1
|
Koyun AH, Talebi N, Werner A, Wendiggensen P, Kuntke P, Roessner V, Beste C, Stock AK. Interactions of catecholamines and GABA+ in cognitive control: Insights from EEG and 1H-MRS. Neuroimage 2024; 293:120619. [PMID: 38679186 DOI: 10.1016/j.neuroimage.2024.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany.
| |
Collapse
|
2
|
Deep brain stimulation electrode insertion and depression: Patterns of activity and modulation by analgesics. Brain Stimul 2018; 11:1348-1355. [DOI: 10.1016/j.brs.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
|
3
|
Chartier M, Malissin I, Tannous S, Labat L, Risède P, Mégarbane B, Chevillard L. Baclofen-induced encephalopathy in overdose - Modeling of the electroencephalographic effect/concentration relationships and contribution of tolerance in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:131-139. [PMID: 29782961 DOI: 10.1016/j.pnpbp.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022]
Abstract
Baclofen, a γ-amino-butyric acid type-B receptor agonist with exponentially increased use at high-dose to facilitate abstinence in chronic alcoholics, is responsible for increasing poisonings. Baclofen overdose may induce severe encephalopathy and electroencephalographic (EEG) abnormalities. Whether prior prolonged baclofen treatment may influence the severity of baclofen-induced encephalopathy in overdose has not been established. We designed a rat study to characterize baclofen-induced encephalopathy, correlate its severity with plasma concentrations and investigate the contribution of tolerance. Baclofen-induced encephalopathy was assessed using continuous EEG and scored based on a ten-grade scale. Following the administration by gavage of 116 mg/kg baclofen, EEG rapidly and steadily impaired resulting in the successive onset of deepening sleep followed by generalized periodic epileptiform discharges and burst-suppressions. Thereafter, encephalopathy progressively recovered following similar phases in reverse. Periodic triphasic sharp waves, non-convulsive status epilepticus and even isoelectric signals were observed at the most critical stages. Prior repeated baclofen administration resulted in reduced severity (peak: grade 7 versus 9; peak effect length: 382 ± 40 versus 123 ± 14 min, P = 0.008) and duration of encephalopathy (18 versus > 24 h, P = 0.0007), supporting the acquisition of tolerance. The relationship between encephalopathy severity and plasma baclofen concentrations fitted a sigmoidal Emax model with an anticlockwise hysteresis loop suggesting a hypothetical biophase site of action. The baclofen concentration producing a response equivalent to 50% of Emax was significantly reduced (8947 μg/L, ±11.3% versus 12,728 μg/L, ±24.0% [mean, coefficient of variation], P = 0.03) with prior prolonged baclofen administration. In conclusion, baclofen overdose induces early-onset and prolonged marked encephalopathy that is significantly attenuated by prior repeated baclofen treatment. Our findings suggest a possible role for the blood-brain barrier in the development of tolerance; however, its definitive involvement remains to be demonstrated.
Collapse
Affiliation(s)
| | - Isabelle Malissin
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris-Diderot University, Paris, France
| | - Salma Tannous
- Inserm UMRS-1144, Paris-Descartes University, Paris, France
| | - Laurence Labat
- Inserm UMRS-1144, Paris-Descartes University, Paris, France; Pharmacokinetics and Pharmaco-chemistry Unit, Cochin Hospital, Paris, France; Laboratory of Toxicology, Lariboisière Hospital, Paris, France
| | | | - Bruno Mégarbane
- Inserm UMRS-1144, Paris-Descartes University, Paris, France; Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Paris-Diderot University, Paris, France.
| | | |
Collapse
|
4
|
Bruchim-Samuel M, Lax E, Gazit T, Friedman A, Ahdoot H, Bairachnaya M, Pinhasov A, Yadid G. Electrical stimulation of the vmPFC serves as a remote control to affect VTA activity and improve depressive-like behavior. Exp Neurol 2016; 283:255-63. [PMID: 27181412 DOI: 10.1016/j.expneurol.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
Despite progress in elucidating mechanisms of depression, the efficacy of different treatments remains inadequate. Recent small-scale clinical studies suggested anti-depressant treatment using deep brain stimulation (DBS) of the ventral capsule/ventral striatum or subgenual cingulate cortex (SCC), yet controlled, multi-center trials were unsuccessful. We recently suggested the ventral tegmental area (VTA) as an important intersection for treating depression. We also found that stimulation of the VTA of a genetic rat model of depression (Flinders Sensitive Line (FSL) rats) with a programmed pattern designed to mimic the burst firing of normal rats decreases depressive-like behavior. Herein, we examined the possibility of reaching the VTA - located deep in the brain stem - through its direct connection to the ventro-medial prefrontal cortex (vmPFC), which parallels the human SCC. Thus, we compared treatment of FSLs with modified versions of DBS - either chronic-intermittent low-frequency electrical stimulation of the vmPFC, or patterned acute electrical stimulation (pAES), which integrates transcranial magnetic stimulation properties, namely, bursts of pulse trains and low frequency stimulation, applied to the VTA. We found that stimulation of the vmPFC (20Hz, 15min/day, 10days) improved depressive-like behavior and VTA local field potential (LFP) activity of FSLs, yet it had only a partial long-term effect on behavior. In particular, vmPFC stimulation decreased theta band activity, which correlated with the improvement in depressive-like behavior of all treated FSLs at day 1, and in ~50% of treated FSLs at day 28 post treatment. pAES of the VTA (10Hz, 20min) caused significant, long-term improvement of depressive-like behavior of FSLs, concurrently with normalizing intra-VTA LFP activity, and increasing VTA LFP synchronicity and hippocampal BDNF mRNA levels. Thus, although low-frequency electrical stimulation of the PFC alters VTA activity, leading to attenuation of depressive-like manifestations, a specific stimulation pattern affecting VTA cell programming is important for long-term efficacy.
Collapse
Affiliation(s)
| | - Elad Lax
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tomer Gazit
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Hadas Ahdoot
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | - Gal Yadid
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel; Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
5
|
Orzeł-Gryglewska J, Matulewicz P, Jurkowlaniec E. Brainstem system of hippocampal theta induction: The role of the ventral tegmental area. Synapse 2015; 69:553-75. [PMID: 26234671 DOI: 10.1002/syn.21843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
This article summarizes the results of studies concerning the influence of the ventral tegmental area (VTA) on the hippocampal theta rhythm. Temporary VTA inactivation resulted in transient loss of the hippocampal theta. Permanent destruction of the VTA caused a long-lasting depression of the power of the theta and it also had some influence on the frequency of the rhythm. Activation of glutamate (GLU) receptors or decrease of GABAergic tonus in the VTA led to enhancement of dopamine release and increased hippocampal theta power. High time and frequency cross-correlation was detected for the theta band between the VTA and hippocampus during paradoxical sleep and active waking. Thus, the VTA may belong to the broad network involved in theta rhythm regulation. This article also presents a model of brainstem-VTA-hippocampal interactions in the induction of the hippocampal theta rhythm. The projections from the VTA which enhance theta rhythm are incorporated into the main theta generation pathway, in which the septum acts as the central node. The neuronal activity that may be responsible for the ability of the VTA to regulate theta probably derives from the structures associated with rapid eye movement (sleep) (REM) sleep or with sensorimotor activity (i.e., mainly from the pedunculopontine and laterodorsal tegmental nuclei and also from the raphe).
Collapse
Affiliation(s)
| | - Paweł Matulewicz
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Edyta Jurkowlaniec
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, 80-308, Poland
| |
Collapse
|
6
|
NMDA-glutamatergic activation of the ventral tegmental area induces hippocampal theta rhythm in anesthetized rats. Brain Res Bull 2014; 107:43-53. [PMID: 24915630 DOI: 10.1016/j.brainresbull.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/20/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
Glutamate afferents reaching the ventral tegmental area (VTA) affect dopamine (DA) cells in this structure probably mainly via NMDA receptors. VTA appears to be one of the structures involved in regulation of hippocampal theta rhythm, and this work aimed at assessing the role of glutamatergic activation of the VTA in the theta regulation. Male Wistar rats (n=17) were divided into groups, each receiving intra-VTA microinjection (0.5 μl) of either solvent (water), glutamatergic NMDA agonist (0.2 μg) or antagonist (MK-801, 3.0 μg). Changes in local field potential were assessed on the basis of peak power (Pmax) and corresponding peak frequency (Fmax) for the delta (0.5-3 Hz) and theta (3-6 Hz) bands. NMDA microinjection evoked long-lasting hippocampal theta. The rhythm appeared with a latency of ca. 12 min post-injection and lasted for over 30 min; Pmax in this band was significantly increased for 50 min, while simultaneously Pmax in the delta band remained lower than in control conditions. Theta Fmax and delta Fmax were increased in almost entire post-injection period (by 0.3-0.5 Hz and 0.3-0.7 Hz, respectively). MK-801 depressed the sensory-evoked theta: tail pinch could not induce theta for 30 min after the injection; Pmax significantly decreased in the theta band and at the same time it increased in the delta band. Theta Fmax decreased 10 and 20 min post injection (by 0.4-0.5 Hz) and delta Fmax decreased in almost entire post injection period (by 0.3-0.7 Hz). NMDA injection generates theta rhythm probably through stimulation of dopaminergic activity within the VTA.
Collapse
|
7
|
Orzeł-Gryglewska J, Matulewicz P, Jurkowlaniec E. Theta activity in local field potential of the ventral tegmental area in sleeping and waking rats. Behav Brain Res 2014; 265:84-92. [DOI: 10.1016/j.bbr.2014.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/11/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
|
8
|
Matulewicz P, Kuśmierczak M, Orzeł-Gryglewska J, Jurkowlaniec E. Hippocampal theta rhythm induced by rostral pontine nucleus stimulation in the conditions of pedunculopontine tegmental nucleus inactivation. Brain Res Bull 2013; 96:10-8. [DOI: 10.1016/j.brainresbull.2013.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
|
9
|
Orzeł-Gryglewska J, Kuśmierczak M, Matulewicz P, Jurkowlaniec E. Dopaminergic transmission in the midbrain ventral tegmental area in the induction of hippocampal theta rhythm. Brain Res 2013; 1510:63-77. [DOI: 10.1016/j.brainres.2013.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 12/11/2022]
|
10
|
Cooperative interaction between the basolateral amygdala and ventral tegmental area modulates the consolidation of inhibitory avoidance memory. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:54-61. [PMID: 23063440 DOI: 10.1016/j.pnpbp.2012.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/16/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The aim of the current study was to examine the existence of a cooperative interaction between the basolateral nucleus of amygdala (BLA) and the ventral tegmental area (VTA) in inhibitory avoidance task. The BLA and the VTA regions of adult male Wistar rats were simultaneously cannulated and memory consolidation was measured in a step-through type inhibitory avoidance apparatus. Post-training microinjection of muscimol, a potent GABA-A receptor agonist (0.01-0.02 μg/rat), into the VTA impaired memory in a dose-dependent manner. Post-training intra-BLA microinjection of NMDA (0.02-0.04 μg/rat), 5 min before the intra-VTA injection of muscimol (0.02 μg/rat), attenuated muscimol-induced memory impairment. Microinjection of a NMDA receptor antagonist, D-AP5 (0.02-0.06 μg/rat) into the BLA inhibited NMDA effect on the memory impairment induced by intra-VTA microinjection of muscimol. On the other hand, post-training intra-BLA microinjection of muscimol (0.02-0.04 μg/rat) dose-dependently decreased step-through latency, indicating an impairing effect on memory. This impairing effect was however significantly attenuated by intra-VTA microinjection of NMDA (0.01-0.03 μg/rat). Intra-VTA microinjection of D-AP5 (0.02-0.08 μg/rat), 5 min prior to NMDA injection, inhibited NMDA response on the impairing effect induced by intra-BLA microinjection of muscimol. It should be considered that post-training microinjection of the same doses of NMDA or D-AP5 into the BLA or the VTA alone had no effect on memory consolidation. The data suggest that the relationship between the BLA and the VTA in mediating memory consolidation in inhibitory avoidance learning may be dependent on a cooperative interaction between the glutamatergic and GABAergic systems via NMDA and GABA-A receptors.
Collapse
|
11
|
Orzeł-Gryglewska J, Kuśmierczak M, Majkutewicz I, Jurkowlaniec E. Induction of hippocampal theta rhythm by electrical stimulation of the ventral tegmental area and its loss after septum inactivation. Brain Res 2012; 1436:51-67. [DOI: 10.1016/j.brainres.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023]
|
12
|
Kovačević T, Skelin I, Minuzzi L, Rosa-Neto P, Diksic M. Reduced metabotropic glutamate receptor 5 in the Flinders Sensitive Line of rats, an animal model of depression: an autoradiographic study. Brain Res Bull 2012; 87:406-12. [PMID: 22310150 DOI: 10.1016/j.brainresbull.2012.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 01/18/2012] [Indexed: 01/15/2023]
Abstract
Depression is a brain disorder and there is still only a partial understanding of its underlying pathophysiology. Antidepressant medications with a fast onset have not yet been developed. In addition to the monoaminergic systems, the brain glutaminergic system has been implicated in the etiology of depression. Animal studies of depression have gained importance because they permit a more invasive manipulation of the subjects than human studies. In the present study, we measured the densities of the brain regional metabotropic glutaminergic receptor 5 (mGluR5) in the Flinders Sensitive Line (FSL) rat model of depression and two groups of control rats, the Flinders Resistant Line (FRL) and Sprague Dawley (SPD), the parent strain for both the FSL and FRL rats. The FSL rats showed lower densities of mGluR5 in many brain regions compared to either the SPD and/or FRL rats. In addition, the densities in the FRL rats were larger than in the SPD rats, suggesting possible problems in using FRL rats as controls. The presented data suggest that mGluR5 is lower in animal models of depression which could be related to the cognitive and emotional dysfunctions in the FSL rat model of depression and could be relevant to a better understanding of depression in humans.
Collapse
Affiliation(s)
- Tomislav Kovačević
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|