro assays, we demonstrated, for the first time, that Epac2 activation using a specific soluble agonist (S-220) significantly enhanced neurite outgrowth of postnatal rat cortical neurons and markedly overcame the inhibition by chondroitin sulfate proteoglycans and mature astrocytes on neuron growth. We further investigated the novel potential of Epac2 activation in promoting axonal outgrowth by an ex vivo rat model of SCI mimicking post-SCI environment in vivo and by delivering S-220 via a self-assembling Fmoc-based hydrogel that has suitable properties for SCI repair. We demonstrated that S-220 significantly enhanced axonal outgrowth across the lesion gaps in the organotypic spinal cord slices, compared with controls. Furthermore, we elucidated, for the first time, that Epac2 activation profoundly modulated the lesion environment by reducing astrocyte/microglial activation and transforming astrocytes into elongated morphology that guided outgrowing axons. Finally, we showed that S-220, when delivered by the gel at 3 weeks after contusion SCI in male adult rats, resulted in significantly better locomotor performance for up to 4 weeks after treatment. Our data demonstrate a promising therapeutic potential of S-220 in SCI, via beneficial effects on neurons and glia after injury to facilitate axonal outgrowth.SIGNIFICANCE STATEMENT During development, neuronal cAMP levels decrease significantly compared with the embryonic stage when the nervous system is established. This has important consequences following spinal cord injury, as neurons fail to regrow. Elevating cAMP levels encourages injured CNS neurons to sprout and extend neurites. We have demonstrated that activating its downstream effector, Epac2, enhances neurite outgrowth in vitro, even in the presence of an inhibitory environment. Using a novel biomaterial-based drug delivery system in the form of a hydrogel to achieve local delivery of an Epac2 agonist, we further demonstrated that specific activation of Epac2 enhances axonal outgrowth and minimizes glial activation in an ex vivo model of spinal cord injury, suggesting a new strategy for spinal cord repair.
Collapse
|
8
|
Deletion of exchange proteins directly activated by cAMP (Epac) causes defects in hippocampal signaling in female mice. PLoS One 2018; 13:e0200935. [PMID: 30048476 PMCID: PMC6062027 DOI: 10.1371/journal.pone.0200935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous studies demonstrate essential roles for the exchange proteins directly activated by cAMP 1 and 2 (Epac1 and Epac2; here collectively referred to as Epac) in the brain. In the hippocampus, Epac contributes to the control of neuronal growth and differentiation and has been implicated in memory and learning as well as in anxiety and depression. In the present study we address the hypothesis that Epac affects hippocampal cellular responses to acute restraint stress. Stress causes activation of the hypothalamus-pituitary-adrenal (HPA)-axis, and glucocorticoid receptor (GR) signaling is essential for proper feedback regulation of the stress response, both in the brain and along the HPA axis. In the hippocampus, GR expression is regulated by cAMP and the brain enriched micro RNA miR-124. Epac has been associated with miR-124 expression in hippocampal neurons, but not in regulation of GR. We report that hippocampal expression of Epac1 and Epac2 increased in response to acute stress in female wild type mice. In female mice genetically deleted for Epac, nuclear translocation of GR in response to restraint stress was significantly delayed, and moreover, miR-124 expression was decreased in these mice. Male mice lacking Epac also showed abnormalities in miR-124 expression, but the phenotype was less profound than in females. Serum corticosterone levels were slightly altered immediately after stress in both male and female mice deleted for Epac. The presented data indicate that Epac1 and Epac2 are involved in controlling cellular responses to acute stress in the mouse hippocampus and provide novel insights into the underlying transcriptional and signaling networks. Interestingly, we observe sex specific differences when Epac is deleted. As the incidence and prevalence of stress-related diseases are higher in women than in men, the Epac knockout models might serve as genetic tools to further elucidate the cellular mechanisms underlying differences between male and female with regard to regulation of stress.
Collapse
|
9
|
Yang G, Tang WY. Resistance of interleukin-6 to the extracellular inhibitory environment promotes axonal regeneration and functional recovery following spinal cord injury. Int J Mol Med 2017; 39:437-445. [DOI: 10.3892/ijmm.2017.2848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/03/2017] [Indexed: 11/06/2022] Open
|
10
|
Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 2016; 652:56-63. [PMID: 27989572 DOI: 10.1016/j.neulet.2016.12.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/23/2023]
Abstract
Injured neurons in the adult mammalian central nervous system (CNS) have a very limited capacity for axonal regeneration and neurite outgrowth. This inability to grow new axons or to regrow injured axons is due to the presence of molecules that inhibit axonal growth, and age related changes in the neuron's innate growth capabilities. Available levels of cAMP are thought to have an important role in linking both of these factors. Elevated levels of cAMP in the developing nervous system are important for the guidance and stability of growth cones. As the nervous system matures, cAMP levels decline and the growth promoting effects of cAMP diminish. It has frequently been demonstrated that increasing neuronal cAMP can enhance neurite growth and regeneration. Some methods used to increase cAMP include administration of cAMP agonists, conditioning lesions, or electrical stimulation. Furthermore, it has been proposed that multiple stages of cAMP induced growth exist, one directly caused by its downstream effector Protein Kinase A (PKA) and one caused by the eventual upregulation of gene transcription. Although the role cAMP in promoting axon growth is well accepted, the downstream pathways that mediate cAMP-mediated axonal growth are less clear. This is partly because various key studies that explored the link between PKA and axonal outgrowth relied on the PKA inhibitors KT5720 and H89. More recent studies have shown that both of these drugs are less specific than initially thought and can inhibit a number of other signalling molecules including the Exchange Protein Activated by cAMP (EPAC). Consequently, it has recently been shown that a number of intracellular signalling pathways previously attributed to PKA can now be attributed solely to activation of EPAC specific pathways, or the simultaneous co-activation of PKA and EPAC specific pathways. These new studies open the door to new potential treatments for repairing the injured spinal cord.
Collapse
Affiliation(s)
- Nicholas J Batty
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada; Department of Physical Therapy, 3-88 Corbett Hall, University of Alberta, Edmonton, AB T6E 2G4, Canada.
| |
Collapse
|
11
|
Lang DM, Romero-Alemán MDM, Dobson B, Santos E, Monzón-Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizardGallotia galloti. J Comp Neurol 2016; 525:936-954. [DOI: 10.1002/cne.24112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Dirk M. Lang
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Maria del Mar Romero-Alemán
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Bryony Dobson
- Division of Physiological Sciences, Department of Human Biology; University of Cape Town; Observatory 7925 South Africa
| | - Elena Santos
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| | - Maximina Monzón-Mayor
- Research Institute of Biomedical and Health Sciences; University of Las Palmas de Gran Canaria; 35016 Las Palmas Canary Islands Spain
| |
Collapse
|
12
|
Inhibiting cortical protein kinase A in spinal cord injured rats enhances efficacy of rehabilitative training. Exp Neurol 2016; 283:365-74. [PMID: 27401133 DOI: 10.1016/j.expneurol.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
Elevated levels of the second messenger molecule cyclic adenosine monophosphate (cAMP) are often associated with neuron sprouting and neurite extension (i.e., neuroplasticity). Phosphokinase A (PKA) is a prominent downstream target of cAMP that has been associated with neurite outgrowth. We hypothesized that rehabilitative motor training following spinal cord injuries promotes neuroplasticity via PKA activation. However, in two independent experiments, inhibition of cortical PKA using Rp-cAMPS throughout rehabilitative training robustly increased functional recovery and collateral sprouting of injured corticospinal tract axons, an indicator of neuroplasticity. Consistent with these in vivo findings, using cultured STHdh neurons, we found that Rp-cAMPS had no effect on the phosphorylation of CREB (cAMP response element-binding protein), a prominent downstream target of PKA, even with the concomitant application of the adenylate cyclase agonist forskolin to increase cAMP levels. Conversely, when cAMP levels were increased using the phosphodiesterase inhibitor IBMX, Rp-cAMPS potently inhibited CREB phosphorylation. Taken together, our results suggest that an alternate cAMP dependent pathway was involved in increasing CREB phosphorylation and neuroplasticity. This idea was supported by an in vitro neurite outgrowth assay, where inhibiting PKA did enhance neurite outgrowth. However, when PKA inhibition was combined with inhibition of EPAC2 (exchange protein directly activated by cAMP), another downstream target of cAMP in neurons, neurite outgrowth was significantly reduced. In conclusion, blocking PKA in cortical neurons of spinal cord injured rats increases neurite outgrowth of the lesioned corticospinal tract fibres and the efficacy of rehabilitative training, likely via EPAC.
Collapse
|
13
|
Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A. Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 2015; 85:99-110. [PMID: 26459109 DOI: 10.1016/j.nbd.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.
Collapse
Affiliation(s)
- Martin Berry
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Peter Morgan-Warren
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel Fulton
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Chen X, Feng S, Xiu Y, Li W. miR-142-3p is a Potential Therapeutic Target for Sensory Function Recovery of Spinal Cord Injury. Med Sci Monit 2015; 21:2553-6. [PMID: 26318123 PMCID: PMC4557393 DOI: 10.12659/msm.894098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI), which is a leading cause of disability in modern society, commonly results from trauma. It has been reported that application of sciatic nerve conditioning injury plays a positive role in repairing the injury of the ascending spinal sensory pathway in laboratory animals. Because of the complexity of SCI and related ethics challenges, sciatic nerve conditioning injury cannot be applied in clinical therapy. Accordingly, it is extremely important to study its mechanism and develop replacement therapy. Based on empirical study and clinical trials, this article suggests that miR-142-3p is the key therapeutic target for repairing sensory function, based on the following evidence. Firstly, studies have reported that endogenous cAMP is the upstream regulator of 3 signal pathways that are partially involved in the mechanisms of sciatic nerve conditioning injury, promoting neurite growth. The regulated miR-142-3p can induce cAMP elevation via adenylyl cyclase 9 (AC9), which is abundant in dorsal root ganglia (DRG). Secondly, compared with gene expression regulation in the injured spinal cord, inhibition of microRNA (miRNA) in DRG is less likely to cause trauma and infection. Thirdly, evidence of miRNAs as biomarkers and therapeutic targets in many diseases has been reported. In this article we suggest, for the first time, imitating sciatic nerve conditioning injury, thereby enhancing central regeneration of primary sensory neurons via interfering with the congenerous upstream regulator AC9 of the 3 above-mentioned signal pathways. We hope to provide a new clinical treatment strategy for the recovery of sensory function in SCI patients.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Wenqi Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yanjun Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China (mainland)
| | - Xueming Chen
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yucai Xiu
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, Hebei, China (mainland)
| | - Wenhua Li
- Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, Hebei, China (mainland)
| |
Collapse
|
15
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
16
|
Calcium signaling in axon guidance. Trends Neurosci 2014; 37:424-32. [DOI: 10.1016/j.tins.2014.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023]
|
17
|
Cyclic AMP and the regeneration of retinal ganglion cell axons. Int J Biochem Cell Biol 2014; 56:66-73. [PMID: 24796847 DOI: 10.1016/j.biocel.2014.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 01/12/2023]
Abstract
In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN-optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections that combined rCNTF with both agonists were significantly less effective. The results are discussed in relation to previous CPT-cAMP studies on RGCs, and we also consider the need to modulate cAMP levels in order to obtain the most functionally effective regenerative response after CNS trauma. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
18
|
Lack of adenylate cyclase 1 (AC1): Consequences on corticospinal tract development and on locomotor recovery after spinal cord injury. Brain Res 2014; 1549:1-10. [DOI: 10.1016/j.brainres.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 01/14/2023]
|
19
|
Tucker SJ. The use of fluorescence resonance energy transfer (FRET) to measure axon growth and guidance-related intracellular signalling in live dorsal root ganglia neuronal growth cones. Methods Mol Biol 2014; 1162:29-40. [PMID: 24838956 DOI: 10.1007/978-1-4939-0777-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The measurement of signalling by traditional methods in primary neuronal cultures is often limited by cell numbers within the culture and restricted division among these cells. Further limitations are seen with modern fluorescent imaging techniques on account of difficulties with transfection of these cell types. Here, we describe successful transfection of dorsal root ganglion (DRG) primary neuronal cultures with cDNA encoded fluorescence resonance energy transfer (FRET) probes for various signalling moieties, and subsequent measurement of FRET as an index of signalling within these cells. Furthermore, these measurements were made within live neuronal growth cones, which are thin, fragile, and dynamic structures central to axonal growth, repair, and regeneration. This provides novel, physiological insight into the signalling processes driving these axonal behaviors.
Collapse
Affiliation(s)
- Steven J Tucker
- School of Medical Sciences, University of Aberdeen, The Institute of Medical Sciences (IMS) Building, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK,
| |
Collapse
|
20
|
Sutherland DJ, Goodhill GJ. The interdependent roles of Ca(2+) and cAMP in axon guidance. Dev Neurobiol 2013; 75:402-10. [PMID: 25783999 DOI: 10.1002/dneu.22144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/14/2013] [Accepted: 10/30/2013] [Indexed: 01/21/2023]
Abstract
Axon guidance is a fundamental process in the developing and regenerating nervous system that is necessary for accurate neuronal wiring and proper brain function. Two of the most important second messengers in axon guidance are Ca(2+) and cAMP. Recently experimental and theoretical studies have uncovered a Ca(2+) - and cAMP-dependent mechanism for switching between attraction and repulsion. Here, we review this process and related Ca(2+) and cAMP interactions, the mechanisms by which necessary intracellular calcium elevations are created, and the pathways, which effect attractive and repulsive responses to the switch.
Collapse
Affiliation(s)
- Daniel J Sutherland
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
21
|
Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch 2013; 466:1241-57. [PMID: 24142069 DOI: 10.1007/s00424-013-1373-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/07/2023]
Abstract
Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Largo Francesco Vito 1, 00168, Rome, Italy
| | | |
Collapse
|
22
|
Razmi A, Jahanabadi S, Sahebgharani M, Zarrindast MR. EPAC–STX interaction may play a role in neurodevelopment/neurogenesis. Med Hypotheses 2013; 81:216-8. [DOI: 10.1016/j.mehy.2013.04.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
|
23
|
Richter W, Menniti FS, Zhang HT, Conti M. PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 2013; 17:1011-27. [PMID: 23883342 DOI: 10.1517/14728222.2013.818656] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning, and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. AREAS COVERED PDE4 is the largest of the 11 mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. EXPERT OPINION PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors.
Collapse
Affiliation(s)
- Wito Richter
- University of California San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences, San Francisco, CA 94143-0556, USA.
| | | | | | | |
Collapse
|
24
|
Valero T, Moschopoulou G, Mayor-Lopez L, Kintzios S. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochem Int 2012; 61:1333-43. [PMID: 23022608 DOI: 10.1016/j.neuint.2012.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 01/25/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as harmful for cell development and as promoters of cell aging by increasing oxidative stress. However, ROS have an important role in cell signaling and they have been demonstrated to be beneficial by triggering hormetic signals, which could protect the organism from later insults. In the present study, N2a murine neuroblastoma cells were used as a paradigm of cell-specific (neural) differentiation partly mediated by ROS. Differentiation was triggered by the established treatments of serum starvation, forskolin or dibutyryl cyclic AMP. A marked differentiation, expressed as the development of neurites, was detected by fixation and staining with coomassie brilliant blue after 48 h treatment. This was accompanied by an increase in mitochondrial mass detected by mitotracker green staining, an increased expression of the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1-alpha (PGC-1α) and succinate dehydrogenase activity as detected by MTT. In line with these results, an increase in free radicals, specifically superoxide anion, was detected in differentiating cells by flow cytometry. Superoxide scavenging by MnTBAP and MAPK inhibition by PD98059 partially reversed differentiation and mitochondrial biogenesis. In this way, we demonstrated that mitochondrial biogenesis and differentiation are mediated by superoxide and MAPK cues. Our data suggest that differentiation and mitochondrial biogenesis in N2a cells are part of a hormetic response which is triggered by a modest increase of superoxide anion concentration within the mitochondria.
Collapse
Affiliation(s)
- T Valero
- Department of Physiology and Morphology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
25
|
Forbes EM, Thompson AW, Yuan J, Goodhill GJ. Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance. Neuron 2012; 74:490-503. [PMID: 22578501 DOI: 10.1016/j.neuron.2012.02.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 11/16/2022]
Abstract
Correct guidance of axons to their targets depends on an intricate network of signaling molecules in the growth cone. Calcium and cAMP are two key regulators of whether axons are attracted or repelled by molecular gradients, but how these molecules interact to determine guidance responses remains unclear. Here, we constructed a mathematical model for the relevant signaling network, which explained a large range of previous biological data and made predictions for when axons will be attracted or repelled. We then confirmed these predictions experimentally, in particular showing that while small increases in cAMP levels promote attraction large increases do not, and that under some circumstances reducing cAMP levels promotes attraction. Together, these results show that a relatively simple mathematical model can quantitatively predict guidance decisions across a wide range of conditions, and that calcium and cAMP levels play a more complex role in these decisions than previously determined.
Collapse
Affiliation(s)
- Elizabeth M Forbes
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|
26
|
Ramirez M, Almaraz L, Gonzalez C, Rocher A. Cyclic AMP and Epac contribute to the genesis of the positive interaction between hypoxia and hypercapnia in the carotid body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:215-23. [PMID: 23080165 DOI: 10.1007/978-94-007-4584-1_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carotid body chemoreceptor cells in response to hypoxic and hypercapnic stimulus increase their resting rate of release of neurotransmitters and their action potential frequency in the carotid sinus sensory nerve. When chemoreceptor activity is assessed at the level of the carotid sinus nerve and on ventilation, there exists an interaction between hypoxic and hypercapnic stimulus so that the response to both stimuli combined is additive or more than additive, over a wide range of stimulation. It is not clear if this interaction occurs at chemoreceptor cell or directly acting on the sensory nerve. In the present work we demonstrate for the first time the existence of a positive interaction between hypoxic and hypercapnic-acidotic stimuli at the level of both, membrane potential depolarization and neurotransmitter release in rat and rabbit carotid body. Inhibition of adenylate cyclase (SQ-22536) abolished the positive interaction between stimuli and the Epac (exchange proteins activated by cAMP) activator 8-pCPT-2'-O-Me-cAMP reversed the effect of adenylate cyclase inhibition. These results suggest that this interaction between the two natural stimuli is mediated by cAMP via an Epac-dependent pathway, at least at the level of neurotransmitter release.
Collapse
Affiliation(s)
- Maria Ramirez
- Departamento de Bioquímica, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | |
Collapse
|
27
|
Eva R, Andrews MR, Franssen EHP, Fawcett JW. Intrinsic mechanisms regulating axon regeneration: an integrin perspective. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:75-104. [PMID: 23211460 DOI: 10.1016/b978-0-12-407178-0.00004-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult central nervous system (CNS) axons fail to regenerate after injury because of inhibitory factors in the surrounding environment and a low intrinsic regenerative capacity. Axons in the adult peripheral nervous system have a higher regenerative capacity, due in part to the presence of certain integrins-receptors for the extracellular matrix. Integrins are critical for axon growth during the development of the nervous system but are absent from some adult CNS axons. Here, we discuss the intrinsic mechanisms that regulate axon regeneration and examine the role of integrins. As correct localization is paramount to integrin function, we further discuss the mechanisms that regulate integrin traffic toward the axonal growth cone.
Collapse
Affiliation(s)
- Richard Eva
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
28
|
Type VI adenylyl cyclase regulates neurite extension by binding to Snapin and Snap25. Mol Cell Biol 2011; 31:4874-86. [PMID: 21986494 DOI: 10.1128/mcb.05593-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3'-5'-Cyclic AMP (cAMP) is an important second messenger which regulates neurite outgrowth. We demonstrate here that type VI adenylyl cyclase (AC6), an enzyme which catalyzes cAMP synthesis, regulates neurite outgrowth by direct interaction with a binding protein (Snapin) of Snap25 at the N terminus of AC6 (AC6-N). We first showed that AC6 expression increased during postnatal brain development. In primary hippocampal neurons and Neuro2A cells, elevated AC6 expression suppressed neurite outgrowth, whereas the downregulation or genetic removal of AC6 promoted neurite extension. An AC6 variant (AC6-N5) that contains the N terminus of AC5 had no effect, indicating the importance of AC6-N. The downregulation of endogenous Snapin or the overexpression of a Snapin mutant (Snap(Δ33-51)) that does not bind to AC6, or another Snapin mutant (Snapin(S50A)) that does not interact with Snap25, reversed the inhibitory effect of AC6. Pulldown assays and immunoprecipitation-AC assays revealed that the complex formation of AC6, Snapin, and Snap25 is dependent on AC6-N and the phosphorylation of Snapin. The overexpression of Snap25 completely reversed the action of AC6. Collectively, in addition to cAMP production, AC6 plays a complex role in modulating neurite outgrowth by redistributing localization of the SNARE apparatus via its interaction with Snapin.
Collapse
|
29
|
Spatial and temporal second messenger codes for growth cone turning. Proc Natl Acad Sci U S A 2011; 108:13776-81. [PMID: 21795610 DOI: 10.1073/pnas.1100247108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic AMP (cAMP) and calcium are ubiquitous, interdependent second messengers that regulate a wide range of cellular processes. During development of neuronal networks they are critical for the first step of circuit formation, transducing signals required for axon pathfinding. Surprisingly, the spatial and temporal cAMP and calcium codes used by axon guidance molecules are unknown. Here, we identify characteristics of cAMP and calcium transients generated in growth cones during Netrin-1-dependent axon guidance. In filopodia, Netrin-1-dependent Deleted in Colorectal Cancer (DCC) receptor activation induces a transient increase in cAMP that causes a brief increase in calcium transient frequency. In contrast, activation of DCC in growth cone centers leads to a transient calcium-dependent cAMP increase and a sustained increase in frequency of calcium transients. We show that filopodial cAMP transients regulate spinal axon guidance in vitro and commissural axon pathfinding in vivo. These growth cone codes provide a basis for selective activation of specific downstream effectors.
Collapse
|